
COMS4995 PFP Final Project Report: Word Hunt
Solver

Allison Liu (al4130)

Fall 2022

1 Background

Word Hunt is a game where a player is given a 4x4 board of tiles corresponding to letters,
and the goal is to create as many words as possible from that board. The restrictions are
that consecutive letters in the word must be adjacent to each other on the board (right, left,
up, down, diagonal), and the player may not use the same tile twice in the same word. Each
word must be at least 3 letters long. A board of n×n would have a maximum of (n2)× (n2)!
possible sequences. The solver could blow up very easily since the basic version of Word
Hunt is 4 × 4 board, which would result in trillions of paths. This project’s goal is to find
all possible words following these restrictions given a Word Hunt board.

For reference, the machine that I am running this on is a Quad-Core Intel i5 processor that
can run eight threads.

2 General Approach

Given a board and a dictionary file, the general approach to solve this game is to first, read
in a dictionary file. To find all the potential words, start at a given tile and do a depth
first search in accordance to the restrictions of the game, accumulating letters for a potential
word. At every depth, the search should go toward a neighbor that hasn’t yet been visited.
Every potential word should be checked against the dictionary file to verify its validity as
a word. If it is a word, add it to the output list. After going through each tile and its
respective paths, print out the output list, which is the list of all possible words that the
board can create.

In my approach, I accepted the input arguments of the file path of a dictionary file, a board
(a string of 16 characters), and the dimension of the board. My tests will maintain the
dimension of the board at 4 to be consistent with the rules of Word Hunt. With these
inputs, I had two major data structures. The first is the Board, which is a list of lists of
Chars, basically a 2-D array of characters. The second is a dictionary as a Set of Strings.

1

COMS4995 PFP Final Project Report: Word Hunt Solver 2

3 Sequential

The sequential implementation is basically encompassed in the function seqWordHuntSolver.
This function uses list comprehension to collect all potential words and filter through them
based on if they are a member of the dictionary and if they are of length greater than two.
indices are the coordinates of all the tiles on the board. findWords is the DFS portion of
the code; it has a base case, keeping the calls within the bounds of the board, and making
sure we don’t visit the same tile twice in one word. Then, it has eight recursive calls for all
of the tile’s neighbors.

1 seqWordHuntSolver :: Board -> Set String -> [String]

2 seqWordHuntSolver board dict =

3 [word | (x,y) <- indices ,

4 word <- findWords (x,y) [] "",

5 word `member ` dict ,

6 length word > 2]

7 where

8 indices = [(x,y) | x <- [0..(length board - 1)],

9 y <- [0..(length (head board) - 1)]]

10

11 findWords :: (Int , Int) -> [(Int , Int)] -> String -> [String]

12 findWords (x,y) visited word

13 | x < 0 || y < 0 || x >= length board || y >= length (head board) ||

(x,y) `elem ` visited = [] -- base case

14 | otherwise =

15 let newWord = word ++ [board !! x !! y]

16 newVisited = (x,y) : visited

17 in [newWord] ++

18 (findWords (x-1,y-1) newVisited newWord ++

19 findWords (x-1,y) newVisited newWord ++

20 findWords (x-1,y+1) newVisited newWord ++

21 findWords (x,y-1) newVisited newWord ++

22 findWords (x,y+1) newVisited newWord ++

23 findWords (x+1,y-1) newVisited newWord ++

24 findWords (x+1,y) newVisited newWord ++

25 findWords (x+1,y+1) newVisited newWord)

4 Parallelization

4.1 Parallelizing DFS

I parallelized the depth first search by making the depth first search on each tile run in parallel
in wordHuntSolver, which would create 16 sparks (one spark per tile). This implementation
is very similar to the sequential implementation with key differences on lines 37 and 38.
My initial attempt at parallelizing used parBuffer and rpar. This resulted in 32 sparks
with 17 fizzling. I then switched to rseq instead, and while the sparks were more efficient
(only 16 created and 1 fizzled), the program almost exclusively ran on one thread. I initially
thought that the issue was due to the fact that my parallelization only had 16 sparks,
but after speaking with Professor Edwards, he diagnosed the issue to be more about using

COMS4995 PFP Final Project Report: Word Hunt Solver 3

functions intended for normal form instead of weak head normal form. Now, with rdeepseq,
my program is sufficiently parallel, still with 16 sparks. The results are displayed in the
Testing and Results section. Running the program on one core (Figure 2) took 21.47 seconds.
Running it on two and four cores (Figures 4 and 6) took 17.78 and 13.47 seconds respectively,
so as it becomes more parallel, the efficiency of the program increases. After 4 cores, the
time actually increases again, so 4 cores ended up being optimal.

27 wordHuntSolver :: Board -> Set String -> [String]

28 wordHuntSolver board dict =

29 [word | word <- concat allWords ,

30 word `member ` dict ,

31 length word > 2]

32 where

33 -- Find all the indices (row and column) of the squares on the board

34 indices = [(x,y) | x <- [0..(length board - 1)],

35 y <- [0..(length (head board) - 1)]]

36

37 parFindWords = findWords [] ""

38 allWords = Prelude.map parFindWords indices `using ` parBuffer 2

rdeepseq -- reduced to weak head normal form , rpar , deepseq instead

39 -- allWords ' = rdeepseq allWords

40

41 -- Find all the words that can be formed starting at a given square

42 -- and following a path of adjacent squares

43 findWords :: [(Int , Int)] -> String -> (Int , Int) -> [String]

44 findWords visited word (x,y)

45 -- If the current square is out of bounds or has already been

visited ,

46 -- there are no more words to be found

47 | x < 0 || y < 0 || x >= length board || y >= length (head board) ||

(x,y) `elem ` visited = []

48 -- Otherwise , add the current square to the visited squares , add its

49 -- character to the current word , and search for more words in all

50 -- the adjacent squares

51 | otherwise =

52 let newWord = word ++ [board !! x !! y]

53 newVisited = (x,y) : visited

54 in [newWord] ++

55 (findWords newVisited newWord (x-1,y-1) ++

56 findWords newVisited newWord (x-1,y) ++

57 findWords newVisited newWord (x-1,y+1) ++

58 findWords newVisited newWord (x,y-1) ++

59 findWords newVisited newWord (x,y+1) ++

60 findWords newVisited newWord (x+1,y-1) ++

61 findWords newVisited newWord (x+1,y) ++

62 findWords newVisited newWord (x+1,y+1))

4.2 In the Future

The plan before beginning this project was to also implement another parallelization to
this algorithm. That parallelization was to read the dictionary in chunks, and parallelize
checking the potential words against the dictionary. Due to the issues that I was having

COMS4995 PFP Final Project Report: Word Hunt Solver 4

with the parallelization of the DFS, I didn’t get to finish implementing this portion of the
project but will continue working on it in the future!

5 Testing and Results

Both results are tested on the input board: oatrihpshtnrenei, which is equivalent to the board
in Figure 1. The input dictionary was downloaded from https://raw.githubusercontent.

com/eneko/data-repository/master/data/words.txt.

Figure 1: Input board

COMS4995 PFP Final Project Report: Word Hunt Solver 5

Figure 2: Stats of 1 core

Figure 3: Threadscope of 2 cores

COMS4995 PFP Final Project Report: Word Hunt Solver 6

Figure 4: Stats of 2 cores

Figure 5: Threadscope of 4 cores

COMS4995 PFP Final Project Report: Word Hunt Solver 7

Figure 6: Stats of 4 cores

COMS4995 PFP Final Project Report: Word Hunt Solver 8

6 Code

63

64 import System.IO as Sys

65

66 import System.Exit(die)

67 import System.Environment(getArgs , getProgName)

68 import Control.Parallel.Strategies (parBuffer , using , rseq , rpar , parList ,

rdeepseq , rparWith)

69 import Data.Char

70 import System.Posix.IO

71 import System.Posix.Types

72 import Data.Set

73

74 -- A board is represented as a list of lists of characters

75 type Board = [[Char]]

76

77 makeBoard :: String -> Int -> Board

78 makeBoard [] _ = []

79 makeBoard input dim = Prelude.take dim input : makeBoard (Prelude.drop dim

input) dim

80

81 -- | Sequential DFS

82 seqWordHuntSolver :: Board -> Set String -> [String]

83 seqWordHuntSolver board dict =

84 [word | (x,y) <- indices ,

85 word <- findWords (x,y) [] "",

86 word `member ` dict ,

87 length word > 2]

88 where

89 indices = [(x,y) | x <- [0..(length board - 1)],

90 y <- [0..(length (head board) - 1)]]

91

92 findWords :: (Int , Int) -> [(Int , Int)] -> String -> [String]

93 findWords (x,y) visited word

94 | x < 0 || y < 0 || x >= length board || y >= length (head board) ||

(x,y) `elem ` visited = [] -- base case

95 | otherwise =

96 let newWord = word ++ [board !! x !! y]

97 newVisited = (x,y) : visited

98 in [newWord] ++

99 (findWords (x-1,y-1) newVisited newWord ++

100 findWords (x-1,y) newVisited newWord ++

101 findWords (x-1,y+1) newVisited newWord ++

102 findWords (x,y-1) newVisited newWord ++

103 findWords (x,y+1) newVisited newWord ++

104 findWords (x+1,y-1) newVisited newWord ++

105 findWords (x+1,y) newVisited newWord ++

106 findWords (x+1,y+1) newVisited newWord)

107

108

109 -- | Parallel DFS

110 wordHuntSolver :: Board -> Set String -> [String]

111 wordHuntSolver board dict =

COMS4995 PFP Final Project Report: Word Hunt Solver 9

112 [word | word <- concat allWords ,

113 word `member ` dict ,

114 length word > 2]

115 where

116 -- Find all the indices (row and column) of the squares on the board

117 indices = [(x,y) | x <- [0..(length board - 1)],

118 y <- [0..(length (head board) - 1)]]

119

120 parFindWords = findWords [] ""

121 allWords = Prelude.map parFindWords indices `using ` parBuffer 2

rdeepseq

122

123 -- Find all the words that can be formed starting at a given square

124 -- and following a path of adjacent squares

125 findWords :: [(Int , Int)] -> String -> (Int , Int) -> [String]

126 findWords visited word (x,y)

127 -- If the current square is out of bounds or has already been

visited ,

128 -- there are no more words to be found

129 | x < 0 || y < 0 || x >= length board || y >= length (head board) ||

(x,y) `elem ` visited = []

130 -- Otherwise , add the current square to the visited squares , add its

131 -- character to the current word , and search for more words in all

132 -- the adjacent squares

133 | otherwise =

134 let newWord = word ++ [board !! x !! y]

135 newVisited = (x,y) : visited

136 in [newWord] ++

137 (findWords newVisited newWord (x-1,y-1) ++

138 findWords newVisited newWord (x-1,y) ++

139 findWords newVisited newWord (x-1,y+1) ++

140 findWords newVisited newWord (x,y-1) ++

141 findWords newVisited newWord (x,y+1) ++

142 findWords newVisited newWord (x+1,y-1) ++

143 findWords newVisited newWord (x+1,y) ++

144 findWords newVisited newWord (x+1,y+1))

145

146

147 readDictionary :: FilePath -> IO [String]

148 readDictionary path = lines <$> readFile path

149

150 parseDict :: [[Char]] -> Set [Char]

151 parseDict dictionary = Data.Set.fromList (Prelude.map (Prelude.map toLower

) dictionary)

152

153 main :: IO ()

154 main = do

155 args <- getArgs

156 case args of

157 [dict , board , dim] -> do

158 dictionary <- readDictionary dict

159 let parsed = parseDict dictionary

160 solved = wordHuntSolver (makeBoard board (read dim ::

Int)) parsed

COMS4995 PFP Final Project Report: Word Hunt Solver 10

161 mapM_ putStrLn solved

162 _ ->

163 do pn <- getProgName

164 die $ "Usage: " ++pn++ " <dictionary -filename > <board > <

dimension >"

165

166

167 -- | Testing just DFS

168 testDFS :: IO ()

169 testDFS = do

170 let board = [

171 "abcd",

172 "efgh",

173 "ijkl"

174]

175

176 dict = fromList ["a", "bef", "abe", "fgk", "jie", "goodness", "kgfb"

, "efg", "hello", "fkplhg"]

177 -- expected = ["abe", "bef", "efg", "fgk", "jie", "kgfb", "hello"]

178 expected = ["a", "bef", "abe", "fgk", "jie", "goodness", "kgfb", "

efg", "hello", "fkplhg"]

179

180 -- Check that the wordHuntSolver function returns the expected result

181 assertEqual (wordHuntSolver board dict) expected

182

183 -- Assert that two values are equal

184 assertEqual :: (Eq a, Show a) => a -> a -> IO ()

185 assertEqual x y

186 | x == y = return ()

187 | otherwise = error (show x ++ " /= " ++ show y)

188

189

190

191 -- | My attempt at the second parallelization

192 readChunks :: Fd -> IO [String]

193 readChunks fd = do

194 -- fileSize <- hFileSize dict

195 -- let fileMode = Just (CMode 0440)

196 -- part = fileSize `div ` 8

197 -- part ' = part * parts

198 -- size = if parts == (totalParts -1)

199 -- then part

200 -- else part +

201 chunk <- fdRead fd 4096

202 done <- isEOF

203 -- if fst chunk == ""

204 if done

205 then return []

206 else do

207 rest <- readChunks fd

208 -- putStrLn (fst chunk)

209 return (fst chunk : rest)

