
Parallel Functional Programming
Word Search in a Grid

Name : Swetha Shanmugam
UNI: ss6357

Introduction

Given a word and a grid, the problem statement is to find all occurrences of the word. The word
can be present in four directions - Horizontally to the right or left, and vertically down or up. Let’s
consider the below example:

S F J U P

F D G A C

B U G B V

V P F N P

L P U J U

Given the word “UP”, we need to look for all its occurrences. In the above example, there are
totally 4 occurrences of “UP”.

In this project, I’ve written a sequential and parallel implementation of a Haskell program to find
a word in a grid.

Algorithm

In order to perform the word search, I’ve implemented the Rabin-Karp string-matching algorithm.
Given below is the code flow of the Rabin-Karp algorithm implemented:

mailto:ss6357@columbia.edu
https://www.geeksforgeeks.org/rabin-karp-algorithm-for-pattern-searching/

Given below is the main code flow of the program:

● Given the filename and word to search, a 2D array of the input grid is created.
● The reverse of the word is computed. If the word is present horizontally from right to left,

then the reverse is present from right to left.
● The word and it’s reverse are searched in every row of the grid using Rabin Karp

algorithm.
● The word and it’s reverse are searched in every column of the grid using Rabin Karp

algorithm.

Sample Results

Let’s run the program on the sample grid example shown above for the word “UP”. Results are:

"Row matches found at coordinates:"

(0,3)

(4,2)

"Column matches found at coordinates:"

(2,1)

(4,4)

For the word “DOWN”, results are:

"Pattern not found across row"

"Pattern not found across column"

Project Structure

The project is built using ‘stack’.
● The WordSearchSeq folder contains the main file

for the sequential execution of the program.
● The WordSearchPar folder contains the main file

for the parallel execution of the program.
● The src folder contains two modules -

GridReader which creates the grid from an input
file, and the Search module which has the Rabin
Karp algorithm to search for the word in the grid.

● The inputs folder contains sample input grids.
● The results folder contains the results.

Code

WordSearchSeq/Main.hs

module Main (main) where

import Search(rabinKarpMain)

import GridReader(createGridFromInput)

import System.Environment (getArgs)

import System.Exit (die)

import Control.Monad (when)

import qualified Data.ByteString as S

import Data.ByteString.Char8 as C8 (pack)

import Data.Char (toUpper, isAlpha)

main :: IO ()

main = do

args <- getArgs

case args of

[patt, nVal, filename] -> do

let n = (read nVal :: Int)

let m = length patt

when(m < 2) $

die "Pattern must be of length >= 2"

when(m > n) $

die "Pattern length must be less than or equal to grid size"

when (False `elem` map isAlpha patt) $

die "Only alphabets supported in input"

let pattUpp = map toUpper patt

contents <- S.readFile filename

let text = createGridFromInput contents n

let pattern = (S.unpack . C8.pack) pattUpp

let rev_pattern = (S.unpack . C8.pack) (reverse pattUpp)

let rowmatches = map (rabinKarpMain pattern rev_pattern text m n True)

[0..n-1]

let colmatches = map (rabinKarpMain pattern rev_pattern text m n False)

[0..n-1]

let filteredRowMatches = concat $ filter (not . null) rowmatches

let filteredColMatches = concat $ filter (not . null) colmatches

if not (null filteredRowMatches) then do

print "Row matches found at coordinates:"

sequence_ [print w | w <- filteredRowMatches]

else do

print "Pattern not found across row"

if not (null filteredColMatches) then do

print "Column matches found at coordinates:"

sequence_ [print w | w <- filteredColMatches]

else do

print "Pattern not found across column"

_ -> die "Usage: stack exec -- word-search-seq-exe <pattern> <grid_size>

<file_containing_grid>"

The above code is the main program for the sequential implementation. The following steps are
performed:

● Input pattern, grid size, and filepath containing input grid.
● The file contents and pattern are read as ByteStrings for efficiency.
● The reverse of the pattern is computed.
● A 2-D array of Word8 is created from the input grid using the function

createGridFromInput.

● The matches across every row and column are computed by calling the rabinKarpMain

function.

WordSearchPar/Main.hs

module Main (main) where

import Search(rabinKarpMain)

import GridReader(createGridFromInput)

import System.Environment (getArgs)

import System.Exit (die)

import Control.Monad (when)

import Control.Parallel.Strategies (rseq, parBuffer, using)

import qualified Data.ByteString as S

import Data.ByteString.Char8 as C8 (pack)

import Data.Char (toUpper,isAlpha)

main :: IO ()

main = do

args <- getArgs

case args of

[patt, nVal, filename] -> do

let n = (read nVal :: Int)

let m = length patt

https://hackage.haskell.org/package/bytestring-0.11.3.1/docs/Data-ByteString.html
https://hackage.haskell.org/package/array-0.5.4.0/docs/Data-Array.html
https://hackage.haskell.org/package/word8-0.1.3/docs/Data-Word8.html

when(m < 2) $

die "Pattern must be of length >= 2"

when(m > n) $

die "Pattern length must be less than or equal to grid size"

when (False `elem` map isAlpha patt) $

die "Only alphabets supported in input"

let pattUpp = map toUpper patt

contents <- S.readFile filename

let text = createGridFromInput contents n

let pattern = (S.unpack . C8.pack) pattUpp

let rev_pattern = (S.unpack . C8.pack) (reverse pattUpp)

let rowmatches = map (rabinKarpMain pattern rev_pattern text m n True)

[0..n-1] `using` parBuffer 50 rseq

let colmatches = map (rabinKarpMain pattern rev_pattern text m n False)

[0..n-1] `using` parBuffer 50 rseq

let filteredRowMatches = concat $ filter (not . null) rowmatches

let filteredColMatches = concat $ filter (not . null) colmatches

if not (null filteredRowMatches) then do

print "Row matches found at coordinates:"

sequence_ [print w | w <- filteredRowMatches]

else do

print "Pattern not found across row"

if not (null filteredColMatches) then do

print "Column matches found at coordinates:"

sequence_ [print w | w <- filteredColMatches]

else do

print "Pattern not found across column"

_ -> die "Usage: stack exec -- word-search-par-exe <pattern> <grid_size>

<file_containing_grid>"

The above code is the main program for the parallel implementation.

src/GridReader.hs

{-

Module responsible for reading input into a 2-D array.

-}

module GridReader

(createGridFromInput

) where

import qualified Data.Word8 as W

import Data.Array (Array, array)

import qualified Data.ByteString as S

{-

Given a bytestring and size of the grid, create

a grid of dimensions (size X size)

-}

createGridFromInput :: S.ByteString -> Int -> Array (Int, Int) W.Word8

createGridFromInput contents size = let word_arr = map W.toUpper $ filter

W.isAlpha $ S.unpack contents

in array ((0,0), (size-1, size-1))

([((i,j), word_arr !! (size*i + j))

| i <- [0..size-1], j <- [0..size-1]])

The above function creates a 2D array from the input contents in ByteString.

src/Search.hs

{-

Module containing the Rabin-Karp algorithm.

-}

module Search

(rabinKarpMain

) where

import Data.Array ((!), Array)

import qualified Data.Word8 as W

-- No of alphabets in input

d :: Int

d = 26

-- Prime number used in hash function

q :: Int

q = 13

{-

Calculate the hash value of the given word.

-}

calcHashPatt :: Int -> [W.Word8] -> Int

calcHashPatt = foldl (\ h x -> ((h * d) + fromEnum x) `mod` q)

{-

Calculate the hash value of a string present in the grid.

If 'isRow' is True, calculate the hash value of a string at arr(fixedIdx,f)

of size (l-f+1)

If 'isRow' is False, calculate the hash value of a string at arr(f, fixedIdx)

of size (l-f+1)

-}

calcHash :: Int -> Int -> Int -> Array (Int, Int) W.Word8 -> Int -> Bool -> Int

calcHash fixedIdx f l text h isRow

| f == l = h

| isRow = calcHash fixedIdx (f+1) l text (((h * d) + fromEnum (text !

(fixedIdx, f))) `mod` q) isRow

| otherwise = calcHash fixedIdx (f+1) l text (((h * d) + fromEnum (text ! (f,

fixedIdx))) `mod` q) isRow

{-

Check if a substring present in grid matches the pattern.

If 'isRow' is True, compare pattern with string starting at

arr(fixedIdx,baseIdx) of size (l-f+1)

If 'isRow' is False, compare pattern with string starting at

arr(baseIdx,fixedIdx) of size (l-f+1)

Returns a boolean.

-}

areEqual :: Int -> Int -> Int -> [W.Word8] -> Array (Int, Int) W.Word8 -> Int

-> Bool -> Bool

areEqual baseIdx f l patt text fixedIdx isRow

| f == l = True

| isRow = ((patt !! f) == (text ! (fixedIdx, baseIdx+f))) &&

areEqual baseIdx (f+1) l patt text fixedIdx isRow

| otherwise = ((patt !! f) == (text ! (baseIdx+f, fixedIdx))) &&

areEqual baseIdx (f+1) l patt text fixedIdx isRow

{-

Calculate the new hash value of a string in grid from existing hash by

sliding by 1 character.

-}

calcSlidingHash :: Int -> Int -> Int -> Int -> Int -> Array (Int, Int) W.Word8

-> Int -> Bool -> Int

calcSlidingHash tHash baseIdx l m h text fixedIdx isRow

| baseIdx < l = let

nHash = if isRow then

(d * (tHash - fromEnum (text ! (fixedIdx, baseIdx)) *

h) +

fromEnum(text ! (fixedIdx, baseIdx+m))) `mod` q

else

(d * (tHash - fromEnum (text ! (baseIdx, fixedIdx)) *

h) +

fromEnum(text ! (baseIdx+m, fixedIdx))) `mod` q

in

if nHash < 0 then

nHash + q

else

nHash

| otherwise = tHash

{-

Update the result with matched index if the word matches with the pattern.

Returns updated result list.

-}

findMatch :: [W.Word8] -> Array (Int, Int) W.Word8 -> Int -> Int -> Int -> Bool

-> [Int] -> Int -> [Int]

findMatch patt text i fixedIdx m isRow res matched_idx

= let isMatch = areEqual i 0 (m-1) patt text fixedIdx isRow

new_res = if isMatch then

matched_idx : res

else

res

in new_res

{-

The main Rabin-Karp algorithm that iterates through a row/column

and compares the hash value of words with the pattern and it's reverse.

It returns a list of indices of matches.

-}

rabinKarp :: Int -> Int -> Int -> Array (Int, Int) W.Word8 -> [W.Word8] ->

[W.Word8] -> Int

-> Int -> [Int] -> [Int] -> Int -> Int -> Int -> Bool -> [Int]

rabinKarp tHash pHash pRevHash text patt revPatt i l res revRes m h fixedIdx

isRow

| i == l = res ++ revRes

| tHash == pHash = let

new_res = findMatch patt text i fixedIdx m isRow res

i

new_tHash = calcSlidingHash tHash i l m h text

fixedIdx isRow

in

rabinKarp new_tHash pHash pRevHash text patt revPatt

(i+1) l new_res revRes m h fixedIdx isRow

| tHash == pRevHash = let

new_res = findMatch revPatt text i fixedIdx m isRow

revRes (i+m-1)

new_tHash = calcSlidingHash tHash i l m h text

fixedIdx isRow

in

rabinKarp new_tHash pHash pRevHash text patt

revPatt (i+1) l res new_res m h fixedIdx isRow

| otherwise = let new_tHash = calcSlidingHash tHash i l m h text fixedIdx

isRow

in

rabinKarp new_tHash pHash pRevHash text patt revPatt (i+1)

l res revRes m h fixedIdx isRow

{-

Calculates the hash of pattern, reversed pattern and first word on the

row/column.

It then calls the main Rabin-Karp algorithm which returns matches.

Returns a list of (x,y) coordinates of matches.

-}

rabinKarpMain :: [W.Word8] -> [W.Word8] -> Array (Int, Int) W.Word8 -> Int ->

Int -> Bool -> Int -> [(Int, Int)]

rabinKarpMain patt revPatt text m n isRow fixedIdx =

let tHash = calcHash baseIdx 0 m text 0 isRow

pHash = calcHashPatt 0 patt

pRevHash = calcHashPatt 0 revPatt

h = foldl (\acc _ -> (acc*d) `mod` q) 1 $

replicate 1 (m-1)

res = rabinKarp tHash pHash pRevHash text

patt revPatt 0 (n-m+1) [] [] m h fixedIdx isRow

in

if isRow then

zip (repeat fixedIdx) res

else

zip res (repeat fixedIdx)

The rabinKarpMain function is externally called by Main.hs on every row and column of the
grid. This function returns the coordinates of matches. It internally uses the other functions in
the code (descriptions of which can be found in the comments).

Test Inputs

For testing, we have considered 3 inputs of sizes 100x100, 500x500, and 750x750. These input
files contain the word “PROGRAMMING” present in all 4 directions. The files are present in the
inputs/ folder.

Parallelisation

We can improve the performance of word search by parallelising the search across the rows
and columns. All the performance tests have been done on the 750x750 grid.

Let’s first look at the performance on 1 core using the sequential implementation:

stack exec -- word-search-seq-exe PROGRAMMING 750

D:\PFP\word-search\inputs\ip750.txt +RTS -s -ls

"Row matches found at coordinates:"

(175,26)

(227,109)

(377,51)

"Column matches found at coordinates:"

(346,32)

(294,70)

(604,107)

222,853,632 bytes allocated in the heap

101,454,552 bytes copied during GC

27,629,712 bytes maximum residency (4 sample(s))

821,104 bytes maximum slop

57 MiB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause

Gen 0 207 colls, 0 par 0.094s 0.178s 0.0009s 0.0562s

Gen 1 4 colls, 0 par 0.078s 0.081s 0.0203s 0.0376s

TASKS: 3 (1 bound, 2 peak workers (2 total), using -N1)

SPARKS: 0 (0 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)

INIT time 0.000s (0.001s elapsed)

MUT time 623.156s (683.527s elapsed)

GC time 0.172s (0.259s elapsed)

EXIT time 0.000s (0.000s elapsed)

Total time 623.328s (683.787s elapsed)

Alloc rate 357,620 bytes per MUT second

Productivity 100.0% of total user, 100.0% of total elapsed

Let’s discuss the different parallelisation strategies below.

● We can parallelise search using parList with rseq the following way:

let rowmatches = map (rabinKarpMain pattern rev_pattern text m n True)

[0..n-1] `using` parList rseq

let colmatches = map (rabinKarpMain pattern rev_pattern text m n False)

[0..n-1] `using` parList rseq

Given below is the result:

stack exec -- word-search-par-exe PROGRAMMING 750

D:\PFP\word-search\inputs\ip750.txt 50 +RTS -s -ls -N4

"Row matches found at coordinates:"

(175,26)

(227,109)

(377,51)

"Column matches found at coordinates:"

(346,32)

(294,70)

(604,107)

262,579,160 bytes allocated in the heap

188,270,024 bytes copied during GC

52,901,864 bytes maximum residency (5 sample(s))

8,565,896 bytes maximum slop

108 MiB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause

Gen 0 123 colls, 123 par 0.516s 0.248s 0.0020s 0.0096s

Gen 1 5 colls, 4 par 0.281s 0.160s 0.0321s 0.0718s

Parallel GC work balance: 22.20% (serial 0%, perfect 100%)

TASKS: 6 (1 bound, 5 peak workers (5 total), using -N4)

SPARKS: 1500 (1500 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)

INIT time 0.000s (0.002s elapsed)

MUT time 1738.094s (631.572s elapsed)

GC time 0.797s (0.409s elapsed)

EXIT time 0.000s (0.000s elapsed)

Total time 1738.891s (631.983s elapsed)

Alloc rate 151,073 bytes per MUT second

Productivity 100.0% of total user, 99.9% of total elapsed

We can see that there is not a big improvement. The total execution time is around 631 s. This
could be because there are way too many sparks created at the same time and their are only 4
cores to evaluate all of them increasing the MUT time.

● Let’s now try using parBuffer with rpar

let rowmatches = map (rabinKarpMain pattern rev_pattern text m n True)

[0..n-1] `using` parBuffer 50 rpar

let colmatches = map (rabinKarpMain pattern rev_pattern text m n False)

[0..n-1] `using` parBuffer 50 rpar

Given below are the results:

"Row matches found at coordinates:"

(175,26)

(227,109)

(377,51)

"Column matches found at coordinates:"

(346,32)

(294,70)

(604,107)

261,814,824 bytes allocated in the heap

139,329,432 bytes copied during GC

27,798,424 bytes maximum residency (6 sample(s))

49,523,296 bytes maximum slop

133 MiB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause

Gen 0 77 colls, 77 par 0.328s 0.141s 0.0018s 0.0095s

Gen 1 6 colls, 5 par 0.391s 0.248s 0.0414s 0.0696s

Parallel GC work balance: 14.97% (serial 0%, perfect 100%)

TASKS: 6 (1 bound, 5 peak workers (5 total), using -N4)

SPARKS: 3193 (1541 converted, 0 overflowed, 2 dud, 52 GC'd, 1598 fizzled)

INIT time 0.000s (0.002s elapsed)

MUT time 788.219s (220.825s elapsed)

GC time 0.719s (0.390s elapsed)

EXIT time 0.000s (0.000s elapsed)

Total time 788.938s (221.217s elapsed)

Alloc rate 332,160 bytes per MUT second

Productivity 99.9% of total user, 99.8% of total elapsed

We see that the evaluation time is around 221s (speedup of 3.1) which is a huge improvement.
This could be because we are limiting the number of sparks created at a time and hence
reducing MUT time. But there are way too many sparks created and a lot of them were fizzled
since they were already evaluated by the main program. So using rseq instead might be
helpful, since rseq forces evaluation to WHNF

● Let’s now try using parBuffer with rseq

let rowmatches = map (rabinKarpMain pattern rev_pattern text m n True)

[0..n-1] `using` parBuffer 50 rseq

let colmatches = map (rabinKarpMain pattern rev_pattern text m n False)

[0..n-1] `using` parBuffer 50 rseq

Given below are the results:

"Row matches found at coordinates:"

(175,26)

(227,109)

(377,51)

"Column matches found at coordinates:"

(346,32)

(294,70)

(604,107)

250,390,472 bytes allocated in the heap

140,407,224 bytes copied during GC

29,107,784 bytes maximum residency (6 sample(s))

52,999,792 bytes maximum slop

148 MiB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause

Gen 0 85 colls, 85 par 0.266s 0.166s 0.0020s 0.0101s

Gen 1 6 colls, 5 par 0.531s 0.260s 0.0433s 0.0700s

Parallel GC work balance: 13.83% (serial 0%, perfect 100%)

TASKS: 6 (1 bound, 5 peak workers (5 total), using -N4)

SPARKS: 1500 (1465 converted, 0 overflowed, 0 dud, 30 GC'd, 5 fizzled)

INIT time 0.000s (0.001s elapsed)

MUT time 780.391s (209.905s elapsed)

GC time 0.797s (0.426s elapsed)

EXIT time 0.000s (0.000s elapsed)

Total time 781.188s (210.332s elapsed)

Alloc rate 320,852 bytes per MUT second

Productivity 99.9% of total user, 99.8% of total elapsed

The execution time is 210s with a speedup of 3.26, this is similar to the result using rpar. We
also notice a significant drop in the numer of fizzled and GC’d sparks. Hence this is a much
better strategy than using rpar.

We can conclude that using parBuffer with rseq is the most effective parallelisation strategy.

Results

I have recorded the performance results on running the sequential and parallel implementation
on multiple cores.

System specifications:

Processor: Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz 2.71 GHz
Cores: 2
Logical Processors: 4
RAM: 8 GB

Size 100 500 750

Cores Time (s) Speedup Time (s) Speedup Time (s) Speedup

1 0.247 1 121 1 684 1

2 0.267 0.9 79 1.53 385 1.77

3 0.134 1.8 38 3.18 337 2.03

4 0.099 2.43 37 3.27 210 3.26

We can see that the speedup is significant for large input grids. The maximum speedup is
approx. 3.26 when utilising 4 cores for input sizes 500 and 750.

