
Parallelizing NFA to DFA Conversions

Alexis Gadonniex, Nikhil Mehta

December 22, 2022

1 Problem Statement

We seek to parallelize the subset construction algorithm that is applied to a nondeterministic finite au-
tomaton (NFA) to convert it into a deterministic finite automaton (DFA). This is particularly useful in
the context of string processing and compilers where one wants to check whether a given string matches
a regular expression or not. Since regexes can be represented as NFAs, this is the same as asking the
question of whether a given string will be accepted by an NFA. At the surface this might seem like a
tricky problem since NFA’s are, as their name suggests, non-deterministic. However, NFA’s can always
be converted into DFAs through the subset construction algorithm. This algorithm, described below,
is one that has to consider a variety of possible intermediary states in the NFA at the same time.
Thus, the algorithm is ripe for parallelization. To generate NFAs in the first place we will use three
techniques. First, we will implement non-parallelized functionality to convert a regex to an NFA using
Thompson’s algorithm. Second, we will create another type of NFA directly from a dictionary of all ac-
cepted strings in a language. Third, we will directly generate NFA’s with random edges and transitions.

Thus our project requires several parts. First, we need to create a data structure to represent au-
tomata whether they are deterministic or not. Then, we need write single-threaded algorithms to
generate NFAs. At the core of our project, we need to write a single-threaded version of the subset
construction algorithm and then work to parallelize it. Last, we opted to write an algorithm to check
if strings are accepted by a given automaton.

2 Algorithm

2.1 Subset construction

The subset construction algorithm is used to convert an NFA into a DFA. The subset construction
algorithm works by considering sets of states. That is to say, for a given NFA consider the set of
all states reached from the starting state. That constitutes the starting state for your DFA. Then
consider all the states (if any) accessible from the initial set of states that are reached when you pass
in a given character. That constitutes the next state of the DFA. Then, consider the set of all states
reached when you pass in a different character. The algorithm continues to reapply this step to find
all possible sets of states in the NFA for all possible sequences of characters. Each set of NFA states
then corresponds to a unique state in the DFA.

Below we present pseudocode of the algorithm:

I n i t : Add eps i l on−c l o s u r e o f the s t a r t s t a t e s to DStates

While the re i s a non−v i s i t e d s t a t e T in DStates do
mark T as v i s i t e d

f o r each symbol c do
compute S the s e t o f s t a t e s that can be reached from T through c
compute SE the eps i l on−c l o s u r e o f S
i f SE i s not in DStates do

add SE to DStates as a non−v i s i t e d s t a t e
mark SE as f i n a l i f i t conta in s a f i n a l s t a t e o f the NFA

1

end
Trans i t i on [T, c] = SE

end
end

The algorithm has a worst-case complexity of O(2n) since the number of subsets of an n-state NFA
is 2n. This worst-case complexity can be achieved with fairly simple languages and this will be useful
to test our code against difficult instances.

2.2 Thompson’s rules

While not a parallelized feature of our code, we use Thompson’s algorithm to generate NFA’s from
regexes. Thompson’s algorithm is a set of conversions that can be applied to each regex rule to gener-
ate an NFA. Thompson’s algorithm can be applied recursively to a syntax tree of a regular expression.
Below we describe the four rules for Thompson’s algorithm.

To represent two sub-regexes N(s) and N(t) that are concatenated with one another one can use
the rule shown in Fig. 1. To represent two sub-regexes N(s) and N(t) that are joined via a union,
sometimes referred to as “or” and typically denoted by | , one can use the rule shown in Fig. 2. To
represent a sub regex N(s) that is encased in a Kleene Enclosure, normally denoted by a *, one can
use the rule shown in Fig. 3. Finally, to represent the transition of an accepted symbol a, one can
apply Thompson’s symbol rule shown in Fig. 4

We further discuss Thompson’s algorithm and how we implemented it in section 4.

Figure 1: Thompson’s concatenation rule

Figure 2: Thompson’s union rule

Figure 3: Thompson’s symbol Enclosure rule

2

Figure 4: Thompson’s Kleene Enclosure rule

3 Implementation

3.1 Automaton Data Structure

To represent NFAs and DFAs in our project, we wrote an Automaton data type in Haskell in Automaton.hs.
States in an Automaton are represented as unique integers. A transition is denoted as an Edge which
consists of a tuple of a Label and the next State. A Label is either an Epsilon or a Label Int where
the integer denotes the character in the alphabet that is labeling a given transition. An Automaton

consists of an Adjacency List which is a Map with each State serving as the key and their subsequent
list of Edges serving as the value. An Automaton also takes a list of Labels to represent the alphabet.
Last, an Automaton takes a Set of final states and a Set of start states.

3.2 Subset Construction

From the very beginning, we tried to implement the subset construction algorithm in a way that could
be easily parallelized in the future. Thus, we tried to isolate some map patterns.

We used a layer-by-layer approach, similar to a BFS, that we divided into two phases:

• An exploration phase, where we explore all the transitions leaving from the previous layer. We
create the cartesian product between the alphabet and the DFA states of the previous layer, and
for each pair, we compute the target DFA State (set of NFA States) by performing look-ups to the
NFA’s transition table and ε-closure. We parallelized this phase by running these computations
using parMap and the rdeepseq strategy.

• A Sequential phase where we will try to merge all the newly discovered states from the parallel
phase with our partially created DFA. In order to keep track of the mapping between a set of
NFA’s states (set of integers) and the corresponding DFA state (an integer), we use a Haskell
Map with Sets of Ints as keys and Ints as values. A newly discovered DFA state can lead to
several results: it is a new state and should be used in the next exploration phase; it is empty so
we can ignore it; it already exists elsewhere in the DFA (a previous layer or the same one) and
we just have to add the edge to our adjacency list.

We also tried to explore several layers at once during the exploration phase to create more sparks
but it was not very efficient because the number of states in each layer is growing very quickly and
most of them are actually redundant. It is more effective to sort the new states from the already
existing one at each layer. We illustrate our algorithm working on a sample NFA in Fig. 5

A clear bottleneck in our implementation is the sequential phase which limits how much we can get
from parallelism (Amdahl’s law). The most expensive operation during this phase is the look-up in the
“NFA state sets to DFA state”, especially if the DFA States are made of a large number of NFA states.
A possible improvement would be to use some kind of hash function for a set of integers to produce
smaller keys for the Map. This hash could be computed during the parallel phase. Unfortunately, we
didn’t have time to explore this possibility.

Reducing the time spent in this phase was one of our main concerns when considering the various
options we had to generate NFAs.

3

Figure 5: Subset construction implementation diagram

4

Figure 6: Syntax tree generated from "a*(a|b)"

Figure 7: Traversal of syntax tree from Fig. 6 with corresponding Thompson’s construction at each
node.

4 NFA Generation

4.1 From regular expressions

We used three techniques for generating NFAs. Our first method involved using Thompson’s algorithm
to generate an NFA from a regex. To achieve this we wrote a parser regexParser in Thompson.hs

using the Haskell Parsec library to take in a regex as a string and output a syntax tree. We used the
standard notation of * for kleene enclosure and | for union. Our parser supports the use of parentheses
to enforce a certain precedence. Characters of the accepted alphabet for the regex could be denoted
as themselves. Concatenation is implicit when elements of the regex succeed each other. An example
regex could be: "a*(a|b)". We show the resultant syntax tree for this regex in Fig. 6.

The resultant syntax tree is then fed into our implementation of Thompson’s Algorithm in thompsons

which is called by makeThompsonNFA in Thompson.hs which traverses the syntax tree using a depth
first search and builds up the adjacency table for NFA recursively. To generate the alphabet for the
NFA we used a separate DFS to search for all characters, a.k.a. leaf nodes on the syntax tree. We
show an example DFS with the each node in the tree from Fig. 6 labeled according to the order it was
visited in Fig. 7 We then show the resultant Thompson’s construction for that node.

5

Figure 8: Sample NFA created from a dictionary of all accepted words in a language.

Figure 9: DFA converted from NFA above from dictionary of all accepted words in a language.

We quickly realized that, in order to create sufficiently large problems for our algorithm, we would need
to create random regular expressions. One way of doing that could be to chose a number of terminal
states and, in a recursive fashion, randomly split the remaining nodes between the two branches of
an operator (concatenation or |). However, we were afraid that the structure of this type of NFA
would be too linear for our algorithm to produce interesting results. We chose to spend time on other
methods.

4.2 From a list of words

Our second method of generating NFAs was to build it directly from a dictionary of all the accepted
strings in the language. We implemented the function makeDictNFA in Dictionary.hs which takes
in a [Char] of all the strings from a dictionary. Then, each string is added onto the NFA from the
starting state via an epsilon transition. For example, the following input to ["hello", "world",

"mom"] would generate the NFA shown in Fig. 8.

This is a pretty straightforward way of generating NFAs with a very regular structure. The results are
discussed below.

4.3 From a given size and density

The last method we tried was to generate a fully random NFA, without any particular meaning, from
a set of parameters. The parameters we chose to expose are:

• The number of states

6

Figure 10: Most time spent in sequential phase when using an NFA created from a list of words

• The size of the alphabet

• The probability that, given two states s1 and s2 and an element of the alphabet c, there is an
edge from s1 to s2 with a label c.

• (The number of initial states)

• (The number of final states)

The last two are not very important since they don’t have any noticeable influence on the complexity
of the algorithm.

Since our implementation is a bit naive, we have to use high probability values (it depends on the
size of the alphabet) in order to keep our graph connected and avoid isolated states in the NFA.

5 Results

5.1 List of words

The NFAs built from lists of words looked like a perfect use-case for our algorithm. But it turned out
that the result were a lot worse than we initially expected. You can see in the threadscope graph in
Fig. 10 that the algorithm was running on a single core most of the time. The main reason why it
spends all this time in the sequential phase is that each DFA state is made of a lot of NFA states.
To actually see the effect of parallelism, we had to consider very long lists of words (200000 words).
But the problem is that it leads to huge NFA States (for example: about 10000 words start with the
letter a). In this case, the look-ups are extremely expensive and the memory usage is extremely high
(maximum heap size 3Gb; total allocated 200Gb !!). We can also note that there are 20 million sparks
created, half were converted and the other half overflowed. We tried using IntSet as keys but it didn’t
significantly improve the results.

5.2 Random NFA

When using the random NFAs we described above, we were able to tune more precisely the parameters
to find NFAs that fit our algorithm.

The best results were obtained for NFAs with 600 states, an alphabet of size 20 and a probability
of 0.4. We obtained a speed-up of 3 using 8 cores (on an M1 Macbook Pro with 8Gb of RAM). You
can see on Fig. 11 that most of the time is spent in the parallel phase. The speed-up for different
number of threads is plotted on Fig. 12. Note that we could get a slightly better speed-up by gener-
ating the random NFAs in advance and parsing them from a text file since it takes about 10 percent

7

Figure 11: Threadscope on 8 threads for a random NFA with 600 states, alphabet of size 20 and
probability of 0.4

Figure 12: Speed-ups from 1 to 8 threads. Measured on a sample of 10 random NFAs with 600 states,
alphabet of size 20 and probability of 0.4

of the total time and is fully sequential.

These are relatively small NFAs but highly interconnected. This leads to pretty small DFA states
(in term of number of NFA states) but a lot of different combinations of those. The average size of a
state is about 60 NFA states, a lot smaller than the NFAs from a list of words (several hundreds in
average and up to several thousands for about the same computation time).

Changing the number of states of the NFA has a relatively small impact on the results. Below 500 the
algorithm finishes too quickly for the parallelism to make a real difference. Above (we tested up to
2000 states), the computation time increases very quickly but the speed-up stays the same. It takes
about 10 times longer when going from 500 to 1000 states.

We tried to modify the probability but it is a very sensitive parameter and shows the limitations
of our modelization. If we decrease the probability too much the graph becomes poorly connected and
we end up with a small number NFA states that are truly relevant. In the contrary, if we increase the
probability too much, the graph becomes too connected and there are only a small number of DFA
states to explore.

The alphabet size is also tricky since increasing it leads to an exponential number of additional edges.

8

We chose to stick with numbers between 20 and 30 since it is the range of the latin alphabet.

6 Usage

Our code is intended to run with GHC 8.10.7, HLS 1.8.0.0, Stack 2.9.1, and cabal 3.6.2.0.

To build our code run $ stack build in the base directory. To run our code using the following
command: $ stack exec subset-construction-exe -- +RTS -ls -s -lf -N8

7 References

We cite the following sources and thank the respective owners:

1. https://en.wikipedia.org/wiki/Thompson%27s construction for the Thompson’s construction graph-
ics

2. Professor Stephen Edwards PLT slides for sample Regexes used in figures and testing

8 Appendix

/src/Automaton.hs

1 module Automaton (Automaton (..), AdjacencyList , DfaStatesMap , State , Edge , Label (..),

exampleAutomaton , exampleAutomaton2 , ioDumbAutomaton) where

2 import Control.DeepSeq (NFData (rnf))

3 import qualified Data.List as List

4 import qualified Data.Map as Map

5 import qualified Data.Set as Set

6

7 -- A node ’s "id"

8 type State = Int

9 -- A labeled edge pointing to a node

10 data Label = Epsilon | Label !Int deriving (Eq, Show , Ord)

11

12 instance NFData Label where

13 rnf (Label x) = rnf x

14 rnf Epsilon = ()

15

16 type Edge = (Label , State)

17 -- Successors map , initial states and final states

18 type AdjacencyList = Map.Map State [Edge]

19 data Automaton = Automaton !AdjacencyList ![Label] !(Set.Set State) !(Set.Set State)

deriving (Show)

20

21 type DfaStatesMap = (Map.Map (Set.Set State) State , Int)

22

23 -- Example taken from https ://en.wikipedia.org/wiki/Powerset_construction (5 states

NFA generating a 16 states DFA through the algorithm)

24 alphabet :: [Label]

25 alphabet = [Label 0, Label 1]

26 initStates :: Set.Set State

27 initStates = Set.fromList [0]

28 finalStates :: Set.Set State

29 finalStates = Set.fromList [4]

30 successors :: AdjacencyList

31 successors = Map.fromList [(0, [(Label 0, 0), (Label 1, 0), (Label 1, 1)]), (1, [(

Label 0, 2), (Label 1, 2)]), (2, [(Label 0, 3), (Label 1, 3)]), (3, [(Label 0, 4),

(Label 1, 4)]), (4, [])]

32 exampleAutomaton :: Automaton

33 exampleAutomaton = Automaton successors alphabet initStates finalStates

34 initStates2 :: Set.Set State

35 initStates2 = Set.fromList [0]

36 finalStates2 :: Set.Set State

9

37 finalStates2 = Set.fromList [2]

38 successors2 :: AdjacencyList

39 successors2 = Map.fromList [(0, [(Label 0, 1)]), (1, [(Label 1, 2)]), (2, [(Epsilon ,

0)])]

40 exampleAutomaton2 :: Automaton

41 exampleAutomaton2 = Automaton successors2 alphabet initStates2 finalStates2

42

43 intAlphabet :: [Label]

44 intAlphabet = List.map Label [0..50]

45

46 dumbAutomaton :: Int -> Automaton

47 dumbAutomaton nStates = Automaton adj intAlphabet (Set.singleton 0) (Set.singleton $
nStates - 1)

48 where adj = Map.insert 0 [(Label 0, 0), (Label 1, 0), (Label 1, 1)]

allButFirstSucc

49 allButFirstSucc = Map.insert (nStates -1) [] allButFirstAndLast

50 allButFirstAndLast = Map.fromList $ List.map (\n -> (n, [(l, r) | l

<- intAlphabet , r <- [n+1,n, n-1]])) [1.. nStates -2]

51

52 ioDumbAutomaton :: Int -> IO Automaton

53 ioDumbAutomaton n = return $ dumbAutomaton n

/src/Checks.hs

1 module Checks (checkAccept , checkAlphabet) where

2 import Automaton (Automaton (..), Label (..), State)

3 import Data.Char (ord)

4 import Data.List (find)

5 import qualified Data.Map as Map

6

7 -- checkAlphabet: Check if word agrees with alphabet for a given Automaton

8 checkAlphabet :: [Char] -> Automaton -> Bool

9 checkAlphabet (x:xs) dfa@(Automaton _ alph _ _) = n && checkAlphabet xs dfa

10 where n = Label (ord x) ‘elem ‘ alph

11 checkAlphabet [] _ = True

12

13 -- checkAccept: check if word is in a language. Automaton MUST be a DFA

14 checkAccept :: [Char] -> Automaton -> State -> Bool

15 checkAccept (x:xs) dfa c = case findTransition x dfa c of

16 Just e -> checkAccept xs dfa n where (_,n) = e

17 Nothing -> False

18 checkAccept [] (Automaton _ _ _ end) c = c ‘elem ‘ end

19

20 findTransition :: Char -> Automaton -> Int -> Maybe (Label , State)

21 findTransition x (Automaton lst _ _ _) c = case Map.lookup c lst of

22 Just es -> find (\y -> fst y == Label (ord x)) es

23 Nothing -> Nothing

/src/Dictionary.hs

1 module Dictionary (dictNfa) where

2

3 import Automaton (AdjacencyList , Automaton (..), Label (..), State)

4 import Data.Char (ord)

5 import qualified Data.Map as Map

6 import qualified Data.Set as Set

7 import WordList (buildList)

8

9 -- addWord: (non thompsons) helper method for dictNFA

10 addWord :: [Char] -> AdjacencyList -> Set.Set Label -> State -> Set.Set State -> State

-> (AdjacencyList , Set.Set Label , Set.Set State , State)

11 addWord (x:xs) adjList alph fromState finalStates toState = addWord xs newAdjList

newAlph toState finalStates newToState where

12 t = Label (ord x)

13 newToState = toState + 1

14 newAlph = Set.insert t alph

15 newAdjList = Map.insertWith (++) fromState [(t, toState)] adjList

16 addWord [] adjList alph lastState finalStates toState = (adjList , alph , newFinals ,

toState) where

17 newFinals = Set.insert lastState finalStates

18

19 -- dictNFA: (non thompsons) helper method for buildDictNFA

10

20 dictNFA :: [[Char]] -> AdjacencyList -> Set.Set Label -> State -> Set.Set State ->

State -> (AdjacencyList , Set.Set Label , Set.Set State)

21 dictNFA (x:xs) lst alph st fi l = dictNFA xs nlst nalph st nfi nl where

22 (nlst , nalph , nfi , nl) = addWord x lst alph 0 fi il

23 il = l+1

24 dictNFA [] lst alph _ fi _ = (lst , alph , fi)

25

26 -- makeDictNFA: Build NFA from dict of accepted strings in a language

27 makeDictNFA :: [[Char]] -> Automaton

28 makeDictNFA l@(_:_) = Automaton lst alph start fi where

29 alph = Epsilon : Set.toList salph

30 (lst , salph , fi) = dictNFA l (Map.insert 0 [] Map.empty) Set.empty 0 Set.empty 0

31 start = Set.singleton 0

32 makeDictNFA [] = error "empty dictionary"

33

34 dictNfa :: FilePath -> IO Automaton

35 dictNfa fp = do

36 wordList <- buildList fp

37 return $ makeDictNFA wordList

/src/RandomNfa.hs

1 module RandomNfa (ioRandomNfa) where

2 import Automaton (Label (..))

3 import qualified Automaton as A

4 import qualified Data.List as List

5 import qualified Data.Map as Map

6 import qualified Data.Set as Set

7 import qualified System.Random as Random

8

9

10

11 -- Inspired from https :// hackage.haskell.org/package/random -1.2.1.1/ docs/System -Random

.html

12 rolls :: Int -> Int -> Int -> [Int]

13 rolls n maxInt seed = take n . List.unfoldr (Just . Random.uniformR (0, maxInt)) $
Random.mkStdGen seed

14

15 -- Generate a random NFA with a given number of states , an alphabet size , a number of

final states and a probability

16 -- (probability that there is an edge with a given label betwen 2 given states)

17 randomNFA :: Int -> Int -> Int -> Int -> A.Automaton

18 randomNFA numStates alphabetSize nbFinals proba =

19 A.Automaton transitions alphabet initStates finalStates

20 where

21

22 intForGen = numStates + alphabetSize + nbFinals + proba

23

24 -- list of states

25 states = [0..(numStates -1)]

26 -- final states

27 finalStates = Set.fromList [(numStates - nbFinals)..(numStates -1)]

28 -- alphabet

29 alphabet = [Label i | i <- [0..(alphabetSize - 1)]]

30

31 allTransitions = [

32 (state1 , symbol , state2) |

33 state1 <- states ,

34 state2 <- states ,

35 symbol <- alphabet]

36

37 keepTransitions = [rdInt <= proba | rdInt <- rolls (length allTransitions)

100 intForGen]

38

39 transitionsList = [v | (v,keep) <- List.zip allTransitions keepTransitions ,

keep]

40

41 -- turn the list into a map

42 transitions :: A.AdjacencyList

43 transitions =

44 List.foldl ’

45 (\m (fromS , label , toS) -> Map.insertWith (++) fromS [(label , toS)] m

11

)

46 Map.empty

47 transitionsList

48

49 -- Generate a random start state

50 initStates = Set.singleton 0

51

52 ioRandomNfa :: Int -> Int -> Int -> Int -> IO A.Automaton

53 ioRandomNfa nbStates alphabetSize nbFinals probability =

54 return $ randomNFA nbStates alphabetSize nbFinals probability

/src/SubsetConstruction.hs

1 module SubsetConstruction (nfaToDfa) where

2 import qualified Automaton as A

3 import Control.Parallel.Strategies (parMap , rdeepseq)

4 import qualified Data.List as List

5 import qualified Data.Map as Map

6 import Data.Maybe (fromMaybe)

7 import qualified Data.Set as Set

8

9 exploreLabelFromNFAState :: A.AdjacencyList -> A.Label -> A.State -> [A.State]

10 exploreLabelFromNFAState nfaAdjacency label state = [s | (l, s) <- edges , l == label]

11 where edges = fromMaybe [] (Map.lookup state nfaAdjacency)

12

13 exploreLabelFromDFAState :: A.AdjacencyList -> A.Label -> Set.Set A.State -> Set.Set A

.State

14 exploreLabelFromDFAState nfaAdjacency label =

15 Set.fromList

16 . List.concatMap (exploreLabelFromNFAState nfaAdjacency label)

17 . Set.toList

18

19 epsilonClosure :: A.AdjacencyList -> Set.Set A.State -> Set.Set A.State

20 epsilonClosure nfaAdjacency nfaStates | Set.size nfaStates == Set.size explored =

nfaStates

21 | otherwise = epsilonClosure nfaAdjacency

explored

22 where explored = Set.union nfaStates (exploreLabelFromDFAState

nfaAdjacency A.Epsilon nfaStates)

23

24

25 nextStates :: A.AdjacencyList -> [A.Label] -> [Set.Set A.State] -> [(A.Label , Set.Set

A.State , Set.Set A.State)]

26 nextStates nfaAdjacency alphabet dfaStates =

27 parMap rdeepseq

28 (\(l, s) -> (l, s, (epsilonClosure nfaAdjacency . exploreLabelFromDFAState

nfaAdjacency l) s))

29 [(l,s) |

30 l <- alphabet ,

31 s <- dfaStates

32]

33

34 addDfaEdge :: Set.Set A.State -> (A.DfaStatesMap , A.AdjacencyList , Set.Set A.State , [

Set.Set A.State])

35 -> (A.Label , Set.Set A.State , Set.Set A.State)

36 -> (A.DfaStatesMap , A.AdjacencyList , Set.Set A.State , [Set.Set A.State

])

37 addDfaEdge nfaFinals ((dfaSM , maxIdx), dfaA , dfaF , tV) (l, originS , destS) = case Map.

lookup destS dfaSM of

38 Nothing | Set.null destS -> ((dfaSM , maxIdx), dfaA , dfaF , tV)

39 Nothing -> ((Map.insert destS newState dfaSM , newState), Map.

insertWith (++) originState [(l, newState)] dfaA , newDfaF , destS : tV)

40 where newState = maxIdx + 1

41 isFinal = List.any (‘Set.member ‘ nfaFinals) (Set.toList

destS)

42 newDfaF = if isFinal then Set.insert newState dfaF else dfaF

43 Just s -> ((dfaSM , maxIdx), Map.insertWith (++) originState [(l,s)]

dfaA , dfaF , tV)

44 where originState = case Map.lookup originS dfaSM of

45 Just st -> st

46 Nothing -> error "Couldn ’t find origin state"

47

12

48 explore :: A.AdjacencyList -> Set.Set A.State -> [A.Label] -> A.DfaStatesMap -> A.

AdjacencyList -> Set.Set A.State -> [Set.Set A.State] -> (A.AdjacencyList , Set.Set

A.State)

49 explore _ _ _ _ dfaAdjacency dfaFinals [] = (

dfaAdjacency , dfaFinals)

50 explore nfaAdjacency nfaFinals alphabet dfaStatesMap dfaAdjacency dfaFinals toVisit =

51 explore nfaAdjacency nfaFinals alphabet newDfaSM newDfaA newDfaFinals newToVisit

52 where (newDfaSM , newDfaA , newDfaFinals , newToVisit) =

53 List.foldl ’

54 (addDfaEdge nfaFinals)

55 (dfaStatesMap , dfaAdjacency , dfaFinals , [])

56 nStates

57 nStates = nextStates nfaAdjacency alphabet toVisit

58

59 nfaToDfa :: A.Automaton -> A.Automaton

60 nfaToDfa (A.Automaton nfaAdjacency alphabet inits nfaFinals) = A.Automaton

newAdjacency alphabet dfaInits dfaFinals

61 where (newAdjacency , dfaFinals) = explore nfaAdjacency nfaFinals alphabet (

initDfaStatesMap , 0) initDfaAdjacency Set.empty [inits]

62 initDfaStatesMap = Map.fromList [(inits , 0)]

63 initDfaAdjacency = Map.fromList [(0, [])]

64 dfaInits = Set.fromList [0]

/src/Thompson.hs

1 module Thompson (regexParser , makeThompsonNFA) where

2 import Automaton (AdjacencyList ,

3 Automaton (..), Label (..),

4 State)

5 import Control.Monad (msum)

6 import Data.Char (ord)

7 import qualified Data.Map as Map

8 import qualified Data.Set as Set

9 import qualified Text.ParserCombinators.Parsec as P

10 import qualified Text.ParserCombinators.Parsec.Expr as PE

11

12 data Node = Concat !Node !Node | Star !Node | Or !Node !Node | Character !Int deriving

(Show)

13

14 regexParser :: P.Parser Node

15 regexParser = PE.buildExpressionParser opTable base

16 where

17 opTable = [[PE.Postfix (P.char ’*’ >> return Star)]

18 , [PE.Infix (return Concat) PE.AssocLeft]

19 , [PE.Infix (P.char ’|’ >> return Or) PE.AssocLeft]

20]

21 base = msum [Character . ord <$> P.noneOf "()*|", parens regexParser]

22 parens = P.between (P.char ’(’) (P.char ’)’)

23

24 -- Build NFA from regex AST following Thompson ’s Algorithm

25 makeThompsonNFA :: Either a Node -> Automaton

26 makeThompsonNFA ((Right ast)) = Automaton table alphabet start end where

27 (table , _) = thompsons ast 1 0 1

28 alphabet = Set.toList (buildAlph ast Set.empty)

29 start = Set.singleton 1

30 end = Set.singleton 0

31 makeThompsonNFA (Left _) = error "Bad AST"

32

33 -- buildAlph: Build alphabet from regex AST. Helper method for makeThompsonNFA

34 buildAlph :: Node -> Set.Set Label -> Set.Set Label

35 buildAlph (Concat r l) alph = Set.union (buildAlph r alph) (buildAlph l alph)

36 buildAlph (Star l) alph = buildAlph l alph

37 buildAlph (Or r l) alph = Set.union (buildAlph r alph) (buildAlph l alph)

38 buildAlph (Character x) alph = Set.insert (Label x) alph

39

40 -- thompsons: Build adjacency list from regex AST. Helper method for makeThompsonNFA

41 thompsons :: Node -> State -> State -> State -> (AdjacencyList , State)

42 thompsons (Character x) q f l = (Map.fromList [(q, [(Label x, f)])], l)

43 thompsons (Concat s t) q f l = (Map.union smap tmap , lt) where

44 (smap , ls) = thompsons s q i ln

45 (tmap , lt) = thompsons t i f ls

46 i = l + 1

13

47 ln = l + 1

48 thompsons (Or s t) q f l = (Map.union (Map.union smap tmap) omap , lt) where

49 omap = Map.fromList [(q, [(Epsilon , si), (Epsilon , ti)]), (sf , [(Epsilon , f)]), (tf,

[(Epsilon , f)])]

50 (smap , ls) = thompsons s si sf ln

51 (tmap , lt) = thompsons t ti tf ls

52 si = l+1; sf = l+2

53 ti = l+3; tf = l+4

54 ln = l+4

55 thompsons (Star s) q f l = (Map.union smap stmap , ls) where

56 stmap = Map.fromList [(q, [(Epsilon , si), (Epsilon , f)]), (sf, [(Epsilon , si), (

Epsilon , f)])]

57 (smap , ls) = thompsons s si sf ln

58 si = l+1; sf = l+2

59 ln = l+2

/src/WordList.hs

1 module WordList (buildList) where

2 import Data.Char (isAlpha)

3 import qualified Data.Set as Set

4 import qualified Data.Text as T

5 import Data.Text.IO as TIO (readFile)

6

7 buildList :: FilePath -> IO [[Char]]

8 buildList filename = do

9 h <- TIO.readFile filename

10 let l = T.words h

11 let lnorm = map normalize l

12 let lnormset = Set.fromList lnorm

13 let lnormunique = Set.toList lnormset

14 return lnormunique

15

16 normalize :: T.Text -> [Char]

17 normalize string = [x | x <- a, isAlpha x] where a = T.unpack (T.toLower string)

/Setup.hs

1 import Distribution.Simple

2 main = defaultMain

/stack.yaml

1 # This file was automatically generated by ’stack init ’

2 #

3 # Some commonly used options have been documented as comments in this file.

4 # For advanced use and comprehensive documentation of the format , please see:

5 # https :// docs.haskellstack.org/en/stable/yaml_configuration/

6

7 # Resolver to choose a ’specific ’ stackage snapshot or a compiler version.

8 # A snapshot resolver dictates the compiler version and the set of packages

9 # to be used for project dependencies. For example:

10 #

11 # resolver: lts -3.5

12 # resolver: nightly -2015 -09 -21

13 # resolver: ghc -7.10.2

14 #

15 # The location of a snapshot can be provided as a file or url. Stack assumes

16 # a snapshot provided as a file might change , whereas a url resource does not.

17 #

18 # resolver: ./custom -snapshot.yaml

19 # resolver: https :// example.com/snapshots /2018 -01 -01. yaml

20 system -ghc: true

21 resolver: ghc -8.10.7

22

23 # User packages to be built.

24 # Various formats can be used as shown in the example below.

25 #

26 # packages:

27 # - some -directory

28 # - https :// example.com/foo/bar/baz -0.0.2. tar.gz

29 # subdirs:

30 # - auto -update

14

31 # - wai

32 packages:

33 - .

34 # Dependency packages to be pulled from upstream that are not in the resolver.

35 # These entries can reference officially published versions as well as

36 # forks / in-progress versions pinned to a git hash. For example:

37 #

38 extra -deps:

39 - random -1.2.1.1

40 - splitmix -0.1.0.4

41 - parallel -3.2.2.0

42 # - acme -missiles -0.3

43 # - git: https :// github.com/commercialhaskell/stack.git

44 # commit: e7b331f14bcffb8367cd58fbfc8b40ec7642100a

45 #

46 # extra -deps: []

47

48 # Override default flag values for local packages and extra -deps

49 # flags: {}

50

51 # Extra package databases containing global packages

52 # extra -package -dbs: []

53

54 # Control whether we use the GHC we find on the path

55 # system -ghc: true

56 #

57 # Require a specific version of stack , using version ranges

58 # require -stack -version: -any # Default

59 # require -stack -version: " >=2.9"

60 #

61 # Override the architecture used by stack , especially useful on Windows

62 # arch: i386

63 # arch: x86_64

64 #

65 # Extra directories used by stack for building

66 # extra -include -dirs: [/path/to/dir]

67 # extra -lib -dirs: [/path/to/dir]

68 #

69 # Allow a newer minor version of GHC than the snapshot specifies

70 # compiler -check: newer -minor

/stack.yaml.lock

1 # This file was autogenerated by Stack.

2 # You should not edit this file by hand.

3 # For more information , please see the documentation at:

4 # https :// docs.haskellstack.org/en/stable/lock_files

5

6 packages:

7 - completed:

8 hackage: random -1.2.1.1 @sha256:

dea1f11e5569332dc6c8efaad1cb301016a5587b6754943a49f9de08ae0e56d9 ,6541

9 pantry -tree:

10 sha256: 646 ee77fe01178837ee928b61ae8653dcf190e9b5353ebebd094079c77a18b76

11 size: 1528

12 original:

13 hackage: random -1.2.1.1

14 - completed:

15 hackage: splitmix -0.1.0.4 @sha256 :804

e2574bc7e32d08cbab91e47ee6287b4df7d50851d73f9e778f94a9a7814c7 ,6521

16 pantry -tree:

17 sha256: b56f706c092dc0ac4875ef45bd18719386358c56667f6b604a733b66f9e4657f

18 size: 1519

19 original:

20 hackage: splitmix -0.1.0.4

21 - completed:

22 hackage: parallel -3.2.2.0 @sha256 :6

edd5a06938cea3d28b406d5231683f89737e854af144a8800aa69e1eee785e0 ,1821

23 pantry -tree:

24 sha256: 6ec36425356925d6d9042769a29ab4ec2aa69c2a7161c49ff18a9a77c1d957b1

25 size: 392

26 original:

15

27 hackage: parallel -3.2.2.0

28 snapshots: []

/package.yaml

1 name: subset -construction

2 version: 0.1.0.0

3 github: "AlexisGado/subset -construction"

4 license: BSD3

5 author: "Alexis Gadonneix"

6 maintainer: "ag4625@columbia.edu"

7 copyright: "2022 Alexis Gadonneix"

8

9 extra -source -files:

10 - README.md

11 - CHANGELOG.md

12 - assets /**

13

14 # Metadata used when publishing your package

15 # synopsis: Short description of your package

16 # category: Web

17

18 # To avoid duplicated efforts in documentation and dealing with the

19 # complications of embedding Haddock markup inside cabal files , it is

20 # common to point users to the README.md file.

21 description: Please see the README on GitHub at <https :// github.com/githubuser/subset -

construction#readme >

22

23 dependencies:

24 - base >= 4.7 && < 5

25 - containers

26 - random

27 - parsec

28 - parallel

29 - deepseq

30 - text

31 - mtl

32

33 ghc -options:

34 - -Wall

35 - -Wcompat

36 - -Widentities

37 - -Wincomplete -record -updates

38 - -Wincomplete -uni -patterns

39 - -Wmissing -export -lists

40 - -Wmissing -home -modules

41 - -Wpartial -fields

42 - -Wredundant -constraints

43

44 library:

45 source -dirs: src

46

47 executables:

48 subset -construction -exe:

49 main: Main.hs

50 source -dirs: app

51 ghc -options:

52 - -threaded

53 - -rtsopts

54 - -eventlog

55 - -with -rtsopts=-N

56 - -O2

57 dependencies:

58 - subset -construction

59

60 tests:

61 subset -construction -test:

62 main: Spec.hs

63 source -dirs: test

64 ghc -options:

65 - -threaded

66 - -rtsopts

16

67 - -with -rtsopts=-N

68 dependencies:

69 - subset -construction

/app/Main.hs

1 module Main (main) where

2 import Automaton (Automaton (..))

3 import qualified Data.Map as Map

4 import RandomNfa (ioRandomNfa)

5 import qualified SubsetConstruction as SC

6

7 usedAutomaton :: IO Automaton

8 -- random NFA with control over density and size

9 usedAutomaton = ioRandomNfa 600 20 10 50

10

11 -- NFA from a list of words

12 -- usedAutomaton = dictNfa "assets/words.txt"

13

14 -- NFA from a regular expression

15 -- usedAutomaton = return $ makeThompsonNFA $ P.parse regexParser "" "a*(a|b)b*"

16

17 -- Some simple examples

18 -- usedAutomaton = return exampleAutomaton

19 -- usedAutomaton = return exampleAutomaton2

20

21 -- a simple linear automaton to test scale

22 -- usedAutomaton = ioDumbAutomaton 300

23

24

25 main :: IO ()

26 main = do

27 nfa <- usedAutomaton

28 let Automaton nfaAdj _ _ _ = nfa

29 let Automaton dfaAdj _ _ _ = SC.nfaToDfa nfa

30 print $ Map.size nfaAdj

31 print $ Map.size dfaAdj

17

	Problem Statement
	Algorithm
	Subset construction
	Thompson's rules

	Implementation
	Automaton Data Structure
	Subset Construction

	NFA Generation
	From regular expressions
	From a list of words
	From a given size and density

	Results
	List of words
	Random NFA

	Usage
	References
	Appendix

