COMS4995 PFP Final Project Report: Word Hunt
Solver
Allison Liu (al4130)
Fall 2022

1 Background

Word Hunt is a game where a player is given a 4x4 board of tiles corresponding to letters,
and the goal is to create as many words as possible from that board. The restrictions are
that consecutive letters in the word must be adjacent to each other on the board (right, left,
up, down, diagonal), and the player may not use the same tile twice in the same word. Each
word must be at least 3 letters long. A board of n x n would have a maximum of (n?) x (n?)!
possible sequences. The solver could blow up very easily since the basic version of Word
Hunt is 4 x 4 board, which would result in trillions of paths. This project’s goal is to find
all possible words following these restrictions given a Word Hunt board.

For reference, the machine that I am running this on is a Quad-Core Intel i5 processor that
can run eight threads.

2 General Approach

Given a board and a dictionary file, the general approach to solve this game is to first, read
in a dictionary file. To find all the potential words, start at a given tile and do a depth
first search in accordance to the restrictions of the game, accumulating letters for a potential
word. At every depth, the search should go toward a neighbor that hasn’t yet been visited.
Every potential word should be checked against the dictionary file to verify its validity as
a word. If it is a word, add it to the output list. After going through each tile and its
respective paths, print out the output list, which is the list of all possible words that the
board can create.

In my approach, I accepted the input arguments of the file path of a dictionary file, a board
(a string of 16 characters), and the dimension of the board. My tests will maintain the
dimension of the board at 4 to be consistent with the rules of Word Hunt. With these
inputs, I had two major data structures. The first is the Board, which is a list of lists of
Chars, basically a 2-D array of characters. The second is a dictionary as a Set of Strings.

1

NN N
[STE N

COMS4995 PFP Final Project Report: Word Hunt Solver 2

3 Sequential

The sequential implementation is basically encompassed in the function seqWordHuntSolver.
This function uses list comprehension to collect all potential words and filter through them
based on if they are a member of the dictionary and if they are of length greater than two.
indices are the coordinates of all the tiles on the board. findWords is the DFS portion of
the code; it has a base case, keeping the calls within the bounds of the board, and making
sure we don’t visit the same tile twice in one word. Then, it has eight recursive calls for all
of the tile’s neighbors.

seqWordHuntSolver :: Board -> Set String -> [String]
seqWordHuntSolver board dict =
[word | (x,y) <- indices,

word <- findWords (x,y) [1 "",
word “member”~ dict,
length word > 2]
where
indices = [(x,y) | x <- [0..(length board - 1)],
y <- [0..(length (head board) - 1)]1]

findWords :: (Int, Int) -> [(Int, Int)] -> String -> [Stringl]
findWords (x,y) visited word
| x <0 |l y <0 ||l x > length board || y >= length (head board) ||
(x,y) “elem” visited = [] -- base case
| otherwise =
let newWord = word ++ [board !! x !! y]
newVisited = (x,y) : visited

in [newWord] ++
(findWords (x-1,y-1) newVisited newWord ++

findWords (x-1,y) newVisited newWord ++
findWords (x-1,y+1) newVisited newWord ++
findWords (x,y-1) newVisited newWord ++
findWords (x,y+1) newVisited newWord ++
findWords (x+1,y-1) newVisited newWord ++
findWords (x+1,y) newVisited newWord ++

findWords (x+1,y+1) newVisited newWord)

4 Parallelization

4.1 Parallelizing DF'S

I parallelized the depth first search by making the depth first search on each tile run in parallel
in wordHuntSolver, which would create 16 sparks (one spark per tile). This implementation
is very similar to the sequential implementation with key differences on lines 37 and 38.
My initial attempt at parallelizing used parBuffer and rpar. This resulted in 32 sparks
with 17 fizzling. I then switched to rseq instead, and while the sparks were more efficient
(only 16 created and 1 fizzled), the program almost exclusively ran on one thread. I initially
thought that the issue was due to the fact that my parallelization only had 16 sparks,
but after speaking with Professor Edwards, he diagnosed the issue to be more about using

27

COMS4995 PFP Final Project Report: Word Hunt Solver 3

functions intended for normal form instead of weak head normal form. Now, with rdeepseq,
my program is sufficiently parallel, still with 16 sparks. The results are displayed in the
Testing and Results section. Running the program on one core (Figure 2) took 21.47 seconds.
Running it on two and four cores (Figures 4 and 6) took 17.78 and 13.47 seconds respectively,
so as it becomes more parallel, the efficiency of the program increases. After 4 cores, the
time actually increases again, so 4 cores ended up being optimal.

wordHuntSolver Board -> Set String -> [String]

: wordHuntSolver board dict =

[word | word <- concat allWords,
word “member dict,
length word > 2]

where

Find all the indices (row and column) of the squares on the board

indices = [(x,y) | x <- [0..(length board - 1)],

y <- [0..(length (head board) - 1)]]
parFindWords = findWords [] ""
allWords = Prelude.map parFindWords indices “using ~ parBuffer 2
rdeepseq -- reduced to weak head normal form, rpar, deepseq instead
-- allWords' = rdeepseq allWords

-- Find all the words that can be formed starting at a given square
and following a path of adjacent squares
findWords [(Int, Int)] -> String -> (Int,
findWords visited word (x,y)

If the current square is out of bounds or has already been

Int) -> [String]

visited,
-- there are no more words to be found
| x <0 ||l y <0 |l x > length board || y >= length (head board) ||
(x,y) “elem” visited = []

Otherwise, add the current square to the visited squares, add its
character to the current word, and search for more words in all
-- the adjacent squares

| otherwise =

let newWord = word ++ [board !! x !! y]
newVisited = (x,y) visited
in [newWord] ++
(findWords newVisited newWord (x-1,y-1) ++
findWords newVisited newWord (x-1,y) ++
findWords newVisited newWord (x-1,y+1) ++
findWords newVisited newWord (x,y-1) ++
findWords newVisited newWord (x,y+1) ++
findWords newVisited newWord (x+1,y-1) ++
findWords newVisited newWord (x+1,y) -+
findWords newVisited newWord (x+1,y+1))

4.2 In the Future

The plan before beginning this project was to also implement another parallelization to
this algorithm. That parallelization was to read the dictionary in chunks, and parallelize
checking the potential words against the dictionary. Due to the issues that I was having

COMS4995 PFP Final Project Report: Word Hunt Solver 4

with the parallelization of the DFS, I didn’t get to finish implementing this portion of the
project but will continue working on it in the future!

5 Testing and Results

Both results are tested on the input board: oatrihpshtnrenei, which is equivalent to the board
in Figure 1. The input dictionary was downloaded from https://raw.githubusercontent.
com/eneko/data-repository/master/data/words.txt.

mjz|-]o
z[H|T|>
mjz|o]-
bl 2 (U ED

Figure 1: Input board

COMS4995 PFP Final Project Report: Word Hunt Solver

26,768,614,976 bytes allocated in the heap
8,283,549,056 bytes copied during GC
357,339,320 bytes maximum residency (29 sample(s))
3,324,000 bytes maximum slop
825 MiB total memory in use (@ MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen @ 25728 colls, @ par 4.171s 4,386s 0.0002s 0.0072s
Gen 1 29 colls, @ par 3.346s 3.925s 0.1353s 0.3726s

TASKS: 4 (1 bound, 3 peak workers (3 total), using -N1)

SPARKS: 16 (4 converted, © overflowed, © dud, @ GC'd, 12 fizzled)

INIT time 0.000s . elapsed)
MUT time 12.729s . elapsed)
GC time 7.517s . elapsed)
EXIT time 0.000s elapsed)
Total time 20.246s elapsed)

Alloc rate 2,103,029,829 bytes per MUT second
Productivity 62.9% of total user, 61.2% of total elapsed
om21.471s

om20.249s
ome.791s

Figure 2: Stats of 1 core

e W At Lt L B B
E_N TN, W

Figure 3: Threadscope of 2 cores

COMS4995 PFP Final Project Report: Word Hunt Solver

26,768,641,552 bytes
8,804,780,240 bytes
692,151,912 bytes
10,336,664 bytes

allocated in the heap

copied during GC

maximum residency (21 sample(s))
maximum slop

1847 MiB total memory in use (@ MB lost due to fragmentation)

Tot time (elapsed)
6.228s 3.560s
6.032s 4.822s

Avg pause
0.0003s
0.2296s

Max pause
0.0124s
1.3134s

Gen ©
Gen 1

13866 colls, 13866 par
21 colls, 20 par

Parallel GC work balance: 66.46% (serial 0%, perfect 100%)
TASKS: 6 (1 bound, 5 peak workers (5 total), using -N2)

SPARKS: 16 (15 converted, © overflowed, © dud, @ GC'd, 1 fizzled)

INIT
MUT
GC
EXIT
Total

time
time
time
time
time

Alloc rate

Productivity

0.000s
15.980s
12.259s
0.000s
28.240s

(
(
(
(
(

0.007s
9.254s
8.382s
0.002s
17.644s

1,675,154, 456 bytes

elapsed)
elapsed)
elapsed)
elapsed)
elapsed)

per MUT second

56.6% of total user, 52.4% of total elapsed

real
user
sys

oml7.787s
om28.243s
om3.218s

Figure 4: Stats of 2 cores

0Os 5s

NN | NN | |
[| R] 1 | | u 1 mim
HEC 1
RN N]
. i I]
WY W N W W N NN N m
I'n = e 1 m| 11 [] I 1]
HEC 3
W | LI m
NI I | -

Figure 5: Threadscope of 4 cores

COMS4995 PFP Final Project Report: Word Hunt Solver 7

26,768,685,344 bytes allocated in the heap
8,457,272,760 bytes copied during GC
666,808,680 bytes maximum residency (18 sample(s))
9,735,832 bytes maximum slop
1549 MiB total memory in use (@ MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen © 11850 colls, 11858 par 13.872s 2.573s 0.0002s 0.0043s
Gen 1 18 colls, 17 par 7 .655s 2.580s 0.1433s 0.3937s
Parallel GC work balance: 60.24% (serial 0%, perfect 100%)
TASKS: 18 (1 bound, 9 peak workers (9 total), using —-N4&)
SPARKS: 16 (15 converted, © overflowed, @ dud, ® GC'd, 1 fizzled)

INIT time @.000s
MUT time 15.542s

9.005s5 elapsed)
8.175s elapsed)

EXIT time 9.0808s
Total time 37.070s

P.007s elapsed)
13.340s elapsed)

(
(
GC time 21.527s (5.153s elapsed)
(
(

Alloc rate 1,722,304,399 bytes per MUT second
Productivity 41.9% of total user, 61.3% of total elapsed
real eml13.472s

user em37.072s
sys ®m3.451s

Figure 6: Stats of 4 cores

COMS4995 PFP Final Project Report: Word Hunt Solver 8

6 Code

64 import System.IO0 as Sys

66 import System.Exit (die)

67 import System.Environment (getArgs, getProgName)

6s import Control.Parallel.Strategies (parBuffer, using, rseq, rpar, parlist,
rdeepseq, rparWith)

6o import Data.Char

70 import System.Posix.IO

71 import System.Posix.Types

72 import Data.Set

74 == A board is represented as a list of lists of characters
75 type Board = [[Char]]

77 makeBoard :: String -> Int -> Board
7s makeBoard [1 _ = []
70 makeBoard input dim = Prelude.take dim input : makeBoard (Prelude.drop dim

input) dim

st == | Sequential DFS

s2 seqWordHuntSolver :: Board -> Set String -> [String]

23 seqWordHuntSolver board dict =

84 [word | (x,y) <- indices,

85 word <- findWords (x,y) []1 "",

86 word “member”~ dict,

87 length word > 2]

88 where

<9 indices = [(x,y) | x <- [0..(length board - 1)],

90 y <- [0..(length (head board) - 1)]]

91

92 findWords :: (Int, Int) -> [(Int, Int)] -> String -> [String]

93 findWords (x,y) visited word

94 | x <0 ||l y <0 || x > length board || y >= length (head board) ||
(x,y) “elem” visited = [] -- base case

95 | otherwise =

96 let newWord = word ++ [board !! x !! y]

97 newVisited = (x,y) : visited

98 in [newWord] ++

99 (findWords (x-1,y-1) newVisited newWord ++

100 findWords (x-1,y) newVisited newWord ++

101 findWords (x-1,y+1) newVisited newWord ++

102 findWords (x,y-1) newVisited newWord ++

103 findWords (x,y+1) newVisited newWord ++

104 findWords (x+1,y-1) newVisited newWord ++

105 findWords (x+1,y) newVisited newWord ++

106 findWords (x+1,y+1) newVisited newWord)
107

108

100 == | Parallel DFS

110 wordHuntSolver :: Board -> Set String -> [String]

111 wordHuntSolver board dict =

145

146

COMS4995 PFP Final Project Report: Word Hunt Solver 9

[word | word <- concat allWords,
word “member”~ dict,
length word > 2]
where
-- Find all the indices (row and column) of the squares on the board
indices = [(x,y) | x <- [0..(length board - 1)],
y <- [0..(length (head board) - 1)]]

parFindWords = findWords [] ""
allWords = Prelude.map parFindWords indices “using~ parBuffer 2
rdeepseq

-- Find all the words that can be formed starting at a given square

-- and following a path of adjacent squares

findWords :: [(Int, Int)] -> String -> (Int, Int) -> [String]

findWords visited word (x,y)
-- If the current square is out of bounds or has already been

visited,
-- there are no more words to be found
| x <0 ||l y <0 |l x > length board || y >= length (head board) ||

(x,y) “elem” visited = []

-- Otherwise, add the current square to the visited squares, add its
-- character to the current word, and search for more words in all
-- the adjacent squares
| otherwise =

let newWord = word ++ [board !! x !! y]
newVisited = (x,y) : visited
in [newWord] ++
(findWords newVisited newWord (x-1,y-1) ++
findWords newVisited newWord (x-1,y) -+
findWords newVisited newWord (x-1,y+1) ++
findWords newVisited newWord (x,y-1) ++
findWords newVisited newWord (x,y+1) ++
findWords newVisited newWord (x+1,y-1) ++
findWords newVisited newWord (x+1,y) ++
findWords newVisited newWord (x+1,y+1))
7 readDictionary :: FilePath -> IO [String]
readDictionary path = lines <$> readFile path
parseDict :: [[Char]] -> Set [Char]
parseDict dictionary = Data.Set.fromList (Prelude.map (Prelude.map toLower
) dictionary)
main :: IO Q)
main = do

args <- getArgs
case args of
[dict, board, dim] -> do
dictionary <- readDictionary dict
let parsed = parseDict dictionary
solved = wordHuntSolver (makeBoard board (read dim
Int)) parsed

161

163

164

165
166
167
168
169

170

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

209

COMS4995 PFP Final Project Report: Word Hunt Solver 10
mapM_ putStrLn solved
_ >
do pn <- getProgName
die $ "Usage: " ++pn++ " <dictionary-filename> <board> <

dimension>"

-- | Testing just DFS
testDFS :: I0 ()
testDFS = do

let board = [

"abcd",
"efgh",
"ijkl"

dict = fromList ["a", "bef", "abe", "fgk", "jie", "goodness", "kgfb"

, "efg", "hello", "fkplhg"]
-- expected = ["abe", "bef", "efg", "fgk", "jie", "kgfb", "hello"]
expected = ["a", "bef", "abe", "fgk", "jie", "goodness", "kgfb", "
efg", "hello", "fkplhg"]

-- Check that the wordHuntSolver function returns the expected result
assertEqual (wordHuntSolver board dict) expected

-- Assert that two values are equal

assertEqual :: (Eq a, Show a) => a -> a -> I0 QO
5 assertEqual x y
| x ==y = return ()
| otherwise = error (show x ++ " /= " ++ show y)

-- | My attempt at the second parallelization
readChunks :: Fd -> I0 [String]
readChunks fd = do

-- fileSize <- hFileSize dict

-- let fileMode = Just (CMode 0440)

-- part = fileSize ~div™ 8

- part' = part * parts

== size = if parts == (totalParts-1)
-- then part

-- else part +
chunk <- fdRead fd 4096
done <- isEOQOF
-- if fst chunk == ""
if done
then return []
else do
rest <- readChunks fd
-- putStrLn (fst chunk)
return (fst chunk : rest)

