
ParBoids

Catelen Wu
cw3223@columbia.edu

Ethan Wu
ew2664@columbia.edu

1 Introduction

Boids (“bird-oids”) is an artificial life program simulating the flocking behavior of birds developed by Craig
Reynolds in 1986. It is an example of emergent behavior and swarm intelligence: each boid agent follows
only a simple set of rules, but the interactions between them give rise to complex and unpredictable behavior
mimicking that of flocks or herds of animals found in nature. In this project, we first develop a sequential
Boids simulation in Haskell, then attempted to parallelize the program using different strategies.

Figure 1: Steering forces of separation, alignment, and cohesion (left to right)

In Boids, each boid has its individual position, velocity, and mass. Each boid is also subject to three steering
forces: separation, alignment, and cohesion. (Other rules can also be added to simulate more complex
behavior, such as follow-the-leader or obstacle avoidance.) These forces are computed based on the relative
positions and velocities of each boid to its local flockmates. Other boids beyond a certain radius are ignored.
Then, every time step, the position and velocity of each boid is updated by a weighted sum of the three
steering forces. These updates are repeated indefinitely until the program is terminated. The main update
loop, run for n time steps on flock B, is shown in Algorithm 1 below.

Algorithm 1 Reynolds’s Flocking Algorithm

for i← 1, n do
for each b ∈ B do

nbs← neighbors(b,B) ▷ Get local flockmates
fs ← separation(b,nbs)
fa ← alignment(b,nbs)
fc ← cohesion(b,nbs)
bv ← bv + (ksfs + kafa + kcfc)∆t/bm ▷ Update boid velocity
bx ← bx + bv∆t ▷ Update boid position

end for
end for

2 Sequential Implementation

A sequential implementation for Reynolds’s flocking simulation is relatively simple. First, we define a Boid

data type using Haskell’s record syntax, as well as some utility functions for computing the displacement

1

between two boids and finding a boid’s local flockmates. We use Linear.V2 from the linear package to
represent each boid’s position and velocity vectors in two dimensions.

data Boid = Boid { bPos :: V2 Float, bVel :: V2 Float, bMass :: Float } deriving (Show)

between :: Config -> Boid -> Boid -> V2 Float

between cfg b bo = case wSize cfg of

Size size -> wrapDisp size (bPos b) (bPos bo)

Infinite -> bPos bo ^-^ bPos b

flockmates :: Config -> [Boid] -> Float -> Boid -> [(Boid, V2 Float)]

flockmates cfg flock r b = filter (\(bo, _) -> bPos bo /= bPos b) neighbors

where

neighbors = takeWhile (\(_, disp) -> norm disp < r) sorted

sorted = sortOn (norm . snd) $ map (\bo -> (bo, between cfg b bo)) flock

We also define separate functions for each of the three steering forces that computes the effect on a boid
from a neighbor. Each force is similarly represented with a two-dimensional V2 vector.

separation :: Boid -> (Boid, V2 Float) -> V2 Float

separation _ (_, disp) = negated disp ^/ (norm disp ** 2)

alignment :: Boid -> (Boid, V2 Float) -> V2 Float

alignment b (bo, _) = bVel bo ^-^ bVel b

cohesion :: Boid -> (Boid, V2 Float) -> V2 Float

cohesion _ (_, disp) = disp

Next, we define a Steer data type to collect the steering forces acting on a boid.

data Steer = Steer { sSf :: V2 Float, sAf :: V2 Float, sCf :: V2 Float } deriving (Show)

initSteer :: Steer

initSteer = Steer zero zero zero

Then, for each boid, we have a function updateBoid that iterates through its local flockmates, accumulates
the steering forces in a Steer record, and update’s the boid’s position and velocity with the net force.

steerFrom :: Boid -> Steer -> (Boid, V2 Float) -> Steer

steerFrom b (Steer sf af cf) disp = Steer sf' af' cf'

where

sf' = sf ^+^ separation b disp

af' = af ^+^ alignment b disp

cf' = cf ^+^ cohesion b disp

updateBoid :: Config -> [Boid] -> Boid -> Boid

updateBoid cfg flock b = b {bPos = pos', bVel = vel'}

where

pos' = wrapPos cfg $ bPos b ^+^ 0.1 *^ vel'

vel' = vBound (maxVel cfg) (bVel b ^+^ 0.05 *^ netf ^/ bMass b)

netf = sn cfg *^ sf ^+^ an cfg *^ af ^+^ cn cfg *^ cf

Steer sf af cf = foldl (steerFrom b) initSteer bs

2

bs = flockmates cfg flock (radius cfg) b

Finally, we have our main simulation loop runSimCollect that runs recursively for nIter iterations, updating
each boid in the flock using updateBoid in each iteration. The state of the flock after each iteration is
collected in order to be written to file output or rendered in animation. In the alternative function runSim,
only the last flock state is kept and all its predecessors are discarded.

runSim :: Config -> [Boid] -> Int -> [Boid]

runSim config flock0 nIter = case runSimCollect config flock0 nIter of

[] -> flock0

(flockN : _) -> flockN

runSimCollect :: Config -> [Boid] -> Int -> [[Boid]]

runSimCollect cfg flock0 nIter = foldl simLoop [flock0] [1 .. nIter]

where

simLoop :: [[Boid]] -> Int -> [[Boid]]

simLoop [] _ = []

simLoop flocks@(flock : _) _ = map (updateBoid cfg flock) flock : flocks

We also wrote a supplementary animation function using the gloss library to visualize the results of the
simulation. Figure 2 below shows a frame from our animation of a flock of 50 boids.

Figure 2: Example frame from an animation of a flock of 50 boids

3 Parallel Implementation

Reynolds’s flocking algorithm actually lends itself naturally to parallelization because the update at each
time step is only dependent upon the state of the flock at the previous time step. That is, given the previous
state of the flock, each boid’s update is independent. Therefore, our main approach to parallelizing our
sequential implementation is to perform boid updates in parallel.

First, we refactored our runSimCollect function to allow us to easily plug in different update methods
implemented with different strategies. We define a new data type ParStrat to indicate the strategy being
used. The sequential map over boids from above is moved into the updateSeq function.

data ParStrat = Seq | TwoPart | Chunks Int | ParList

updateWith :: ParStrat -> Config -> [Boid] -> [Boid]

updateWith Seq = updateSeq

3

updateWith TwoPart = updateTwoPart

updateWith (Chunks n) = updateChunks n

updateWith ParList = updateParList

runSimCollect :: Config -> [Boid] -> Int -> [[Boid]]

runSimCollect cfg flock0 nIter = foldl simLoop [flock0] [1 .. nIter]

where

simLoop :: [[Boid]] -> Int -> [[Boid]]

simLoop [] _ = []

simLoop flocks@(flock : _) _ = updateWith Seq cfg flock : flocks

updateSeq :: Config -> [Boid] -> [Boid]

updateSeq cfg flock = map (updateBoid cfg flock) flock

The first strategy we attempted, TwoPart, is static two-way partitioning, where we split the flock into two
sub-flocks and update each flock in parallel using rpar. Even though the work needed for each boid may
differ depending on its number of neighbors, we don’t expect this difference to be too great given the small
radius of each boid’s neighborhood. Morever, with a sufficient number of boids, the work needed to update
the two sub-flocks will even out, so we believed this strategy to be a reasonable initial approach.

updateTwoPart :: Config -> [Boid] -> [Boid]

updateTwoPart cfg flock = runEval $ do

as' <- rpar (force (map (updateBoid cfg flock) as))

bs' <- rpar (force (map (updateBoid cfg flock) bs))

_ <- rseq as'

_ <- rseq bs'

return (as' ++ bs')

where

(as, bs) = splitAt (length flock `div` 2) flock

A more sophisticated version of the above approach that we attempted next is Chunks. This approach uses
parListChunk from Control.Parallel.Strategies to split the flock into a specified number of sub-flocks,
spark an update for each sub-flock, and recombine the result.

updateChunks :: Int -> Config -> [Boid] -> [Boid]

updateChunks numChunks cfg flock = flock'

where

flock' = map (updateBoid cfg flock) flock `using` parListChunk numChunks rdeepseq

The final approach we attempted is ParList, using parList from Control.Parallel.Strategies. This
sparks an update for each individual boid, equivalent to Chunks with a chunk size of 1.

updateParList :: Config -> [Boid] -> [Boid]

updateParList cfg flock = flock'

where

flock' = map (updateBoid cfg flock) flock `using` parList rdeepseq

Note that in the above approaches, for force and rdeepseq from Control.DeepSeq to be able to fully
evaluate each Boid to normal form, we define a rather trivial NFData instance for Boid.

instance NFData Boid where

4

rnf (Boid pos vel m) = rnf pos `seq` rnf vel `seq` rnf m

We discuss the results of our experimentation on these various approaches in the next section.

4 Results and Discussion

After implementing our various strategies as described above, we experimented with different parameters
in order to gauge the effectiveness of each strategy. First, we experimented with varying the size of our
flock, ranging from 50 boids to 5000 boids. Specifically, we measured the total time it took for the baseline
sequential algorithm to simulate 100 iterations for these various flock sizes. We then compared this to the
performance of static two-way partitioning running on two cores. The execution times are plotted in Figure 3
below, with example Threadscope profiles of the two strategies shown in Figure 4 and Figure 5.

Figure 3: Results from Seq and TwoPart on different numbers of boids

Figure 4: Seq Threadscope profile for 500 boids

Figure 5: TwoPart Threadscope profile for 500 boids

5

First, we observe that regardless of parallelization, there appears to be a roughly O(N2) increase in execution
time as the flock size increases. This is along the lines of what we expect, especially for large flock sizes,
because the bottleneck in the algorithm becomes finding each boid’s closest flock-mates. (Our implementation
just uses a linear filter, though there may be more efficient solutions such as storing the boids in a quadtree
structure.) We also see that two-way partitioning parallelizes work decently with both cores being utilized
evenly. As we hoped, we did not encounter the problem of unbalanced partitions because work for each
partition tends to even out as flock size increases. However, we do see that a big portion of time in both cores
is taken up by garbage collection, causing activity to be spiky and significantly below the full potential.

Next, we moved on to testing our two other approaches Chunks and ParList, which use the parListChunk
and parList evaluation strategies respectively. These two strategies can take advantage of more cores to
hopefully provide further speedups. For each trial, we ran our parallel algorithm on 500 boids for 100
iterations. We experimented with both strategies using different numbers of cores, from 1 and up to 8. For
the former, we also varied the number of chunks we used. The execution times are plotted in Figure 6 below,
with example Threadscope profiles of the two strategies shown in Figure 7 and Figure 8.

Figure 6: Results from Chunks and ParList using different numbers of cores and chunks

Figure 7: Chunks 50 Threadscope profile for 500 boids

We can make a few interesting observations from Figure 6. First, all strategies generally decrease execution
time as the number of cores increase. (An exception is Chunks 5, which as can be expected, stop receiving
gains after more than 5 cores were used.) For the other strategies, there were also diminishing returns, often
with a number of cores beyond which adding more cores is no longer produces a speed-up. For example, for
Chunks 50, which split the flock into 10 chunks, using 7 cores was optimal; at 8 cores, the total execution
time increased again. These diminishing returns are partly due to Amdahl’s law, as our algorithm deals with
a signficant amount of IO (e.g., reading and saving the state of the flock to file) that is inherently sequential.
Furthermore, there is increased overhead and garbage collection: we found that as the number of cores
increases, the amount of garbage collection increases noticeably, as seen in the Threadscope profiles.

6

Figure 8: ParList Threadscope profile for 500 boids

In a similar regard, for Chunks, increasing the number of chunks initially produced better performance, up
to a point where more chunks results in too many sparks, more overhead, and poorer performance. Where
this point is may depend on the number of cores. For example, we see that ParList (equivalent to Chunks

500 for our case of 500 boids) was initially one of the worst performers, but improved relative to the other
strategies when we used higher numbers of cores that could more efficiently process the sparks it generated.
Overall, we found the optimal number of chunks to be somewhere around 50, which produced consistently
lower execution times for all numbers of cores; the corresponding optimal number of cores is around 7.

5 Code

5.1 app/Main.hs

1 module Main (main) where

2

3 import Animate (runAnimation)

4 import BoidIO (loadFlock, saveFlock)

5 import Config (loadConfig)

6 import Control.Monad (foldM_, unless)

7 import GHC.Base (when)

8 import Options.Applicative

9 import Sim (runSimCollect)

10 import System.Exit (die)

11

12 data Args = Arguments

13 { flockFile :: String,

14 numIter :: Int,

15 outputDir :: Maybe String,

16 configFile :: Maybe String,

17 animate :: Bool

18 }

19

20 arguments :: Parser Args

21 arguments =

22 Arguments

23 <$> argument str (metavar "FILE" <> help "Initial flock data file")

24 <*> option auto (long "num-iter" <> short 'n' <> metavar "INT" <> help "Number of iterations")

25 <*> optional (strOption (long "out-dir" <> short 'o' <> metavar "DIR" <> help "Output directory"))

26 <*> optional (strOption (long "config" <> short 'c' <> metavar "CONFIG" <> help "Configuration file"))

27 <*> switch (long "animate" <> short 'a' <> help "Whether to run animation")

28

29 main :: IO ()

30 main = run =<< execParser opts

7

31 where

32 opts =

33 info

34 (arguments <**> helper)

35 (fullDesc

36 <> progDesc ""

37 <> header ""

38)

39

40 run :: Args -> IO ()

41 run args = do

42 unless (numIter args > 0) $ die "num-iter must be a positive integer"

43 flock0 <- loadFlock $ flockFile args

44 config <- loadConfig $ configFile args

45 print config

46 let flocks = reverse $ runSimCollect config flock0 $ numIter args

47 foldM_ (saveFlock $ outputDir args) 0 flocks

48 putStrLn "simulation complete"

49 when (animate args) $ do

50 putStrLn "running animation"

51 runAnimation flocks

52 putStrLn "process complete"

5.2 src/Animate.hs

1 module Animate (runAnimation) where

2

3 import Boid (Boid, bPos, bVel)

4 import Graphics.Gloss

5 import Graphics.Gloss.Data.ViewPort (ViewPort)

6 import Linear.Vector ((*^), (^+^))

7 import Utils (vScaleTo, vxy)

8

9 background :: Color

10 background = white

11

12 window :: Display

13 window = InWindow "ParBoids" (800, 600) (200, 200)

14

15 update :: ViewPort -> Float -> [[Boid]] -> [[Boid]]

16 update _ _ [] = []

17 update _ _ (_ : flocks) = flocks

18

19 render :: [[Boid]] -> Picture

20 render [] = blank

21 render (flock : _) = pictures $ map draw flock

22

23 draw :: Boid -> Picture

24 draw boid =

25 pictures

26 [translate x y $ color red $ circleSolid 3,

27 translate x' y' $ color blue $ circleSolid 2

28]

29 where

30 (x', y') = vxy $ scaleFac *^ bPos boid ^+^ vScaleTo 2 (bVel boid)

31 (x, y) = vxy $ scaleFac *^ bPos boid

8

32 scaleFac = 20

33

34 runAnimation :: [[Boid]] -> IO ()

35 runAnimation flocks = simulate window background 60 flocks render update

5.3 src/Boid.hs

1 module Boid (Boid, newBoid, updateBoid, bPos, bVel) where

2

3 import Config (Config (..), WorldSize (..))

4 import Control.DeepSeq (NFData (..))

5 import Data.List (sortOn)

6 import Linear (negated)

7 import Linear.Metric (Metric (norm))

8 import Linear.V2 (V2 (..))

9 import Linear.Vector (zero, (*^), (^+^), (^-^), (^/))

10 import Utils (vBound, vWrap, wrapDisp)

11

12 data Boid = Boid { bPos :: V2 Float, bVel :: V2 Float, bMass :: Float } deriving (Show)

13

14 instance NFData Boid where

15 rnf (Boid pos vel m) = rnf pos `seq` rnf vel `seq` rnf m

16

17 newBoid :: [Float] -> Maybe Boid

18 newBoid [px, py, vx, vy, m] = Just $ Boid (V2 px py) (V2 vx vy) m

19 newBoid [px, py, vx, vy] = Just $ Boid (V2 px py) (V2 vx vy) 1

20 newBoid _ = Nothing

21

22 between :: Config -> Boid -> Boid -> V2 Float

23 between cfg b bo = case wSize cfg of

24 Size size -> wrapDisp size (bPos b) (bPos bo)

25 Infinite -> bPos bo ^-^ bPos b

26

27 flockmates :: Config -> [Boid] -> Float -> Boid -> [(Boid, V2 Float)]

28 flockmates cfg flock r b = filter (\(bo, _) -> bPos bo /= bPos b) neighbors

29 where

30 neighbors = takeWhile (\(_, disp) -> norm disp < r) sorted

31 sorted = sortOn (norm . snd) $ map (\bo -> (bo, between cfg b bo)) flock

32

33 wrapPos :: Config -> V2 Float -> V2 Float

34 wrapPos cfg pos = case wSize cfg of

35 Size size -> vWrap size pos

36 Infinite -> pos

37

38 data Steer = Steer { sSf :: V2 Float, sAf :: V2 Float, sCf :: V2 Float } deriving (Show)

39

40 initSteer :: Steer

41 initSteer = Steer zero zero zero

42

43 steerFrom :: Boid -> Steer -> (Boid, V2 Float) -> Steer

44 steerFrom b (Steer sf af cf) disp = Steer sf' af' cf'

45 where

46 sf' = sf ^+^ separation b disp

47 af' = af ^+^ alignment b disp

48 cf' = cf ^+^ cohesion b disp

49

9

50 updateBoid :: Config -> [Boid] -> Boid -> Boid

51 updateBoid cfg flock b = b {bPos = pos', bVel = vel'}

52 where

53 pos' = wrapPos cfg $ bPos b ^+^ 0.1 *^ vel'

54 vel' = vBound (maxVel cfg) (bVel b ^+^ 0.05 *^ netf ^/ bMass b)

55 netf = sn cfg *^ sf ^+^ an cfg *^ af ^+^ cn cfg *^ cf

56 Steer sf af cf = foldl (steerFrom b) initSteer bs

57 bs = flockmates cfg flock (radius cfg) b

58

59 separation :: Boid -> (Boid, V2 Float) -> V2 Float

60 separation _ (_, disp) = negated disp ^/ (norm disp ** 2)

61

62 alignment :: Boid -> (Boid, V2 Float) -> V2 Float

63 alignment b (bo, _) = bVel bo ^-^ bVel b

64

65 cohesion :: Boid -> (Boid, V2 Float) -> V2 Float

66 cohesion _ (_, disp) = disp

5.4 src/BoidIO.hs

1 module BoidIO (loadFlock, saveFlock) where

2

3 import Boid (Boid, newBoid)

4 import System.IO (Handle, IOMode (ReadMode, WriteMode), hClose, hGetLine, hIsEOF, hPrint, withFile)

5

6 loadFlock :: String -> IO [Boid]

7 loadFlock file = withFile file ReadMode readFlockFile

8

9 readFlockFile :: Handle -> IO [Boid]

10 readFlockFile hdl = do

11 isEOF <- hIsEOF hdl

12 (if isEOF

13 then return []

14 else

15 (do

16 line <- hGetLine hdl

17 bs <- readFlockFile hdl

18 case newBoid $ map read (words line) of

19 Just b -> return (b : bs)

20 Nothing -> return bs

21)

22)

23

24 saveFlock :: Maybe String -> Int -> [Boid] -> IO Int

25 saveFlock outDir n = case outDir of

26 Just dn -> \bs -> do

27 withFile file WriteMode $ writeFlockFile bs

28 return (n + 1)

29 where

30 file = dn ++ "/" ++ show n ++ ".txt"

31 Nothing -> _ -> return 0

32

33 writeFlockFile :: [Boid] -> Handle -> IO ()

34 writeFlockFile [] hdl = hClose hdl

35 writeFlockFile (b : bs) hdl = do

36 hPrint hdl b

10

37 writeFlockFile bs hdl

5.5 src/Config.hs

1 module Config (Config (..), WorldSize (..), loadConfig) where

2

3 import System.IO (Handle, IOMode (ReadMode), hGetLine, hIsEOF, withFile)

4

5 data Config = Config

6 { radius :: Float,

7 sn :: Float,

8 an :: Float,

9 cn :: Float,

10 maxVel :: Float,

11 wSize :: WorldSize

12 }

13 deriving (Show)

14

15 data WorldSize = Infinite | Size Float

16

17 instance Show WorldSize where

18 show Infinite = ""

19 show (Size f) = show f

20

21 defaultConfig :: Config

22 defaultConfig =

23 Config

24 { radius = 5,

25 sn = 1.8,

26 an = 0.08,

27 cn = 0.3,

28 maxVel = 10,

29 wSize = Infinite

30 }

31

32 loadConfig :: Maybe String -> IO Config

33 loadConfig file = case file of

34 Just fn -> withFile fn ReadMode readConfigFile

35 Nothing -> return defaultConfig

36

37 readConfigFile :: Handle -> IO Config

38 readConfigFile hdl = do

39 isEOF <- hIsEOF hdl

40 (if isEOF

41 then return defaultConfig

42 else

43 (do

44 line <- hGetLine hdl

45 cfg <- readConfigFile hdl

46 let cfg' = case words line of

47 ["radius", arg] -> cfg {radius = read arg}

48 ["sn", arg] -> cfg {sn = read arg}

49 ["an", arg] -> cfg {an = read arg}

50 ["cn", arg] -> cfg {cn = read arg}

51 ["maxVel", arg] -> cfg {maxVel = read arg}

11

52 ["wSize", arg] -> cfg {wSize = Size $ read arg}

53 _ -> cfg

54 return cfg'

55)

56)

5.6 src/Sim.hs

1 module Sim (runSim, runSimCollect) where

2

3 import Boid (Boid, updateBoid)

4 import Config (Config)

5 import Control.DeepSeq (force)

6 import Control.Parallel.Strategies (parList, parListChunk, rdeepseq, rpar, rseq, runEval, using)

7

8 data ParStrat = Seq | TwoPart | Chunks Int | ParList

9

10 updateWith :: ParStrat -> Config -> [Boid] -> [Boid]

11 updateWith Seq = updateSeq

12 updateWith TwoPart = updateTwoPart

13 updateWith (Chunks n) = updateChunks n

14 updateWith ParList = updateParList

15

16 runSim :: Config -> [Boid] -> Int -> [Boid]

17 runSim config flock0 nIter = case runSimCollect config flock0 nIter of

18 [] -> flock0

19 (flockN : _) -> flockN

20

21 runSimCollect :: Config -> [Boid] -> Int -> [[Boid]]

22 runSimCollect cfg flock0 nIter = foldl simLoop [flock0] [1 .. nIter]

23 where

24 simLoop :: [[Boid]] -> Int -> [[Boid]]

25 simLoop [] _ = []

26 simLoop flocks@(flock : _) _ = updateWith Seq cfg flock : flocks

27

28 updateSeq :: Config -> [Boid] -> [Boid]

29 updateSeq cfg flock = map (updateBoid cfg flock) flock

30

31 updateTwoPart :: Config -> [Boid] -> [Boid]

32 updateTwoPart cfg flock = runEval $ do

33 as' <- rpar (force (map (updateBoid cfg flock) as))

34 bs' <- rpar (force (map (updateBoid cfg flock) bs))

35 _ <- rseq as'

36 _ <- rseq bs'

37 return (as' ++ bs')

38 where

39 (as, bs) = splitAt (length flock `div` 2) flock

40

41 updateChunks :: Int -> Config -> [Boid] -> [Boid]

42 updateChunks numChunks cfg flock = flock'

43 where

44 flock' = map (updateBoid cfg flock) flock `using` parListChunk chunkSize rdeepseq

45 chunkSize = length flock' `div` numChunks

46

47 updateParList :: Config -> [Boid] -> [Boid]

48 updateParList cfg flock = flock'

12

49 where

50 flock' = map (updateBoid cfg flock) flock `using` parList rdeepseq

5.7 src/Utils.hs

1 module Utils (vBound, vScaleTo, vx, vy, vxy, wrapDisp, vWrap) where

2

3 import Data.Fixed (mod')

4 import Linear.Metric (Metric (norm), normalize)

5 import Linear.V2 (V2 (V2))

6 import Linear.Vector ((*^))

7

8 vBound :: Float -> V2 Float -> V2 Float

9 vBound lim v = vScaleTo (norm v `min` lim) v

10

11 vScaleTo :: Float -> V2 Float -> V2 Float

12 vScaleTo n v = n *^ normalize v

13

14 vWrap :: Float -> V2 Float -> V2 Float

15 vWrap size (V2 x y) = V2 (wrap x) (wrap y)

16 where

17 wrap a = (a + size / 2) `mod'` size - (size / 2)

18

19 vx :: V2 a -> a

20 vx (V2 x _) = x

21

22 vy :: V2 a -> a

23 vy (V2 _ y) = y

24

25 vxy :: V2 a -> (a, a)

26 vxy (V2 x y) = (x, y)

27

28 wrapDisp :: Float -> V2 Float -> V2 Float -> V2 Float

29 wrapDisp size p1 p2 = V2 dx' dy'

30 where

31 dx'

32 | abs dx > 0.5 * size = dx + (if x2 > x1 then -size else size)

33 | otherwise = dx

34 dy'

35 | abs dy > 0.5 * size = dy + (if y2 > y1 then -size else size)

36 | otherwise = dy

37 dx = x2 - x1

38 dy = y2 - y1

39 (V2 x1 y1) = vWrap size p1

40 (V2 x2 y2) = vWrap size p2

13

	Introduction
	Sequential Implementation
	Parallel Implementation
	Results and Discussion
	Code
	app/Main.hs
	src/Animate.hs
	src/Boid.hs
	src/BoidIO.hs
	src/Config.hs
	src/Sim.hs
	src/Utils.hs

