
Project: WordLadder

Overview

The goal of the project was to show Haskell parallelism in the context of the word-ladder
problem. The word-ladder challenge is defined by finding the shortest path in a graph in which
individual words are vertices, while an edge is formed by an a transition function.

Multiple transition functions can be used. For the purpose of this project, a simple transition rule
of substituting one letter has been chosen. That is, two words are considered connected if:

● They have the same length
● They differ exactly by one letter

The following two graphs are examples of connected words:

Because of the nature of finding the shortest path, the Breadth-First Search algorithm is the best
approach to solve the problem.



The BFS Algorithm
The BFS in our implementation runs as the following:

1. Assume the starting word is “aa”, and he ending word is “hb”.

○ Paths: [ [aa] ]
○ Dictionary: [ab, ac, bb, db, dc, hb, zz]

2.

○ Paths: [ [ab, aa], [ac, aa] ]



○ Dictionary: [bb, db, dc, hb, zz]
○ Note: the list that represent a single path (for example, [ab, aa] is reversed

because it’s more efficient to append a new element on the left in Haskell

3.

○ Paths: [ [bb, ab, aa], [db, ab, aa], [dc, ac, aa] ]
○ Dictionary: [hb, zz]

4.

○ Paths: [ [hb, bb, ab, aa], [db, ab, aa], [dc, ac, aa] ]



○ Dictionary: [ zz ]
○ “hb” is in the paths and thus found. So the program can stop



Algorithm Implementations

The program is limited to paths with a maximum of 20 depths so that it stops searching if the
target word can’t be reached after traversing 20 edges.

return $ process 20 [[BSU.pack fromWord]] (BSU.pack toWord) dict

…
showResults Nothing = "Unable to find a ladder in 20"

Because of the transition function choice, the program only finds paths between words of equal
length. Words in the dictionary file that have different length than stating and target words are
disregarded.

allLowerAlphaLength :: Int -> ByteString -> Bool

allLowerAlphaLength desiredLength word | (BS.length word) /= desiredLength = False

allLowerAlphaLength _ word = BSU.all (\c -> and [(isAlpha c), (isLower c)]) word

The algorithmic implementations are as follows

1. Read the content from the .txt file; filter out the dictionary to only keep words of the
appropriate length, lower letter, and alphabetic words

contents <- readFile filename

. . .

createDict content desiredLength = filter (allLowerAlphaLength desiredLength) $

BSU.words content

...
allLowerAlphaLength desiredLength word | (BS.length word) /= desiredLength = False

where
● content is the unsplitted .txt file content
● “desiredLength” is a variable that specifies the length of toWord and fromWord
● BSU.words splits bytestring into words

2. Construct a set of paths thus traveled (green vertices and edges in the last section);
initialize that set with just one path containing just the starting word.

process 20 [[BSU.pack fromWord]] (BSU.pack toWord) dict

where



● the process function tries to perform the BFS algorithm. It starts from the
fromWords and tries to reach the toWord. It uses oneCharDifference function to
find the next vertices (nodes) for search

● [[BSU.pack fromWord]] creates a list of list with the initial starting word
● BSU.pack converts string type into bytestring type
● “dict” is a set of splitted bytestrings from the .txt words.

3. For every path in the queue, take the first word in the path and find all words connected
to it

next = findNextWords (head p) d

...
findNextWords currentWord dict = Set.filter suitable dict

where

suitable word = oneCharDifference word currentWord

where
● The “suitable” function returns True/False to tell whether provided words is

suitable as the next word in the path
● "word" is a single word that's only one char different from current word

4. Append the newly found words to each of the paths; if a path has multiple words to go, it
branches out to all of them
eval d p =

let

next = findNextWords (head p) d

in

(map (\w -> w:p) (Set.toList next), next)

where
● (\w -> w:p) conducts the appending of newly found words

5. Remove the newly found words from the dictionary.
›
dict' = Set.difference dict (Set.unions nexts)

where
● “dict” is a set and “nexts” is a list of list of new words.
● “Set.unions” converts “nexts” into a set
● “Set.difference” removes “nexts” set from “dict”

6. If any of the new words have been the target word, the search ends; otherwise, go back
to 3) and repeat until either the word is reached or the program hits the maximum limit
(20 depths).
let



. . .

found = filter (\p -> head p == to) paths'

in

case found of

(p:_) -> Just $ reverse p

[] -> process (limit-1) paths' to dict'

where
● “reverse” is for better presenting the answer
● paths’ is the updated paths (updated queue) that we just branched out
● dict’ is the updated set of not visited vertices words



Sequential implementation
The sequential implementation has a couple of differences from a naive approach implemented
in homework 4, which used built-in data structures like String and Lists. In homework 4, the
following code detects if the words differ by exactly one letter, forming the word transition
function:

oneCharDifference :: String -> String -> Bool

oneCharDifference a b | (length a) /= (length b) = False

oneCharDifference a b = (length $ filter (\(a1,b1) -> a1 /= b1) $ zip a b) == 1

In the final project code, I made several derivations from the initial code in homework 4.

First, it uses ByteStrings to represent the words. That allows the use of the efficient
packZipWith function operating strictly on the byte data, allowing for faster edge finding than
usual strings because ByteString has a contiguous memory buffer without splits in the middle,
making iterations faster. It also uses count from the ByteString library – for the same reason,
ByteString is faster than usual strings with the “count". The following code forms the basis of the
edge detection algorithm, where the majority of the CPU time is being spent in the sequential
implementation

oneCharDifference :: ByteString -> ByteString -> Bool

oneCharDifference a b | (length a) /= (length b) = False

oneCharDifference a b = BSU.count '1' diffs == 1

where

diffs = (BSU.packZipWith (\ca cb -> if ca /= cb then '1' else '0') a b)

Second, this final project code uses a Set to represent the dictionary, allowing the removal of
elements contained in a set in log n time because “Set” is implemented with a balanced binary
tree structure

dict' = Set.difference dict (Set.unions nexts)



Parallel implementation
In order to show the speedup achieved by parallelism, the parallel version uses almost the
same implementation as the sequential implementation, except for the following parallelization.
The crucial operation done in parallel is evaluating the paths showing in the following code:
each path spawns a new spark (concurrent computation running in parallel) that can land on a
different runtime thread.

results = parMap rpar (eval dict) paths

paths' = concat . parMap rpar fst $ results

nexts = parMap rpar snd results

It’s worth noting in this parallel implementation that an observed shortcoming was that the paths
couldn’t easily share the dictionary; in the sequential implementation, one optimization change
that was tried was pruning the dictionary after every path. This meant that no word was added
twice. But, in the case of the parallel approach, this would require a synchronized shared
variable, and as such it wasn’t used. Instead, all new words from a given round are gathered
together and removed from the dictionary at once.



Performance results
In order to more easily time the program, a testing suite has been developed. The program was
inspected mainly with three methods:

1. The POSIX time command for wall-clock timing
2. Haskell’s built-in profiling suite
3. Haskell eventlog and the associated tool threadscope for visualizing parallelism.

Because even the existence of profiling data showed significant slowdowns, the program was
profiled with the profile information, but recompiled without it for performance timings (the timing
below does not show profiling). The results were gathered on a system with an Intel Core i7
CPU with 4 hardware processors and 8 virtual cores. The RTS in the parallel implementation
was set to 8, 4, and 2, respectively.

The exact speed may vary slightly depending on the system load, but the following results have
clearly confirmed the faster overall speed of the parallel implementation (although N2 is slower
than sequential because of overhead introduced by the parallelism’s synchronization). In the
POSIX results, the N8 parallel implementation is 2.3 times faster than the sequential
implementation (0m0.757s vs. 0m1.757s). In the Threadscope results, the N8 parallel
implementation is 2.7 times faster than the sequential implementation (586ms vs 1.603s).

An example set of results

Parallel -N8
real 0m0.757s
user 0m0.000s
sys 0m0.046s

Parallel -N4
real 0m0.984s
user 0m0.000s
sys 0m0.076s

Parallel -N2
real 0m2.209s
user 0m0.015s
sys 0m0.030s

Sequential
real 0m1.757s



user 0m0.030s
sys 0m0.030s

Threadscope analysis
Sequential

Parallel

With +RTS -N8



There are several possibilities of why the CPU seems to be wasting more time in the N8
implementation than in N4, N2, or sequential implementation.

● Synchronization of all threads.
● Communication between threads creates potential wait time where the CPU is

idle
A possible way to decrease it is to minimize thread synchronization by:

● Splitting the problem to be better for parallelization
● Divide the data into equal sizes so that the threads don’t have to wait for each other to

finish



With +RTS -N4



With +RTS -N2

The best results were obtained with the parallelism of N=8, making maximum use of the CPUs
virtual cores, and the speed is 2.7 times after than the sequential implementation.



Running and Building

Building
The program was built using stack, with LTS 20.4 resolver and 9.25 GHC version.
The dependencies are containers, parallel, and bytestring (in version 0.11.1 or later).

https://www.stackage.org/lts-20.4

Threadscope
For installation instructions, see:
https://github.com/haskell/ThreadScope

Running
The necessary prerequisites are

● A POSIX-like operating system with bash, OR
● Windows with MSYS2 installed
● Haskell Stack

After downloading the archive, simply run
$ ./run.sh full

To run all the tests. The reports and files will be generated in a folder called report.

https://www.stackage.org/lts-20.4
https://github.com/haskell/ThreadScope


Conclusion
N2 is slower than sequential because of the overhead introduced by parallelism

But N8 is 2.3 times faster (according to POSIX) and 2.7 times faster (according to threadscope)
than sequential.

Thus, we concludes the success of the parallel implementation in the word ladder problem



Source code

Main.hs

{-

WordLadder solver.

Shows the performance difference between parallel and sequential execution.

See run.sh for performance tests.

Usage: wordLadder <[par|seq]> <dictionary-filename> <from-word> <to-word>

$ ./wordLadder par words.txt bar none

-}

{-# LANGUAGE OverloadedStrings #-}

import qualified Prelude

import Prelude hiding (words, putStr, length, readFile)

import System.Environment

import Data.Char

import qualified Data.Set as Set

import Control.Parallel.Strategies

import qualified Data.ByteString as BS

import qualified Data.ByteString.Char8 as BSU

import Data.ByteString hiding (map, filter, head, concat, reverse, all)

noArgErrorMessage :: String

noArgErrorMessage = "Usage: wordLadder <dictionary-filename> <from-word> <to-word>"

createDict :: ByteString -> Int -> [ByteString]

createDict content desiredLength = filter (allLowerAlphaLength desiredLength) $ BSU.words

content

allLowerAlphaLength :: Int -> ByteString -> Bool

allLowerAlphaLength desiredLength word | (BS.length word) /= desiredLength = False

allLowerAlphaLength _ word = BSU.all (\c -> and [(isAlpha c), (isLower c)]) word

type Words = Set.Set ByteString

-- |

-- The algorithm:

--  Take all the paths

--  For every path p:



--    Find all hops from the last element of that path

--    Multiply that path by all the hops

--    Example:

--      path is ["ac", "ab", "aa"], hops from "ac" are "bc" and "cc",

--      we end up with:

--      [

--        ["bc", "ac", "ab", "aa"],

--        ["cc", "ac", "ab", "aa"],

--      ]

--      for that path.

--      Also remove every hop from the dictionary after it's found.

--  Gather all paths (concat) into a new set

--  If any of the paths ends with `to`, end the algorithm.

--  Otherwise, repeat.

process :: Int -> [[ByteString]] -> ByteString -> Words -> Maybe [ByteString]

process 0 _ _ _ = Nothing

process limit paths to dict =

if Set.null dict

then Nothing

else

let

results = map (eval dict) paths

paths' = concat . map fst $ results

nexts = map snd results

dict' = Set.difference dict (Set.unions nexts)

found = filter (\p -> head p == to) paths'

in

case found of

(p:_) -> Just $ reverse p

[] -> process (limit-1) paths' to dict'

where

eval d p =

let

next = findNextWords (head p) d

in

(map (\w -> w:p) (Set.toList next), next)

processPar :: Int -> [[ByteString]] -> ByteString -> Words -> Maybe [ByteString]

processPar 0 _ _ _ = Nothing

processPar limit paths to dict =

if Set.null dict

then Nothing

else

let

results = parMap rpar (eval dict) paths

paths' = concat . parMap rpar fst $ results

nexts = parMap rpar snd results

dict' = Set.difference dict (Set.unions nexts)



found = filter (\p -> head p == to) paths'

in

case found of

(p:_) -> Just $ Prelude.reverse p

[] -> processPar (limit-1) paths' to dict'

where

eval d p =

let

next = findNextWords (head p) d

in

(map (\w -> w:p) (Set.toList next), next)

findNextWords :: ByteString -> Words -> Words

findNextWords currentWord dict = Set.filter suitable dict

where

suitable word = oneCharDifference word currentWord

oneCharDifference :: ByteString -> ByteString -> Bool

oneCharDifference a b | (length a) /= (length b) = False

oneCharDifference a b = BSU.count '1' diffs == 1

where

diffs = (BSU.packZipWith (\ca cb -> if ca /= cb then '1' else '0') a b)

showResults :: Maybe [ByteString] -> ByteString

showResults Nothing = "Unable to find a ladder in 20"

showResults (Just path) = BSU.unlines path

main :: IO ()

main = do

args <- getArgs

case args of

[_, _, fromWord, toWord] | (Prelude.length fromWord) /= (Prelude.length toWord) ->

do

Prelude.putStrLn ("\"" ++ fromWord ++ "\" and \""++toWord++"\" must be the same

length")

[parflag, filename, fromWord, toWord] ->

do

contents <- readFile filename

let dict = Set.fromList $ createDict contents (Prelude.length fromWord)

results <- case parflag of

"seq" -> do

Prelude.putStrLn "Sequential mode"

return $ process 20 [[BSU.pack fromWord]] (BSU.pack toWord) dict

"par" -> do

Prelude.putStrLn "Parallel mode"

return $ processPar 20 [[BSU.pack fromWord]] (BSU.pack toWord)

dict

_ -> error "Set the par or seq flag"

BSU.putStr (showResults results)

_ -> Prelude.putStrLn noArgErrorMessage



Run.sh
# +RTS - runtime options follow that

# -N8 - number of threads (8)

# -l - enable eventlog for threadscope

# -p - enable profiling (Slow!!)

EXECUTABLE=./.stack-work/dist/8a54c84f/build/word-ladder-exe/word-ladder-exe.exe

function run () {

${EXECUTABLE} $1 words.txt sage fool +RTS -N2 $2

NAME=$1$2

[ -f word-ladder-exe.eventlog ] && mv word-ladder-exe.eventlog

report/$NAME.eventlog

[ -f word-ladder-exe.prof ] && mv word-ladder-exe.prof report/$NAME.prof

}

if [ $1 = "full" ]

then

echo "Running full set of runs"

echo "Clearing out old results"

rm -rf report

mkdir -p report

echo "Building without profile information for accurate timing"

(stack build) > build.log 2>&1

echo "Par timing"

(time run par "-l") >> report/report.txt 2>&1

echo "Seq timing"

(time run seq "-l") >> report/report.txt 2>&1

echo "Building with profile information"

stack clean

(stack build --profile) >> report/build.log 2>&1

echo "Gathering Par profile"

run par "-p" > /dev/null

echo "Gathering Seq profile"

run seq "-p" > /dev/null

else

echo "Running run on the current build with mode $1 with flag $2"



run $1 $2

fi


