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1. Background

The WordLadder program takes in a dictionary and two words of equal length, and returns a
sequence of words from the dictionary beginning with the start word and ending the target word
by only changing one letter at a time. If the given words are not in the dictionary or the program
cannot find a sequence of length 20 or shorter, the program assumes no word ladder exists. We
developed this project based on the sequential version of a word ladder solver explored in
Homework 4 and similarly implemented a BFS-style search.

To make the problem more applicable, we used a larger dictionary (found here) than what we
used in class. This dictionary, while larger, was already pruned for lowercase, alphanumeric
words only, and we focused our parallelization efforts on the BFS-style search instead of any
possible optimizations to the diocnary file IO.

https://raw.githubusercontent.com/dwyl/english-words/master/words_alpha.txt


2. Implementation

Overall Architecture and Limitations

Seeing as we are parallelizing a breadth first search style algorithm, there were some natural
limitations to the amount of parallelization we could implement. BFS requires an up-to-date set
of visited nodes to ensure we are looking for the shortest path. By design therefore, we must
end our concurrent calculations at each level in the search tree to synchronize our list of visited
candidate words. This is precisely our limitation and approach: how much can we efficiently
parallelize in each level of the tree?

The first and most obvious place to parallelize is the exploration of each child (purple above).
We can generate a new spark for each branch we explore, ready to sync back our list of visited
nodes once we have explored all the children at the next level.

For each node (potential next word in the path), we then parallelize the exploration of each
index of that word. If a word is 5 letters long, we generate 5 sparks to explore its potential
children in parallel. This parallelization is highlighted in green above.



These two points of parallelization were clear from the start, and we streamlined their parallel
implementation by writing our own parMap function. What was less clear and required some
experimentation was how we can parallelize the modification of a letter at a given index. Now
that we have different sparks for every branch and every index of a word, can we efficiently
speed up the process of trying out all 26 letters in that position?

First Attempts

Implementation #1: Naive ReplaceLetter
Our first approach was to naively apply our parMap function to the generation of all the letters at
a given index. This meant generating 26 sparks for each index to do a relatively inexpensive
computation, string concatenation.
As expected, the overhead and garbage collection from this spark generation proved to be
slower than the sequential implementation especially because most of the candidate words
generated from this process were not in the dictionary, so they were later thrown out of the
candidate list when we sequentially sycnhronize the tree level.

parTakeAStep :: [String] -> [[String]]

parTakeAStep [] = error "takeAStep: empty list?"

parTakeAStep p@(x:_) = concat $ parMap allLetters $ zip (inits x) (tails

x)

where

allLetters (pre,(_:ws)) = replaceLetter pre ws

allLetters (_,[]) = []

replaceLetter pre w = [ b : p | c <- ['a'..'z'], let b = (pre ++

[c] ++ w) ]

Implementation #2: Parallel ReplaceLetter with Chunk Size = 1
Our next approach leveraged these 26 sparks generated for each letter at a given index to
compute a more expensive instruction, checking if a candidate word is in the dictionary and not
in our list of visited candidates so far. As mentioned before, we still at each level have to check
our list of visited nodes sequentially, but we can save ourselves time by generating better quality
candidate words. These 26 sparks now generate all the valid words created from modifying a
letter at a given index. This method proved to be about as fast as our sequential benchmark



because of the overhead involved in generating so many sparks for a still relatively small
process.

parAllLetters :: (String, String) -> [[String]]

parAllLetters (_, []) = []

parAllLetters (pre, suf) = concat $ parMap replaceLetter [(['a'..'z'],

(pre, suf))]

replaceLetter :: ([Char], (String, String)) -> [[String]]

replaceLetter (_, (_, []))  = error "replaceLetter: empty suffix?"

replaceLetter (lc, (pre, (_:ws))) =

[ b : p | c <- lc, let b = (pre ++ [c] ++ ws), Set.member b

dictionary, not $ Set.member b visited]

Final Implementation

Implementation #3: Parallel ReplaceLetter with Chunk Size = 13
After some testing, we found that we can split the alphabet into two parts and do the word
candidacy testing with two sparks. This proved faster than our sequential benchmark as two
sparks to test 13 letter modifications and set memberships was the right balance of parallel
speed up and garbage collection slow down. As in the previous implementation, we utilize each
working spark to not only generate candidate words with letter modifications in that index; we
also check if these are valid candidates in the dictionary and not already seen.

parAllLetters :: (String, String) -> [[String]]

parAllLetters (_, []) = []

parAllLetters (pre, suf) = concat $ parMap replaceLetter [(lc, (pre, suf))

| lc <- chunksOf 13 ['a'..'z']]

3. Performance
Machine Specs: Macbook Air 2020, Apple M1 Chip, 8 Cores (4 performance and 4
efficiency)

Let us examine the runtime of the three different versions of our word ladder program to
evaluate the practicality of each approach, and to explore the relationship between the
number of cores used and the runtime.



The runtime of the sequential word ladder program by Professor Stephen Edwards
returns an approximate average runtime of 0.750 seconds, which serves as a helpful
baseline to try and beat with the parallel implementation.

Runtime Data Tables

Table 1: Runtimes (seconds) for Implementation #1

Number of
Cores

Trial 1 Trial 2 Trial 3 Average

2 1.110 1.181 1.190 1.160

4 1.108 1.243 1.227 1.193

8 1.301 1.399 1.303 1.334

Table 2: Runtimes (seconds) for Implementation #2

Number of
Cores

Trial 1 Trial 2 Trial 3 Average

2 0.638 0.613 0.669 0.640

4 0.663 0.687 0.653 0.668

8 0.824 0.694 0.764 0.761

Table 3: Runtimes (seconds) for Implementation #3

Number of
Cores

Trial 1 Trial 2 Trial 3 Average

2 0.514 0.525 0.503 0.514

4 0.489 0.495 0.498 0.494

8 0.658 0.728 0.653 0.680



4. Threadscope Outputs

ThreadScope was a very useful tool in evaluating the performance of different variations
of our program, and using that information to fine tune certain functions. Some of the
key metrics that we examined were program runtime (seconds), number of sparks
created/converted, and how many sparks went to garbage collection. We felt the best
performance would be reflected by variations of the program that had the fastest
runtime while minimizing garbage collection.

Figure 1: Threadscope for Sequential Implementation



Implementation #1: Naive ReplaceLetter

Figure 2: Threadscope for Parallel Implementation #1 with 4 Cores



Implementation #2: Parallel ReplaceLetter with Chunk Size = 1

Figure 3: Parallel Parallel Implementation #2 with 4 Cores



Implementation #3: Parallel ReplaceLetter with Chunk Size = 13

Figure 4: Parallel Implementation #3 with 4 Cores

Figure 5: Parallel Implementation #3 with 8 Cores



5. Conclusion

The chunking method implemented in the final version of the program proved to be useful in
reducing runtime. Adding the dictionary candidacy check for generated one-letter modifications
to the parallel AllLetters function was also successful since it reduced the amount of sequential
list validation needed.

As seen in Table 3, running the final implementation on 4 cores leads to the best overall
performance across all implementations. This best average runtime of 0.494 seconds is
approximately 34% faster than the average sequential average runtime (of 0.750 s). Across all
implementations, running on 8 cores proved to result in the worst runtime performance. This
held true when testing the program on both Apple M1 chip and Intel chip systems, suggesting
that the current final implementation cannot make use of too many cores to optimize
performance further.

For future development and improvement, we could try parallelizing the reading of the dictionary
which was outside the scope of this project. As can be seen in the threadscope outputs, this is a
majority of the processing time, so this may be a space for further optimizing the runtime of the
algorithm. We could also make the problem harder by allowing the start and end words to be
different lengths. This would greatly increase the branching factor for any given word as we can
insert, delete, or modify the letters at each index.

Overall, we found, as expected, moderate improvements to performance by parallelizing the
WordLadder problem, but were limited by the nature of the algorithm itself as a breadth-first
search requires a level-by-level synchronization.

6.  Code
import System.Exit(die)

import System.Environment(getArgs, getProgName)

import qualified Data.Set as Set

import Control.Monad(unless)

import Data.List(inits, tails)

import qualified Control.Parallel.Strategies as P hiding(parMap)

import Data.List.Split (chunksOf)

type StringSet = Set.Set String

usage :: IO ()

usage = do



pn <- getProgName

die $ "Usage: "++pn++" <dictionary-filename> <from-word> <to-word>"

readDict :: String -> Int -> IO StringSet

readDict filename wordLength =

(Set.fromList . filter validWord . words) `fmap` readFile filename

where validWord w = length w == wordLength

parMap :: (a -> b) -> [a] -> [b]

parMap f = P.withStrategy (P.parList P.rseq) . map f

search :: StringSet -> String -> String -> Int -> Maybe [String]

search dictionary fromWord toWord maxDepth =

search1 [[fromWord]] (Set.singleton fromWord) maxDepth

where

search1 :: [[String]] -> StringSet -> Int -> Maybe [String]

search1 _ _ 0 = Nothing

search1 paths visited depth =

case filter ((==toWord) . head) paths of

(solution:_) -> Just solution

[] -> search1 newPaths newVisited (depth-1)

where

paths' = concat $ parMap parTakeAStep paths --

parallelize for each immediate next path from node

parTakeAStep [] = error "takeAStep: empty list?"

parTakeAStep p@(x:_) = concat $ parMap parAllLetters $

zip (inits x) (tails x) -- parallelize for each index of the word

where

-- replace the letter at the given index with a

letter from a-z in parallel

parAllLetters :: (String, String) -> [[String]]

parAllLetters (_, []) = []

parAllLetters (pre, suf) = parMap replaceLetter

[(lc, (pre, suf)) | lc <- chunksOf 13 ['a'..'z']]



replaceLetter :: ([Char], (String, String)) ->

[String]

replaceLetter (_, (_, [])) = error

"replaceLetter: empty suffix?"

replaceLetter (lc, (pre, (_:ws))) =

[ b | c <- lc, let b = (pre ++ [c] ++ ws),

Set.member b dictionary, not $ Set.member b visited] ++ p

(newPaths, newVisited) = foldr validStep ([], visited)

paths'

validStep np@(w:_) (exisitng, v)

|not (Set.member w v)

= (np:exisitng, Set.insert w v)

|otherwise = (exisitng, v)

validStep [] _ = error "validStep: empty list?"

maxSteps :: Int

maxSteps = 20

main :: IO ()

main = do

args <- getArgs

case args of

[dictFile, fromWord, toWord] -> do

unless (length fromWord == length toWord) $ do

die $ "Words must be the same length"

dictionary <- readDict dictFile (length fromWord)

unless (Set.member fromWord dictionary) $ die $

"Word \""++fromWord++"\" not in dictionary"

unless (Set.member toWord dictionary) $ die $

"Word \""++toWord++"\" not in dictionary"

let solution = search dictionary fromWord toWord maxSteps

case solution of

Nothing -> die "No solution found"

Just sol -> do



mapM_ putStrLn $ reverse sol

_ -> usage


