
1

TSK - Traveling Salesman on KMeans Clusters
Ashar Nadeem and Matthew Goodman

Table of Contents
TSK - Traveling Salesman on KMeans Clusters

Table of Contents
Background
High Level Approach
Traveling Salesman

Serial
Parallel

K Means
Input
Output
Performance

Serial
Parallel



2

Background
K-Means clustering is an NP-hard problem that partitions coordinates, or nodes, into clusters
with the mean of the cluster serving as its prototype, or centroid. Traveling Salesman is an
NP-hard problem where the shortest path between coordinates is found under the constraint
that each coordinate is visited at least once.

These problems can be combined together to create an algorithm that creates efficient paths
within a list of inputs by clustering them together by proximity and then finding the optimal path
within each cluster. More optimized and sophisticated versions of these algorithms are used at
marketplace companies like DoorDash and Veho, and this algorithm is explored in a more
simple manner in this paper including the effects of parallel implementation.

High Level Approach
It is more efficient to run traveling salesman on a small number of coordinates as opposed to
very large numbers that increase the time complexity as more inputs are provided. This
especially holds true for the brute force method to solving the TSP, and thus it makes more
sense to break the inputs into clusters on which TSP can be run, finding many sub paths that
are more optimal than a single traveling salesman traversing the entire list of coordinates.

The number of clusters, k, is provided by the user. The coordinates are hardcoded as the
latitude and longitude of every capital city in the United States, and K-Means clustering is
applied to said group of coordinates, breaking down the large input into smaller, tightly coupled
clusters that make for more efficient paths.

The output of this K-Means algorithm is then fed into TSP, which computes the optimal path
within the cluster and outputs the list of coordinates, in order, that result in said optimal path.

The total output of the program is a list of paths which are the optimal way to visit each
coordinate given the input constraints.

https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/Travelling_salesman_problem


3

Traveling Salesman

Implementation

The approach to traveling salesmen is one of brute force. An input is given to the function which
is a list of coordinates that represent the cluster we are trying to optimize for. Every possible
permutation of said coordinates is found, and the cost of traversing each permutation in the
order it is in is compared. The least costful permutation is then taken as the optimal path
amongst the cluster.

Serial

When running the program serially, each cluster is mapped over and TSP is applied to the
cluster. This results in threads serially running TSP on 1 cluster at a time and returning the
output.



4

Parallel

When running the program in parallel, each cluster is mapped over in parallel, with TSP being
run on the clusters simultaneously as each thread can run the program. The final output is
returned.



5

K Means

A basic K-Means Clustering algorithm is used that takes inputs of coordinates, and calculates
centroids for the list that it operates on. As it traverses the list, it assigns coordinates to the
closest centroid it finds, while recalculating the cluster that had a coordinate added to it. This
continues as all coordinates are added to a cluster, and then the program continues to run to
optimize the clusters until the centroids no longer move within a margin of error, signifying that
an optimal build of clusters has been achieved.



6

Utilities

Common utility functions include the type that represents a coordinate, the margin of error that
is agreed upon, a function to calculate the euclidean distance between two coordinates, as well
as the cost to traverse a path of coordinates.



7

Main

Input
The standard input used to run all performance tests consisted of 3 things. Program arguments
were passed in to determine whether the code shall be run serially or in parallel, and the
number of clusters to create was passed in as well. Lastly, the standard dataset on which to run
the code was hardcoded, consisting of the latitude and longitude of every capital city in the
United States. The dataset was sourced from here.

https://raw.githubusercontent.com/jasperdebie/VisInfo/master/us-state-capitals.csv


8

Output

For visualization purposes, the list of optimal routes output by the algorithm was overlaid on top
of a map of the United States. The denseness is immediately obvious through the color coded
clusters, and the optimal routes amongst the individual clusters passes the eye test when
looking through numbered nodes and where the obvious next stop should be. As mentioned
earlier, it is not imperative that a route start and end at the same point. Overall, the output
shows satisfactory results and there is confidence in the effectiveness of the algorithm to solve
the problem at hand.



9

Performance

Serial



10

Parallel

Conclusion
Both implementations yield identical results that pass the eye test in terms of efficiency and
correctness.The serial implementation takes ~6.39 seconds whereas the parallel
implementation takes ~4.27 seconds. The parallel implementation improves performance by
33.2%, a substantial improvement that could be further optimized with more time and effort in
finding better solutions to TSP, primarily anything that is not brute force.


