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1. Problem Statement

In large social networks, indicators of centrality can be used to assign rankings to
people within a graph corresponding to their network position. Top influencers
preaching for a particular political party directly influence their followers/first-level
connections. Each person can directly preach their inclination to their contacts as
well. Thus, we see a large-scale diffusion of information from each influencer to
all the other nodes at a network level. We can score each person in the network
based on the information they receive on each political party and use it to
determine the overall sentiment of the population.

In this project, we attempt to simulate the flow of influence from top influencers in
a social network to assign net scores to each member of the population which we
plan to use to determine the overall political inclination of the population.



2. Problem Scope

To identify the political inclination of all the individuals in a social network,
we will first identify the most influential people in the network using closeness
centrality as a metric. Once we have a fixed number of such individuals, and we
know their political inclination, we will simulate the spread of their influence
(information) in the network using an information diffusion function. This function
would be used to determine the effective influence of that information over a
given person in the network. Once all the information has been propagated, we
determine the effective political inclination of each person by summing up the
effective scores from each influencer.

The scope of the project is to parallelize both the centrality computation as well
as the diffusion. We will be using a few of the social networks from the SNAP[1]
and Network Repository[2] datasets to run our simulations with various
parameters.

3. Implementation and Algorithm Design

a. ldentification of top influencers in the network

To identify the top influencers in the social network we used the closeness
centrality measures to rank all the nodes in the network and pick the top-ranked
x% of nodes. Closeness centrality is a way of detecting nodes that are able to
spread information very efficiently through a graph. The closeness centrality of a
node measures its average farness (inverse distance) to all other nodes. Nodes
with a high closeness score have the shortest distances to all other nodes.

For each node u, the Closeness Centrality algorithm calculates the sum of its
distances to all other nodes, based on calculating the shortest paths between all
pairs of nodes. The resulting sum is then inverted to determine the closeness
centrality score for that node [3].

1

Closeness Centrality(u) =

> shortestDistance(u, v)
v: all nodes



We relied on the Floyd-Warshall algorithm to find the shortest paths between
each vertex pair in the graph. Once found, we computed the closeness centrality
measures for all the nodes in the graph to identify the top influencers.

For larger networks of size greater than 35,000 nodes, both the serial and
parallel versions' shortest path algorithm was not terminated within 120 mins, so
we fell back to using the degree centrality measure to identify the top
influencers for the rest of the algorithm.

b. Simulate information diffusion from the influencers

Once the top influencers in the network are identified, we chose to cyclically
assign labels and strengths proportional to the degree of each influencer. Then,
we used an information diffusion function (I) to compute the influence of a node
on its neighboring nodes. These neighboring nodes also are expected to spread
the obtained information to their respective neighbors with an exponentially
decreased strength. The below diffusion function which computes the influence of
node ‘U’ on node ‘v’, was used for this simulation:

—a*distance(v, u)/diameter

InfluenceU(v) = strength(u) * e

Thus, each influencer in the network diffuses some amount of information to
every other node in the network. We implemented the Breadth-First Search
(BFS) to compute the influence on all the nodes in the network due to an
influencer, where the distance incrementally increases in the above function
thereby reducing the influence exponentially for each BFS iteration.

The strength of the influencer is positive if the influencer favors the first political
party and negative, if otherwise. Thus when the effective influence due to all
influencers is computed and summed up for a particular node, we end up with
the net score as below:

NetScore(v) = D InfluenceU(v)

U:influencers

If the net score for a node is positive, the inclination of the person is towards the
first political party and towards the second party, if otherwise. Finally, votes for



each party are computed based on the above inclinations to determine the
overall sentiment of the population.

4. Datasets

We use two graph datasets to run our simulations.

1. Wiki Vote: The dataset contains all the Wikipedia voting data from the
inception of Wikipedia till January 2008. Nodes in the network represent
Wikipedia users and a directed edge from node ‘i’ to node ‘j’ represents
that user ‘i’ voted on user .

Vertices 889

Edges 2914

2. GitHub Social Network: This is a large social network of GitHub developers
which was collected from the public APl in June 2019. Nodes are
developers who have starred at least 10 repositories and edges are mutual
follower relationships between them.

Vertices 37,700

Edges 289,003

5. Performance

Note: The performance below is based on running our code on an 8-core machine
(Macbook Pro M1).

To measure the parallelization efficiency of our algorithm we performed
experiments on both graphs with a varying number of cores and a varying
number of load chunks of the graph per core. First, we document the time taken
by the sequential algorithm on both graphs.


https://networkrepository.com/soc-wiki-Vote.php
https://snap.stanford.edu/data/github-social.html

5.1 Sequential Performance

We ran the sequential algorithm on both datasets. On the small graph, we used
the closeness centrality measure and the degree measure on the larger graph to
identify the top N% influencers.

Our observations are as follows:
e Average time taken by the sequential algorithm on Graph 1 for the top
20% highest closeness centrality nodes was 234 seconds.
e Average time taken by the sequential algorithm on Graph 2 for the top 2%
degree measure nodes was 172 seconds.
e Average time taken by the sequential algorithm on Graph 2 for the top
10% degree measure nodes was 956 seconds.

5.2 Parallel Performance

There are two main components of the overall algorithm that we parallelized:
1. The identification of the influencer nodes
2. The simulation of spreading the influence function over the graph.

Furthermore, there are two ways to parallelize both these components, fixed
chunking or dynamic chunking. In fixed chunking, each core gets a predefined
workload, so there can be asymmetry in the total work performed by each
worker. In the dynamic chunking approach, the units of work are distributed as
evenly as possible. These both ways can be implemented in Haskell using the
parList and parListChunk monads respectively. We performed experiments
using both these monads. Our observations and findings are described below.

Experiments using parlList and parMap: In our first attempt to parallelize our
sequential algorithm we used parList and parMap to allow for parallel

computations during list/map traversal. We ran our experiments with varying
numbers of cores - 1/2/4/8/10/12 and recorded various attributes and compared
the results.



Experiment 1: parList on Graph 1 with a varying number of cores.

Experiment 1: Parallel-Graph 1 (Time vs Num. Cores)
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Figure 1: Number of cores vs. Elapsed time in (secs) for Graph 1 (889 nodes)

We observe that for the smaller graph (889 nodes), we see with an increase in
the number of cores a significant speedup is achieved. The maximum speed-up
is achieved for 8 cores which is 3.02 times the sequential version.

Below are the runtimes achieved using varying numbers of cores for the
computations on graph 1:

Number of Cores Running Time (sec) Speedup Achieved
1 72.8 1
2 60.1 1.2
4 30.3 24
8 23.8 3.02
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Figure 2: Threadscope profile for the above experiment with 2 cores.
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Figure 3: Threadscope profile for the above experiment with 8 cores.

Below is the spark profile achieved using 8-cores for graph 1:
SPARKS: 791388 (730901 converted, 0 overflowed, 0 dud, 56012 GC'd, 4475 fizzled)

INIT time 0.000s ( 0.004s elapsed)



MUT time 69.775s ( 13.338s elapsed)
GC time 32.521s (10.302s elapsed)
EXIT time 0.001s ( 0.011s elapsed)

Total time 102.296s ( 23.655s elapsed)

Experiment 2: parList on Graph 2 with top 2% influencers (based on degree
measures)

We attempted running the same parallel algorithm on Graph 2 with closeness
centrality measures but the algorithm wouldn’t terminate for over 2 hrs, so we
relied on faster-computed degree measures to identify the influencer nodes.

We observe that for the larger graph (37,000 nodes), we see with an increase in
the number of cores a significant speedup is achieved. The maximum speed-up
is achieved for 8 cores which is 2.89 times the sequential version.

Experiment 2: Parallel-Graph 2-Top 2% (Time vs. Cores)
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Figure 4: Number of cores vs. Elapsed time in (secs) for Graph 2 - Top 2% (37,700 nodes)

Below are the runtimes achieved using varying numbers of cores for the
computations on graph 2:

Number of Cores Running Time (sec) Speedup Achieved

1 148.24 1




2 90.84 1.63

4 64.1 2.31
8 51.13 2.89
12 69.93 21

An interesting observation is that using 12-cores is actually slower than using
8-cores. This could be attributed to the increased overhead of communicating
across more cores.
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Figure 5: Threadscope for the above experiment with 2 cores.
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Figure 6: Threadscope for the above experiment with 8 cores.




Experiment 3: parList on Graph 2 with top 10% influencers (based on degree
measures)

We ran an experiment on Graph 2 with the top 10% influencers to observe how
the algorithm scales with more work. Interestingly, we’ve observed a lower
speedup of 1.98, even though the peak was using 8 cores.

Experiment 3: Parallel-Graph 2-Top 10% (Time vs. Cores)
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Figure 7: Number of cores vs. Elapsed time in (secs) for Graph 2 - Top 10% (37,700 nodes)

Number of Cores Running Time (sec) Speedup Achieved
1 815.1 1
2 540.64 1.50
4 441.0 1.84
8 410.14 1.98
12 564.3 1.44




Experiment 4: parListChunk on Graph 2, running on 8 cores, 2% influencers

and varying chunk size.

Here chunkSize is defined as the number of vertices that each core processes

for simulating the spreading influence throughout the graph.

Experiment 4 : Parallel-Graph 2 - 8 Cores (Time vs.

ChunkSize)
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Chunk Size Running Time (sec) Sparks (converted) Speedup (compared to
sequential)
1 410.1 3770 (3348) 1.98
2 431.7 1885 (1884) 1.88
3 425.83 1257 (1256) 1.91
5 437.06 754 (753) 1.86
10 458.4 377 (376) 1.77
20 431.5 189 (188) 1.88
25 435.8 151 (150) 1.87
50 436.6 76 (75) 1.86
100 453.5 38 (37) 1.78




Note that Chunk Size = 1 corresponds to the earlier experiment, equivalent to
parList as at each point a processor is assigned just one vertex/unit of work. As
the chunk size increases, the speedup shows an interesting trend, where
increasing the chunkSize decreases the performance. We observe the maximum
speedup with a chunk size of 1 where all the influencer nodes are evenly
distributed across each spark.

6. Conclusion

In conclusion, we achieved a maximum speedup of 3.02 on the smaller graph,
and a maximum speedup of 1.98 on the larger graph for 8 cores. We explored
two different ways to parallelize our algorithm and did a comparative analysis of
both.

7. Future Enhancements

One of the inferences from experiments 3 and 4 is that dividing the total work
equally actually saves a lot of time in this problem. For instance when we
compare chunk size = 1 and chunk size = 5, the former leads to a more equal
distribution of workload across the workers. However, in our current
implementation, there is scope for fine-graining even more equitable work
distribution in the shortest paths approach. Our current parallel workflow can be
thought as distributing each node to a worker and performing a complete
BFS/Closeness measure on that worker for that node. However, each exploration
of a vertex during the BFS can also be parallelized on larger graphs, which can
lead to even better performance.

Another enhancement would be to use more sophisticated all-pairs-shortest-path
algorithms [4] for better performance.

The algorithm can be adapted to help perform some experiments like assigning a
different number of influencers to different parties (rather than equal), using a
more complex influence function, using another centrality metric to identify
influential individuals, etc. We can also examine how many relatively weak



influencers of a political party it takes to outweigh fewer but more influential
influencers elsewhere in the network. This can offer more insights into the
structure of the network.
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9. Code Listing

Main.hs
module Main (main) where

import Lib
import System.Environment
import System.Exit

main :: I0 ()
main = do
args <- getArgs
case args of
[parSeq, chunkSize ,fileName] -> do
putStrLn parSeq
putStrLn $ show chunkSize
case parSeq of
"par" -> do
polIncParChunk (read chunkSize :: Int) fileName
_ >
polIncSerial fileName
[parSeq, fileName] -> do
putStrLn parSeq
case parSeq of
"par" -> do
polIncPar fileName

_ ->

polIncSerial fileName
_ ->do


https://snap.stanford.edu/
https://networkrepository.com/soc.php
https://neo4j.com/docs/graph-data-science/current/algorithms/closeness-centrality/
https://arxiv.org/pdf/1805.08124.pdf

die "exit"

Lib.hs

module Lib
( polIncPar,
polIncParChunk,
ppolIncSerial
) where

import qualified Data.Vector as V
import Data.lList
import Control.Parallel.Strategies

import MapCompat (IntMap)

import qualified Data.IntMap as Map

import Data.Ord (comparing)

import qualified Data.Set as S

import qualified Control.Monad.State as StM
import Data.lList (sortBy, group, sort)
import Control.Arrow ((&&&))

import qualified Data.List.Split as Split
import qualified Data.ByteString.lLazy as BL
import qualified Data.Csv as CSV

import qualified Data.IntSet as IntSet

type Vertex = Int

type Weight = Int

type Score = Double

type Graph = IntMap (IntMap Weight)

--Functions to read the edgelist, build and return a graph

weight :: Graph -> Vertex -> Vertex -> Maybe Weight
weight g i j = do

jmap <- Map.lookup i g

Map.lookup j jmap

insertEdge :: Vertex -> Vertex -> Weight -> Graph -> Graph
insertEdge i j wm = Map.insert i iarr m'
where iarr = Map.insert j w ia
ia = Map.findWithDefault Map.empty i m'
m' = Map.insert j jarr m
jarr = Map.insert 1 w ja



ja = Map.findWithDefault Map.empty j m

readGraph :: String -> IO (V.Vector (Int, Int))
readGraph fileName = do
let f = fileName
BL.readFile f >>= dat . (CSV.decode CSV.NoHeader)
where dat (Left _) = undefined
dat (Right v) = return S app v
where app v' = do
(vl :: Int, v2 :: Int) <- v'
return (v1, v2)

getGraph :: [(Vertex, Vertex)] -> (Graph, [Vertex])
getGraph edges = (mat, vers)
where
vers = getVertices edges
mat = foldr ins Map.empty edges
where ins (i,j) = insertEdge i j 1

getVertices' :: [(Vertex, Vertex)] -> [Vertex]
getVertices' [] = []

getVertices' ((v1, v2):xs) = [v1, v2] ++ (getVertices' xs)
getVertices :: [(Vertex, Vertex)] -> [Vertex]

getVertices edges = IntSet.elems (IntSet.fromList $ getVertices' edges)

--Function to return the top N% of the vertices in the list
topPercent :: Double -> Int -> Int
topPercent percent count | ((fromIntegral count)*percent/100.0) > 1.0 = fromIntegral $
ceiling $ (fromIntegral count)*percent/100.0
| otherwise = 1

--Function to find the shortest path from a given vertex to everyvertex in the graph
processVertexMap :: Vertex -> [Vertex] -> Graph -> Vertex -> IntMap Weight -> IntMap
Weight
processVertexMap k vs g i jmap = foldr shortest Map.empty vs
where shortest j m =
case (old,new) of
(Nothing, Nothing)
(Nothing, Just w ) -> Map.insert j wm
(Just w, Nothing) -> Map.insert j wm
(Just w1, Just w2) -> Map.insert j (min w1l w2) m
where
old Map.lookup j jmap
new = do



if (1 == j)
then do return ©
else do
wl <- weight g i k
w2 <- weight g k j
return (wl+w2)

--Parallel implementation of shortest path for each vertex in the graph

shortestPathsParallel :: [Vertex] -> Graph -> Graph
shortestPathsParallel vs g = foldl' update g vs
where

update g k = Map.fromList $ parMap rdeepseq (\(i, jmap) -> (i, (processVertexMap k vs

g) i jmap)) (Map.tolList g)

--Sequential implementation of shortest path for each vertex in the graph

shortestPaths :: [Vertex] -> Graph -> Graph
shortestPaths vs g = foldl' update g vs
where

update g k = Map.mapWithKey (processVertexMap k vs g) g

degreeMeasures :: Graph -> [(Int, Int)]

degreeMeasures graph = [ (a, length b) | (a, b) <- (Map.tolList graph)]
closenessMeasures :: Graph -> [(Int, Int)]

closenessMeasures shortestPaths = [ (a, sum $ Map.elems b) | (a, b) <- (Map.tolList
shortestPaths)]

closenessMeasuresHelper :: Graph -> [(Int, Int)]

closenessMeasuresHelper sp = concat (map (closenessMeasures.(Map.fromList)) chunks

‘using® parlist rdeepseq)

where chunks = Split.chunksOf (length sp "quot® 8) (Map.tolList sp)

closenessMeasuresHelperNoChunks :: Graph -> [(Int, Int)]
closenessMeasuresHelperNoChunks shortestPaths = concat (map

(closenessMeasures.Map.fromList.(\x -> [x])) (Map.tolList shortestPaths) ‘using’

parList rdeepseq)

countOccurences :: Ord a => [a] -> [(a, Int)]
countOccurences = map (head &&& length) . group . sort

getCounts :: [(Int, Score)] -> [(Int, Int)]
getCounts scores = countOccurences.Map.elems.Map.fromList $ map (\(a, b) -> (a,
if ¢ >= 0 then 1 else -1) b)) scores

(\¢c ->



--Calculate summary of how many nodes of each of each political party/inclication
there are
computeSummary :: IntMap Score -> I0 ()
computeSummary scores = do
mapM_ (putStrLn.show) (getCounts $ Map.toList scores)

--Look up the adj list to see which vertices are adjacent to given vertex

getNeighbours :: Int -> Graph -> [Vertex]
getNeighbours source graph = case (Map.lookup source graph) of
Nothing -> []

Just v -> Map.keys v

--Using the equation given in the report, calculate the 'strenth' to be assigned
diffuse :: Double -> Double -> Double -> Double -> Double

diffuse strength distance diameter alpha = strength * (exp $ (-1.0) * alpha *
distance/diameter)

--BFS Helper to identify fringe
getNextSources :: Int -> [Vertex] -> Graph -> Double -> StM.State (IntMap Score)
[Vertex]
getNextSources dist sources graph strength = do
visited <- StM.get
let newNeigh = S.fromList $ concat [getNeighbours s graph | s <- sources]
nextsources = S.toList $§ S.difference newNeigh $§ S.fromList $ Map.keys visited
score = diffuse strength (fromIntegral dist) 6 1
StM.put $§ foldr (\a -> Map.insert a score) visited nextsources
return nextsources

--standard BFS
doBFS :: Int -> [Vertex] -> Graph -> Double -> StM.State (IntMap Score) (Graph)
doBFS dist sources graph strength = do
newsources <- getNextSources dist sources graph strength
if | length newsources == -> return graph
| otherwise -> doBFS (dist + 1) newsources graph strength

generateScores:: Graph -> (Vertex, Double) -> IntMap Score
generateScores graph (source, strength) = StM.execState (doBFS 1 [source] graph
strength) (Map.fromList [(source, 0)])

getScores:: Graph -> [(Vertex, Double)] -> IntMap Score
getScores graph influencers = foldr (\a b -> Map.unionWith (+) (generateScores graph

a) b) Map.empty influencers

getScoresHelper:: Graph -> [(Vertex, Double)] -> Int -> IntMap Score



getScoresHelper graph influencers chunkSize = foldr (\a b -> Map.unionWith (+) a b)
Map.empty (map (generateScores graph) influencers ‘using’ parlListChunk chunkSize
rdeepseq)

getScoresHelperNoChunks:: Graph -> [(Vertex, Double)] -> IntMap Score
getScoresHelperNoChunks graph influencers = foldr (\a b -> Map.unionWith (+) a b)
Map.empty (map ((getScores graph).(\x -> [x])) influencers ‘using  parlList rdeepseq)

--Entry point if supplied arguments have a "par" and a chunkSize (and filename)
polIncParChunk :: Int -> String -> I0 ()
polIncParChunk chunkSize fileName = do
graph <- readGraph fileName
let edges = V.tolist graph
(mat,vs) = getGraph edges
-- sp = shortestPathsParallel vs mat
deg = degreeMeasures mat
-- cm = closenessMeasuresHelper sp
-- influencers = map fst $ take (topPercent 20 $ length vs) $ sortBy (comparing
snd) $ cm
influencers = map fst $ take (topPercent 10 $ length vs) $ reverse $ sortBy
(comparing snd) $ deg
putStrLn § show $ length vs
putStrLn "polIncParChunk running"
let netscores = getScoresHelper mat (zip influencers (cycle [1, -1])) chunkSize
computeSummary netscores

--Entry point if supplied arguments have just a "par" (and filename)
polIncPar :: String -> IO ()
polIncPar fileName = do
graph <- readGraph fileName
let edges = V.tolist graph
(mat,vs) = getGraph edges
-- sp = shortestPathsParallel vs mat
deg = degreeMeasures mat
-- cm = closenessMeasuresHelperNoChunks sp
-- influencers = map fst $ take (topPercent 20 $ length vs) $ sortBy (comparing
snd) S cm
influencers = map fst S take (topPercent 10 $ length vs) S reverse $ sortBy
(comparing snd) $ deg
putStrLn $ show $ length vs
putStrLn "polIncPar running”
let netscores = getScoresHelperNoChunks mat (zip influencers (cycle [1, -1]))
computeSummary netscores



----Entry point for sequential version
polIncSerial :: String -> I0 ()
polIncSerial fileName = do
graph <- readGraph fileName
let edges = V.tolist graph
(mat,vs) = getGraph edges
-- sp = shortestPaths vs mat
deg = degreeMeasures mat
-- cm = closenessMeasures sp
-- influencers = map fst $ take (topPercent 20 $ length vs) $ sortBy (comparing
snd) S cm
influencers = map fst $ take (topPercent 10 $ length vs) S reverse $ sortBy
(comparing snd) $ deg
putStrLn $ show $ length vs
putStrLn "polIncSerial running”
let netscores = getScores mat (zip influencers (cycle [1, -1]))
computeSummary netscores

Sample Qutput:

(base) saiteja:pollinc/ (mainx) $ time stack exec pollinc-exe "par" 100
../git_web_ml/musae_git_edges.csv -- +RTS -N8 -1 -s

par

"100"

37700

polIncParChunk running

(-1,19385)

(1,18315)

Since, party -1 has more votes, the population leans towards this party!



