
Parallel Autocomplete

Eugene Kim
ek3192

Report

As outlined in my proposal, this program parses a corpus of English text for word counts and
provides at most K autocomplete suggestions by descending frequency to each input string given
by the user.

I followed the Details, Parallelization, Evaluation, and Data sections of my proposal. Please see
the README.md for execution details.

Results

These results were gathered on a quad-core machine.

Step 1

The first step for evaluation is seeing how the sequential and parallelized program ran in regards
to step 1 of the program, creating the trie from word counts gathered from the corpus. The
sequential program sequentially counts the words of the corpus, whereas the parallel program
chunks the corpus and performs Map/Reduce. I used the Shakespeare corpus 100-0.txt from
HW4, which comprises approximately 1,000,000 words.

Sequential - 2.05 s:

Parallel N2 - 1.75 s:

Parallel N4 - 1.22 s:

Parallel N8 - 4.17 s:

of Cores utilized 1 2 4 8

Time elapsed 2.05 s 1.75 s 1.22 s 4.17 s

We see a sort of “bathtub” distribution. Asking multiple cores to help handle the work helps
speed the program to a certain extent. However, after a point, this adds more bookkeeping
overhead that exceeds the diminishing marginal gains from parallelism.

There is still performance left to be desired, as the activity row at the top shows a total utilization
value of 2 cores at best. There is a bit of garbage-collection going on which I tried to minimize
by using parBuffer. There are also unavoidable sequential operations, like disk IO for the large
corpus, reconstructing the count map and lists. Also, the initial population of the trie remained
sequential in both program versions, as there can be race conditions if done in parallel.

Step 2

The second step for evaluation is seeing how the sequential and parallelized program ran in
regards to step 2 of the program, providing K most relevant autocomplete suggestions to the

user’s prompt. Both programs traverse the populated trie using the prompt. The sequential
program performs DFS on all possible descendents sequentially, whereas the parallel program
performs DFS on all possible descendents of each node in parallel with each other. Afterwards,
both programs sort by descending word count and return the top K candidates in frequency.

The most differentiating input case would be the empty string, since all words in the corpus are
potential autocomplete candidates.

Sequential - 0.15 s:

Parallel N4 - 0.16 s:

The time elapsed was very small for DFS across the entire trie, and was even smaller for all other
queries. As you can see, the time elapsed for both sequential and parallel were very similar,
despite the parallelization graph’s activity row showing at best ~2 core utilization value. This
was also the case for many other test inputs and # of cores, all varying in the possible number of
autocompletes. I have tried numerous parallelization approaches for step 2, including parBuffer +
rdeepseq (current implementation), parList + rseq, using bang (!) to force eager evaluation, etc.
however they did not seem to produce meaningful speedup.

A potential theory I have as for why this is the case is that there is an inherently sequential nature
to a graph traversal algorithm like DFS through a tree. The way I have implemented DFS
requires the program to fully traverse to the leaf nodes of the trie in order to terminate. The
reason for this is that it is somewhat difficult to synchronize an early termination in the case there
are parallel traversals going on. Also, the nature of my autocomplete program is such that it
wants to find the most relevant candidates to suggest, and the most popular words may be stored
deep within the trie. Also, the DFS traversal doesn’t benefit from “smart” memoization of results
gathered in parallel like a fibonacci program would, and so the total expected work in either
implementation would be expected to be similar.

Conclusion

Parallelization has been a successful means to speeding up a prototypical autocomplete program
by utilizing a Map/Reduce approach to gathering word counts of a corpus to populate a trie. It
has been difficult to show meaningful speedup in the trie DFS traversal however.

Some future improvements would involve utilizing parallel file IO with Haskell’s POSIX-style
IO to help reduce the notorious disk IO sequential bottleneck.

References

Trie data structure
https://gist.github.com/orclev/1929451

Map/Reduce
https://stackoverflow.com/questions/27115894/haskell-parallel-word-count-using-mapreduce-fra
mework-control-parallel-strate

Code

app/Main.hs
module Main (main) where

import Lib

import System.Exit(die)

import System.Environment(getArgs, getProgName)

import Data.Char(isAlpha, toLower, isSpace)

import Data.Map(fromListWith, toList, unionsWith)

import Data.List(sortBy)

import Control.Parallel.Strategies(runEval, parBuffer, rdeepseq, parMap, rpar)

main :: IO ()

main = do args <- getArgs

case args of

https://gist.github.com/orclev/1929451
https://stackoverflow.com/questions/27115894/haskell-parallel-word-count-using-mapreduce-framework-control-parallel-strate
https://stackoverflow.com/questions/27115894/haskell-parallel-word-count-using-mapreduce-framework-control-parallel-strate

[filename, k, version] -> do

if version == "seq"

then do

contents <- readFile filename

let cWords = zip (getWords contents) $ repeat 1

counts = toList $ fromListWith (+) cWords

trie = initTrie counts

autocomplete trie k

else if version == "par"

then do

contents <- readFile filename

let pWords = getWords contents

pairs = runEval ((parBuffer 100 rdeepseq) (map (\x -> (x,

1)) pWords))

counts = toList $ unionsWith (+) (parMap rpar

(fromListWith (+)) (chunk 200000 pairs))

trie = initTrie counts

parAutocomplete trie k

else do

pn <- getProgName

die $ "Usage: " ++ (fst $ span (/= '.') pn) ++ " <filename> <k>

<seq|par>"

_ -> do pn <- getProgName

die $ "Usage: " ++ (fst $ span (/= '.') pn) ++ " <filename>

<k> <seq|par>"

getWords :: [Char] -> [String]

getWords = words . map toLower . filter (\c -> isAlpha c || isSpace c)

autocomplete :: Trie -> String -> IO b

autocomplete trie k = do putStrLn "Please enter a query: "

line <- getLine

let node = traverseTrie line trie

counts = dfs node line

sorted = sortBy (\(_,a) (_,b) -> compare b a)

counts

mapM_ (putStrLn . fst) $ take (read k :: Int) sorted

autocomplete trie k

parAutocomplete :: Trie -> String -> IO b

parAutocomplete trie k = do putStrLn "Please enter a query: "

line <- getLine

let node = traverseTrie line trie

counts = parDFS node line

sorted = sortBy (\(_,a) (_,b) -> compare b a)

counts

mapM_ (putStrLn . fst) $ take (read k :: Int)

sorted

parAutocomplete trie k

chunk :: Int -> [a] -> [[a]]

chunk _ [] = []

chunk n xs = let (as,bs) = splitAt n xs in as : chunk n bs

src/Lib.hs
module Lib (Trie, initTrie, traverseTrie, dfs, parDFS) where

import qualified Data.Map as M

import Control.Parallel.Strategies(runEval, parBuffer, rdeepseq)

data Trie = Node Int (M.Map Char Trie)

insert :: [Char] -> Int -> Trie -> Trie

insert [] count (Node n m) = Node (n + count) m

insert (x:xs) count (Node n m) =

case M.lookup x m of

Nothing -> Node n (M.insert x (insert xs count (Node 0 M.empty)) m)

Just child -> Node n (M.insert x (insert xs count child) m)

initTrie :: Foldable t => t ([Char], Int) -> Trie

initTrie counts = foldl (\t (w, c) -> insert w c t) (Node 0 M.empty) counts

traverseTrie :: [Char] -> Trie -> Trie

traverseTrie [] node = node

traverseTrie (x:xs) (Node _ m) =

case M.lookup x m of

Nothing -> (Node 0 M.empty)

Just child -> traverseTrie xs child

dfs :: Trie -> [Char] -> [([Char], Int)]

dfs (Node n m) suffix

| n > 0 = foldl (\l (letter, child) -> l ++ (dfs child (suffix ++ [letter])))

[(suffix, n)] pairs

| otherwise = foldl (\l (letter, child) -> l ++ (dfs child (suffix ++

[letter]))) [] pairs

where pairs = M.toList m

parDFS :: Trie -> [Char] -> [([Char], Int)]

parDFS (Node n m) suffix

| n > 0 = runEval ((parBuffer 100 rdeepseq) (foldl (\l (letter, child) -> l

++ (parDFS child (suffix ++ [letter]))) [(suffix, n)] pairs))

| otherwise = runEval ((parBuffer 100 rdeepseq) (foldl (\l (letter, child) ->

l ++ (parDFS child (suffix ++ [letter]))) [] pairs))

where pairs = M.toList m

