
Project Report: Hascade

Yiming Fang
Email: yf2484@columbia.edu

December 22, 2022

1 Introduction

Influence Maximization (IM) is an exciting and well-researched topic, and it has practical appli-
cations to commercial marketing and social network management. In any given social network, it
often is the case that some nodes are more influential than others. Sometimes, identifying a set of
influential nodes can greatly help decision-makers make marketing decisions. However, since the
problem is proven to be NP-Hard, most existing algorithms use greedy heuristics that run sequen-
tially. Although the approximation algorithms have theoretical error bounds, the computational
cost of IM solvers is usually very high due to their sequential nature.

This project presents a parallel implementation of the IM solver. In particular, we focus on the IM
problem in the context of the Independent Cascade model. The following sections are going to be
divided as follows. Section 2 formulates the problem. Section 3 describes the greedy algorithm we
used. Section 4 discusses the choices we made for parallelization. Section 5 presents the empirical
results of the performance.

2 Problem Formulation

Given a graph G = (V,E), the task of the IM problem identifying a ”most influential seed set”
S ⊆ V of size k, such that

S = arg max
|S|=k

E[f(S)]

where S is called the seeds, and f(S) is the total expected cascade size resulting from S.

In the Independent Cascade model, each edge e(u,v) has an influence probability pu,v, such that u
has a one-shot opportunity of influencing v with pu,v probability.

The influence process runs as follows. In the beginning, only the seeds are activated. At each
timestep, the activated vertices have the opportunity to influence their neighbors, and if they
succeed in influencing a vertex, the new vertex will join the set of activated vertices in the next
iteration. The process terminates when there all vertices are either activated or have been tried to
be activated by some neighbor.

1

3 Implementation

The baseline implementation of IM is a sequential, greedy algorithm [1] [2]. The algorithm adds
vertices to the ”most influential set” one-by-one, by always choosing the vertex that brings the
highest expected increase of influence to the current set. The algorithm terminates when all k slots
are populated. We present this process in Algorithm 1.

Algorithm 1 Greedy

1: Input: Graph G = (V,E).
2: Output: Most Influential Set S.
3:

4: S0 ← {}
5: for i = 1, ..., k, do
6: u← argmaxu f(Si−1 ∪ {u})
7: Activate u
8: Si ← Si−1 ∪ {u}
9: end

10:

11: return Sk

12: =0

The most important and time-consuming part of this algorithm is line 6, which computes an
approximation of the expected influence of a set of activated vertices. This approximation can be
done through a simple Monte Carlo-style search that runs sequentially.

Algorithm 2 Monte-Carlo

1: Input: Graph G = (V,E) Vertex set Si = Si−1 ∪ {u}, number of trails N .
2: Output: The expected influence of Si

3:

4: count ← 0
5: for j = 1, ..., N , do
6: Simulate independent cascade on G,Si

7: count += number of influenced vertex
8: end
9:

10: return count / N.
11: =0

One obvious thing to notice is that we are running the independent function calls over the exact
same input vertex set for a large number of iterations, and this can be easily made parallel, as
discussed in the next section.

The simulation of the independent cascade model is done by finding the all neighbors of every vertex
in the input set, and trying to activate them by generating a random number and comparing it
with the influence probability pu,v. Activated vertices are added to the input set of the recursive
call to the next simulation, and vertices that have been attempted but not successfully activated
are removed from the graph given to the recursive call.

2

Algorithm 3 Independent-Cascade

1: Input: Graph G = (V,E) Vertex set Si.
2: Output: The simulated influence of Si

3:

4: neighbors ← ∪v∈S G.lookup(v)
5: neighbors = neighbors \ S
6: activated ← tryActivate(neighbors)
7: activated = activated \ S
8: failed = neighbors \ activated
9: G.keys← G.keys\ failed

10:

11: return length(activated) + Independent-Cascade(G,S ∪ activated)
12: =0

4 Parallelization

As we observed in the last section, the most appropriate place to introduce parallelism is in Algo-
rithm 3, because the structure of the sequential algorithm can be modified very slightly to bring
parallelism to the overall algorithm. Since we used lazy data structures in our code, we want to
ensure that our expressions are all fully evaluated to the normal form. We can accomplish this by
using the ”rdeepseq” strategy. The modified parallel Monte Carlo algorithm is presented as follows.

Algorithm 4 Monte-Carlo Par

1: Input: Graph G = (V,E) Vertex set Si = Si−1 ∪ {u}, number of trails N .
2: Output: The expected influence of Si

3:

4: count ← 0
5: chunks ← split numCores N
6: for chunk ∈ chunks, do
7: for j = 1, ..., N/numCores, do
8: Simulate independent cascade on G,Si

9: count += number of influenced vertex
10: end

end ‘using‘ parList rdeepseq
11:12: return count / N.
13: =0

A further parallelization trick that we used to make the algorithm more efficient is static chunking.
While it is in general more beneficial to use dynamic partitioning to initialize sparks, we observe
that in the situation of Monte Carlo, static partitioning suffices, and even outperforms dynamic
partitioning.

For each function call to Monte-Carlo, we are going to split the number of trials into numCores
chunks, and start a spark for each chunk.

The rationale for doing so is the following. In most cases, whenever we do Monte Carlo simulation,
we would like to ensure that the approximation we get is both stable and accurate. To this end,

3

the number of trials for Monte Carlo is going to be always a large number. Therefore, when we
divide the workload into chunks, although each Independent-Cascade simulation can differ a lot in
terms of workload and compute time, the chunk of simulation should all have similar workloads.
This property ensures that the sparks started for the same Monte Carlo function call should finish
roughly at the same time, minimizing the idle time of cores waiting for other cores to finish.

5 Performance

For testing, we used a dataset consisting of 1000 vertices, and set the hyper-parameters of Monte
Carlo trials to be 1000. I used a 2018 MacBook Pro with 4 Intel cores and 8GB RAM, and I
tested for sequential, 2 cores, and 4 cores respectively. The results is summarized in the following
screenshot from ThreadScope.

As one can see from the picture, the multi-core tests achieved reasonable speedup ratios over the
sequential version of the algorithm. For 2 cores, the speedup is 1.47x, and for 4 cores the speedup
is 2.33x.

From the trace of the sparks, one can also see that the tasks are well-balanced, although there are
periods of time where the balance is not so great and the performance becomes near sequential.
To see exactly what happened during these sections, we can zoom into look at a more microscopic
image:

4

In this test run with 4 cores, one can observe that the beginning section is most likely doing some
sequential operations, such as chunking, combining, and folding. During this time, the cores are
not fully occupied, and the stack trace tells us that the threads are blocked by some other threads,
waiting for some relevant execution to finish. At arround 1.275 seconds, the cores begin to do more
meaningful work, interrupted periodically by garbage collections.

Given the nature of this algorithm, the degree of parallelization can be affected by a lot of factors,
and can also differ across input. For example, a dense graph would cause the algorithm to spend
more time doing Independent-Cascade simulation, resulting in a better ratio of parallelization.
Moreover, the influence probability is also positively related to the ratio of speedup. To make a fair
comparison, we have used a real-world graph from the SNAP datasets, representing the wikipedia
community [3]

6 Conde Listing

1 {-# OPTIONS_GHC -Wno -missing -export -lists #-}

2 module Main where

3

4 import BasicTypes (UnweightedGraph)

5 import qualified Data.Map.Strict as Map

6 import qualified Data.Set as Set

7 import Solver (greedySolver)

8 import System.Environment (getArgs

9 , getProgName

10)

11 import System.Exit (die)

12

13

14 main :: IO ()

15 main = do

5

16 args <- getArgs

17 case args of

18 [k, filename] -> do

19 contents <- readFile filename

20 let inputGraph = constructGraph contents

21 print $ greedySolver inputGraph Set.empty (read k) 0.1 100

22 _ -> do

23 pn <- getProgName

24 die $ "Usage: " ++ pn ++ "<num_cores > <filename >"

25

26

27 constructGraph :: String -> UnweightedGraph

28 constructGraph = Map.fromList . map extractLine . lines

29

30

31 extractLine :: String -> (Int , [Int])

32 extractLine str = (node , neighbors)

33 where

34 (node , neighbors) = case words str of

35 (this : others) -> (read this , map read others)

36 [] -> (-1, [])

Listing 1: Main.hs

1 {-# OPTIONS_GHC -Wno -unrecognised -pragmas #-}

2 {-# HLINT ignore "Use newtype instead of data" #-}

3 module BasicTypes

4 (Vertex

5 , Weight

6 , UnweightedGraph

7 , WeightedGraph

8) where

9

10

11 import qualified Data.Map.Strict as Map

12

13 type Vertex = Int

14 type Weight = Float

15

16 type UnweightedGraph = Map.Map Vertex [Vertex]

17 type WeightedGraph = Map.Map Vertex [(Vertex , Weight)]

Listing 2: BasicTypes.hs

1 {-# LANGUAGE BlockArguments #-}

2 module Solver

3 (greedySolver

4) where

5

6 import BasicTypes (UnweightedGraph

7 , Vertex

8)

9 import Control.Monad (replicateM)

10 import Control.Parallel.Strategies (parList

11 , rdeepseq

12 -- , rpar

13 -- , rseq

14 , using

15)

6

16 import qualified Data.Map.Strict as Map

17 import Data.Maybe (fromMaybe)

18 import qualified Data.Set as Set

19 import Data.Set (Set

20 , (\\)

21)

22 import System.IO.Unsafe (unsafePerformIO)

23 import System.Random (randomIO)

24

25

26

27 greedySolver

28 :: UnweightedGraph -> Set Vertex -> Int -> Float -> Int -> Set Vertex

29 greedySolver graph vSet k thresh mcTrials

30 | k == 0

31 = vSet

32 | otherwise

33 = let runMC :: Vertex -> (Float , Vertex)

34 runMC = monteCarlo graph vSet buffer

35

36 runChunk :: [Vertex] -> [(Float , Vertex)]

37 runChunk vs = map runMC vs

38

39 findMaxV :: [(Float , Vertex)] -> (Float , Vertex) -> Vertex

40 findMaxV [] acc = snd acc

41 findMaxV (x : xs) acc | fst x > fst acc = findMaxV xs x

42 | otherwise = findMaxV xs acc

43

44 buffer = replicate mcTrials thresh

45 candidateVs = Map.keys graph

46

47 -- candidateChunks = split 10 candidateVs

48 -- scores = map runChunk candidateChunks ‘using ‘ parList rdeepseq

49 -- vMax = findMaxV (concat scores) (0, -1)

50

51 scores = map runMC candidateVs -- ‘using ‘ parList rdeepseq

52 vMax = findMaxV scores (0, -1)

53

54 vSet ’ = Set.insert vMax vSet

55 in greedySolver graph vSet ’ (k - 1) thresh mcTrials

56

57

58 split :: Int -> [a] -> [[a]]

59 split numChunks xs = chunk (length xs ‘quot ‘ numChunks) xs

60

61

62 chunk :: Int -> [a] -> [[a]]

63 chunk _ [] = []

64 chunk n xs = let (as , bs) = splitAt n xs in as : chunk n bs

65

66

67 monteCarloV1

68 :: UnweightedGraph -> Set Vertex -> [Float] -> Int -> (Float , Vertex)

69 monteCarloV1 graph vSet ps vNew = (mean , vNew)

70 where

71 vs = Set.insert vNew vSet

72 lens = map (independentCascade graph vs 0) ps ‘using ‘ parList rdeepseq

73 mean = sum lens / realToFrac (length lens)

74

7

75

76 monteCarlo

77 :: UnweightedGraph -> Set Vertex -> [Float] -> Vertex -> (Float , Vertex)

78 monteCarlo graph vSet ps vNew = (mean , vNew)

79 where

80 meansWithSizes = map mc pss ‘using ‘ parList rdeepseq

81

82 vs = Set.insert vNew vSet

83 pss = split 4 ps

84

85 mc = monteCarloChunk graph vs

86

87 totalSum = foldr ((+) . multSize) 0 meansWithSizes

88 totalSize = foldr ((+) . snd) 0 meansWithSizes

89

90 multSize (a, b) = a * realToFrac b

91 mean = totalSum / realToFrac totalSize

92

93

94 monteCarloChunk :: UnweightedGraph -> Set Vertex -> [Float] -> (Float , Vertex)

95 monteCarloChunk graph vSet ps = (mean , length ps)

96 where

97 lens = map (independentCascade graph vSet 0) ps -- ‘using ‘ parList rseq

98 mean = sum lens / realToFrac (length lens)

99

100

101 independentCascade :: UnweightedGraph -> Set Vertex -> Int -> Float -> Float

102 independentCascade graph vSet depth thresh = if null activatedSet ’

103 then 0

104 else

105 let nextCascade =

106 independentCascade graph ’ activeSet (depth + 1) thresh

107 thisCascade = realToFrac $ length activeSet

108 in thisCascade + nextCascade

109

110 where

111 graph ’ = graph Map .\\ setMap

112 setMap = Map.fromSet (‘Map.lookup ‘ graph) neighborSet ’

113

114 neighborSet = getNeiborSet graph vSet

115 neighborSet ’ = neighborSet \\ vSet

116

117 activatedSet = tryActivate neighborSet ’ thresh

118 activatedSet ’ = activatedSet \\ vSet

119

120 activeSet = Set.union vSet activatedSet ’

121

122

123 randSeq :: Int -> [Float]

124 randSeq k = unsafePerformIO (replicateM k (randomIO :: IO Float))

125

126

127 tryActivate :: Set Vertex -> Float -> Set Vertex

128 tryActivate vs thresh = Set.fromList newActiveVs

129 where

130 strengths = randSeq l

131 threshs = replicate l thresh

132 l = length vs

133

8

134 diff = zipWith (-) threshs strengths

135 threshVs = zip diff (Set.toList vs)

136 newActive = filter ((< 0) . fst) threshVs

137

138 newActiveVs = map snd newActive

139

140

141 getNeiborSet :: UnweightedGraph -> Set Vertex -> Set Vertex

142 getNeiborSet graph vSet = Set.fromList newSets

143 where

144 findChildren :: Int -> [Int]

145 findChildren v = Data.Maybe.fromMaybe [] (Map.lookup v graph)

146

147 newSets = concatMap findChildren $ Set.toList vSet

Listing 3: Solver.hs

References

[1] https://snap-stanford.github.io/cs224w-notes/network-methods/influence-maximization

[2] https://hautahi.com/im_greedycelf

[3] https://snap.stanford.edu/data/wiki-Talk.html

9

	Introduction
	Problem Formulation
	Implementation
	Parallelization
	Performance
	Conde Listing

