Parallel Word Search in Haskell

COMS 4995: Parallel Functional Programming
Helen Chu (hc2932), Alexander Lindenbaum (al4008)

Introduction

For the project, we aimed to implement a parallelized solution to the word search problem: given a
board of characters and a dictionary of words, return all words on the board. We define a valid word as
being constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or
vertically neighboring; the same letter cell may not be used more than once in a word. For example, the

following board" would contain the words “oath” and “eat”, as indicated by the highlights:

a|n
.-
i k | r
i f I v

The word search problem has a naive solution, where at each cell of the grid, you initiate a depth-first search and

search for the target words. A worst-case analysis of this algorithm gives an O(n2 . 4n) runtime complexity,
where the gridisn X n. On average however, most calls to DFS should be allowed to halt immediately, as most
strings will not match to a prefix of some target word. A variation of the word search problem is to use an
established dictionary as the list of target words, i.e. search for any valid words in the grid. In this variation, the

average case matches the worst case runtime.

We will use cell-by-cell depth-first search combined with the usage of a Prefix Tree, also known as a Trie, to

approach this problem.

! Word search I1. LeetCode. (n.d.). Retrieved December 20, 2022, from https://leetcode.com/problems/word-search-ii/

Sequential Implementation

To allow for easy access to specific grids in the board, we first parse and store the board as a Map where the key is
the coordinate and the value is the Char value inside the grid. Then, we take the target word list and store them
in a Trie. During DFS, we store the current word formed by our path and the “subtrie” corresponding to our

position in the trie, and store any valid words discovered along the way.

main :: ()
main = do
args <- getArgs
filename <- case args of
[filename] —> return filename
_ = do
pn <- getProgName

die $ "Usage: " ++ pn ++ " <filename>"
puzzle <- readFile filename
(p, w) = parsePuzzle puzzle
trie = mkTrie w
f index _ wordList = wordList ++ dfs p trie index [] ""
output = Map.foldrWithKey f []1 p
mapM_ putStrLn output

Parallelization & Results
We aimed to parallelize running DFS starting from different grids on the board. Instead of using the naive
“foldrWithKey” method, we planned to utilize parMap to allow for dynamic partitioning along with

parallelization. The relevant code snippet is as follows:

(p, w) = parsePuzzle puzzle
trie = mkTrie w
output = runEval $ do

result = parMap rdeepseq (\(index, _) —> dfs p trie index [] "") (Map.toList p)
_ <- rseq result
return result

However, with the above implementation, we were consistently observing a longer runtime while running on
multiple cores compared to a single core (Table 2). Upon running threadscope, we notice much time is wasted

on garbage collection.

Timeline
0s 50ms 0.1s 0.15s 0.2s 0255 0.3s 0.35s 04s 0455 0.5s 0.55s 0.
MNP PPN PN P PP PP NI IS I I I e I
Activity
Hece LW {0 T A (1 | (O
L noomn m ST 1P e
HEC 1
L T NN Do
necz A 111 T T T 1 (OO0 O O
I 1 i m A R T
HEC3
I IL I — IIIH HIHHIIIAIII!IAwI!mIIl

To isolate the issue, we further attempted to implement static partitioning, where we split the board into four

segments and run DES on each segment in parallel using four cores. The relevant code snippet is as follows:

(p, w) = parsePuzzle puzzle
trie = mkTrie w
dfsWrapper (index, _) = dfs p trie index [] ""
(ql, 92, 93, q4) = splitInQuarter (Map.toList p)
(p1, p2, p3, p4) = runEval $ do
gqlResult <- rpar (force (map dfsWrapper q1))
g2Result <- rpar (force (map dfsWrapper q2))

g3Result <- rpar (force (map dfsWrapper q3))
g4Result <- rpar (force (map dfsWrapper q4))
rseq qlResult

rseq g2Result
rseq gq3Result
_ rseq g4Result
return (qlResult, g2Result, gq3Result, g4Result)

Still, we observed an increase in runtime when using 4 cores compared to using one core (Table 1). The

Threadscope output is as follows:

Timeline

0s 0.1s 0.2s 0.3s 0.4s 0.5s 0.6s =

Activity

N [T T R R

HEC1
| — | | I [N TR
| recs | | Y N T
| [} _ Riiie | | s)
| I U AR
I ol LU, | I ||

] (]

The first half of the timeline seem to be the sequential formation of the coordinate mapping as well as the trie.

Finally, we attempted to regulate the number of outstanding sparks by utilizing parBufter; the relevant code

snippet is as follows:

(p, w) = parsePuzzle puzzle
trie = mkTrie w
output = runEval $ do

result = (withStrategy (parBuffer 16 rpar) . map (\(index, _) -> dfs p trie index ")) (Map.toList p)
_ <- rseq result
return result

Table 1: Splitting Grid Into Quarters with rpar and rseqs:

Size of Input Average Total Time Average Total Time Average Average GC Time
Grid (1 Core) (4 Cores) Mutator Time (4 Cores)
(4 Cores)
100 x 100 0.009s 0.011s 0.007s 0.004s
200 x 200 0.161s 0.189s 0.123s 0.066s
300 x 300 1.107s 1.294s 0.526s 0.768s
Table 2: Using parMap rdeepseq:
Size of Input | Average Total Time Average Total Time Average Average GC Time
Grid (1 Core) (4 Cores) Mutator Time (4 Cores)
(4 Cores)
100 x 100 0.009s 0.016s 0.012s 0.004s
200 x 200 0.161s 0.194s 0.128s 0.066s
300 x 300 1.134s 1.339s 0.525s 0.814s
Table 3: Using parBuffer 16:
Size of Input Average Total Time Average Average GC Time
Grid (4 Cores) Mutator Time (4 Cores)
(4 Cores)
100 x 100 0.019s 0.015s 0.003s
200 x 200 0.205s 0.137s 0.067s
300 x 300 1.356s 0.545s 0.811s

Code Listings

Input Parsing:

WordSearch.Tools

parsePuzzle

splitInQuarter

Data.Map (, insert, empty)

splitInQuarter :: [al — ([al, [al, [al, [al)
splitInQuarter 1 = (a,b,c,d)

(left, right) = splitInHalf 1

(a,b) = splitInHalf left

(c,d) = splitInHalf right

splitInHalf :: [a] —> ([al, [al)
splitInHalf 1 = splitInHalfHelper U [] [] @

splitInHalfHelper :: [al -> [a]l —> [a] —> = ([al, [al)
splitInHalfHelper [1 L r _ = (1, r)
splitInHalfHelper (x:xs) 1 r parity

| parity == @ = splitInHalfHelper xs (x:1) r 1

| otherwise = splitInHalfHelper xs 1 (x:r) @

parsePuzzle :: - (

parsePuzzle p = (grid, wordList)
linesP = lines p
grid = parseGrid gridStrings @ empty
gridStrings = take (length linesP - 2) linesP
wordList = words . last $ linesP

parseGrid :: [1 —
parseGrid [] _ grid = grid
parseGrid (x:xs) row grid = parseGrid xs (row + 1) (parseRow x (row, @) grid)

parseRow :: -
parseRow [] _ grid = grid
parseRow (x:xs) (row, col) grid = parseRow xs (row, col + 1) (insert (row, col) x grid)

Trie:

WordSearch.Trie

mkTrie

r

, getTrie
» empty

)

Data.Map.Lazy Map
Data.Maybe (fromMaybe)
a = Trie (Map.

empty :: a
empty = Trie False Map.empty

getTrie :: a—> (A UET a (a))
getTrie (Trie end nodes) = (end, nodes)

insert :: a = [a] > - a
insert [] (Trie _ nodes) = Trie True nodes
insert (x:xs) (Trie end nodes) = Trie end (Map.alter (Just . insert xs . fromMaybe empty) x nodes)

mkTrie :: a = [[a]l] —
mkTrie as = mkTrie' as empty

mkTrie' [] trie = trie
mkTrie' (x:xs) trie = mkTrie' xs $ insert x trie

WordSearch.DFS

WordSearch.Trie(, getTrie, empty)
WordSearch.Tools(,)
Data.Map(member, lookup)

Data.Maybe (fromMaybe)

dfs :: —> - - [1 —
dfs p trie index@(row, col) visited word =
case Data.Map.lookup index p of
Nothing — []
Just ¢ | index ‘elem’ visited || not (member c children) —> []
| isWord —> newWord : recurse
| otherwise —> recurse

(_, children) = getTrie trie

(isWord, _) getTrie child

newWord word++[c]

child fromMaybe empty (Data.Map.lookup ¢ children)

trav ind dfs p child ind (index:visited) newWord

recurse trav (row, col-1) ++ trav (row, col+l) ++ trav (row-1, col) ++ trav (row+l, col)

Main:

Main (main)

Lib (parsePuzzle, splitInQuarter, mkTrie, dfs)
Data.List(nub)
System.Environment(getArgs, getProgName)
System.Exit(die);
Data.List(union, foldl')
Control.Parallel.Strategies

Data.Map Map
Control.DeepSeq

main :: ()
main = do
args <— getArgs
filename <- case args of
[filename] -> return filename
_ —> do
pn <— getProgName
die $ "Usage: " ++ pn ++ " <filename>"
puzzle <- readFile filename
(p, w) = parsePuzzle puzzle
trie = mkTrie w
output = runEval $ do

result = parMap rdeepseq (\(index, _) —> dfs p trie index [] "") (Map.tolList p)

_ <- rseq result
return result
print $ foldl' union [] output

