
Parallel Word Search in Haskell
COMS 4995: Parallel Functional Programming

Helen Chu (hc2932), Alexander Lindenbaum (al4008)

Introduction
For the project, we aimed to implement a parallelized solution to the word search problem: given a
board of characters and a dictionary of words, return all words on the board. We de�ne a valid word as
being constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or
vertically neighboring; the same letter cell may not be used more than once in a word. For example, the
following board1 would contain the words “oath” and “eat”, as indicated by the highlights:

The word search problem has a naive solution, where at each cell of the grid, you initiate a depth-�rst search and

search for the target words. A worst-case analysis of this algorithm gives an O(runtime complexity,𝑛2 · 4𝑛)
where the grid is . On average however, most calls to DFS should be allowed to halt immediately, as most𝑛 × 𝑛
strings will not match to a pre�x of some target word. A variation of the word search problem is to use an
established dictionary as the list of target words, i.e. search for any valid words in the grid. In this variation, the
average case matches the worst case runtime.

We will use cell-by-cell depth-�rst search combined with the usage of a Pre�x Tree, also known as a Trie, to
approach this problem.

1 Word search II. LeetCode. (n.d.). Retrieved December 20, 2022, from https://leetcode.com/problems/word-search-ii/

Sequential Implementation
To allow for easy access to speci�c grids in the board, we �rst parse and store the board as a Map where the key is
the coordinate and the value is the Char value inside the grid. Then, we take the target word list and store them
in a Trie. During DFS, we store the current word formed by our path and the “subtrie” corresponding to our
position in the trie, and store any valid words discovered along the way.

Parallelization & Results
We aimed to parallelize running DFS starting from di�erent grids on the board. Instead of using the naive
“foldrWithKey” method, we planned to utilize parMap to allow for dynamic partitioning along with
parallelization. The relevant code snippet is as follows:

However, with the above implementation, we were consistently observing a longer runtime while running on
multiple cores compared to a single core (Table 2). Upon running threadscope, we notice much time is wasted
on garbage collection.

To isolate the issue, we further attempted to implement static partitioning, where we split the board into four
segments and run DFS on each segment in parallel using four cores. The relevant code snippet is as follows:

Still, we observed an increase in runtime when using 4 cores compared to using one core (Table 1). The
Threadscope output is as follows:

The �rst half of the timeline seem to be the sequential formation of the coordinate mapping as well as the trie.
Finally, we attempted to regulate the number of outstanding sparks by utilizing parBu�er; the relevant code
snippet is as follows:

Table 1: Splitting Grid Into Quarters with rpar and rseqs:

Size of Input
Grid

Average Total Time
(1 Core)

Average Total Time
(4 Cores)

Average
Mutator Time

(4 Cores)

Average GC Time
(4 Cores)

100 x 100 0.009s 0.011s 0.007s 0.004s

200 x 200 0.161s 0.189s 0.123s 0.066s

300 x 300 1.107s 1.294s 0.526s 0.768s

Table 2: Using parMap rdeepseq:

Size of Input
Grid

Average Total Time
(1 Core)

Average Total Time
(4 Cores)

Average
Mutator Time

(4 Cores)

Average GC Time
(4 Cores)

100 x 100 0.009s 0.016s 0.012s 0.004s

200 x 200 0.161s 0.194s 0.128s 0.066s

300 x 300 1.134s 1.339s 0.525s 0.814s

Table 3: Using parBu�er 16:

Size of Input
Grid

Average Total Time
(4 Cores)

Average
Mutator Time

(4 Cores)

Average GC Time
(4 Cores)

100 x 100 0.019s 0.015s 0.003s

200 x 200 0.205s 0.137s 0.067s

300 x 300 1.356s 0.545s 0.811s

Code Listings

Input Parsing:

Trie:

DFS:

Main:

