
Parallel MapReduce Applications in Haskell
Jeremy Carin

Prelude
The original goal of my project was to implement the PageRank algorithm in parallel, as described Larry
Page and Sergey Brin in their prototype research project called “Google”. PageRank uses the link
structure of the web to measure the importance of web pages. The idea behind this approach is that a web
page with many high-quality incoming links from other reputable web pages is likely to be more relevant
and useful than a web page with fewer or lower-quality incoming links.

PageRank makes use of MapReduce, a framework to do distributed parallelizable computations on a large
number of machines. My implementation would scale across cores of a single machine, rather than
multiple machines.

MapReduce Implementation
I first wrote a parallel MapReduce function using rdeepseq, so that each iteration fully evaluates its
argument. The generic MapReduce is as follows:

mapReduce :: NFData b => (a -> b) -> ([b] -> c) -> [a] -> c
mapReduce mapper reducer input = pseq mOutput rOutput
where mOutput = parMap (rpar `dot` rdeepseq) mapper input

rOutput = reducer mOutput `using` rseq

mapReduce is a higher-order function that takes three arguments: a mapper function mapper, a reducer
function reducer, and a list of inputs input. It applies the mapper function to each element in the input list
in parallel using the parMap function from the Control.Parallel library and the rpar and rdeepseq
combinators. The rpar combinator indicates that a computation can be run in parallel, while rdeepseq
forces evaluation of the result of the computation, ensuring that the computation is fully evaluated before
being passed to the reducer function.

The result of the parMap function is then passed to the reducer function, which is applied using the using
function from the Control.Parallel.Strategies library. The using function allows you to specify an
evaluation strategy to use when applying the reducer function. In this case, the rseq strategy is used,
which evaluates the computation to weak head normal form and returns it.

Finally, the result of the reducer function is passed to the pseq function, which fully evaluates the result of
the computation before returning it.

PageRank Implementation
PageRank works by defining a probability distribution over the nodes in the graph, with the probability of
a node being proportional to the number and quality of links to and from the node. The PageRank value of
a node is then calculated as the expected value of the probability distribution over the nodes.

To calculate the PageRank values of the nodes in a graph, the PageRank algorithm performs the following
steps:

1. Initialize the PageRank values of all the nodes in the graph to an equal value.
2. Iteratively update the PageRank values of the nodes based on the PageRank values of the nodes

that link to them, using a damping factor to dampen the effect of the update. The damping factor
is a constant value between 0 and 1 that is used to control the convergence of the PageRank
values.

3. Repeat step 2 until the PageRank values converge or a maximum number of iterations has been
reached.

4. In each iteration, the PageRank values of the nodes are updated using the following formula:

PR(u) = (1 - dampingFactor) / |V| + dampingFactor * (PR(v) / C(v))
where:

● PR(u) is the PageRank value of node u.
● |V| is the total number of nodes in the graph.
● dampingFactor is the damping factor.
● PR(v) is the PageRank value of node v.
● C(v) is the number of out-edges

I define the following types to be used in the PageRank algorithm,
type PRVal = Double
type PRValues = M.Map Node PRVal
type Node = String
type InEdges = M.Map Node [Node]
type OutEdges = M.Map Node [Node]

The types are somewhat self-explanatory, but PRValues represents the outcome of the PageRank
algorithm, the InEdges and OutEdges represent the graph itself.

I implement the mapper and reducer as such:
mapper :: (PRVal, [Node]) -> PRValues
mapper (pr, outNodes) =

let pr_ = pr / fromIntegral (length outNodes)
in M.fromList $ zip outNodes (repeat pr_)

reducer :: [PRValues] -> PRValues
reducer = foldr (M.unionWith (+)) M.empty

Complications
Unfortunately, I was unable to fully parallelize my PageRank algorithm, and I’m still not sure what went
wrong. Originally, I suspected the garbage collector had too high of an overhead, as there were
fluctuations in CPU usage that matched when the GC was doing work. Disabling the parallel GC
produces similar results, and continues inconsistent usage across cores. Figures 1 and 2 compare the
Parallel vs Sequential GC. Figure 3 shows the relatively small speedup when using more cores, which
more clearly demonstrates how parallelism does not benefit my algorithm. I am left to assume that there is
a fundamental flaw in my approach which did not allow full parallelism, as such I decided to approach a
different problem

Figure 1 – Parallel GC

Figure 2 – Sequential GC

HEC count time (s) Speedup vs 1
core

1 12.729 –

2 12.305 3.3%

3 11.128 12.8%

4 10.608 16.7%

Figure 3 – Core count and execution time

Onward
As I was unable to get PageRank fully parallelized, I took my unassuming yet mighty MapReduce generic
function and applied it to different problems. As somewhat of a sanity check and precursor to my larger
program, I implemented a word count program. I used the same MapReduce function as before, but
created new functions to actually do the mapping and reducing.

I also implemented a sequential version, which would work essentially the same way as running the
parallel version with 1 core. The only difference is the MapReduce function, which is done sequentially
now rather than with parallelism.

seqMapReduce :: (a -> b) -> ([b] -> c) -> [a] -> c
seqMapReduce mapper reducer input = reduceResult
where mapResult = map mapper input

reduceResult = reducer mapResult

I implement mapper and reducer functions as such:

mapper :: String -> M.Map String Int
mapper = getWordFreqMap . getWords

getWordFreqMap :: [String] -> M.Map String Int
getWordFreqMap = M.fromListWith (+) . map (, 1)

getWords :: String -> [String]
getWords = words . filter (\x -> isAlpha x || isSpace x) . map
toLower

reducer :: [M.Map String Int] -> [(String, Int)]
reducer = M.toList . foldl (M.unionWith (+)) M.empty

My word count program is able to scale to extremely large sizes. To show this, I provide a test script that
downloads a 100 MB corpus of information, split into a number of different files. Figures 6, 7 and 8 refer
to a slightly different dataset, but demonstrate a similar scaling and show effective parallelism. The
sequential version performs essentially the same as a core count of 1.

HEC count time (s) Speedup vs 1
core

1 63.798 –

2 42.591 33%

3 29.334 54%

4 18.608 71%

Figure 4 – Core count and execution time

Figure 6 – 4 cores

Figure 7 – 2 cores

Figure 8 – 1 core

AutoComplete implementation
Using this new word count program, I was able to implement an autocomplete based on a large corpus of
text. I changed the output of the word counter program so that it writes to a file, and then used the Trie
data structure to structure word counts. I found that a word count file was always an order of magnitude
smaller than the corpus, so there was very little parallelism that would speed up this part of the process.

An example of the program running is below:
Enter word:
hi
Found the following words:
1. his
2. him
3. himself
4. high

5. hinted
6. hidden
7. history
8. higher
9. hint
10. hitherto

Conclusion
The best laid plans of mice and men…

I’m still happy with what I created in the end, although I hope to get PageRank working at some point
because it frustrated me for far too long for it to win.

Code listings:

Main.hs
module Main (main) where

import WordCount
import AutoComplete
import System.Environment (getArgs)
import System.Directory
import Control.Monad
main :: IO ()
main = do

args <- getArgs
case args of

["count", dir] -> wordCount dir "-"
["count", dir, output] -> wordCount dir output
["auto", dir] -> auto dir
["auto", dir, "new"] -> do

fileExists <- doesFileExist ".autocomplete_out"
when fileExists $ removeFile ".autocomplete_out"
auto dir

_ -> putStrLn "invalid option. specify `count [dir] (output)`,
`auto [dir]`, or `auto [dir] new`"

AutoComplete.hs
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE ScopedTypeVariables #-}

module AutoComplete (auto) where

import Data.List (sortBy)
import Data.List.Split (splitOn)

import qualified Data.ByteString.Char8 as BC
import qualified Data.Trie as T
import qualified Data.Map as M
import qualified Data.Bifunctor as B
import System.Directory
import WordCount

import Control.Exception (Exception, throw)

newtype FormatError = FormatError String
deriving (Show, Eq)

instance Exception FormatError

loadWords :: FilePath -> IO (M.Map String Int)
loadWords fname = do

filedata <- readFile fname
let contents = map (\line -> let ws = splitOn "," line in

case ws of
[s, i] -> (s, read i :: Int)
_ -> throw (FormatError line))

(lines filedata)
let loadedMap = M.fromList contents
return loadedMap

createTrie :: M.Map String Int -> T.Trie Int
createTrie = T.fromList . fmap (B.first BC.pack) . M.toList

autocomplete :: Ord a => T.Trie a -> IO ()
autocomplete trie = do

putStrLn "Enter word:"
prefix <- getLine
let subTrie = T.submap (BC.pack prefix) trie

topk = take 10 $ sortBy (\(_, a) (_, b) -> compare b a) $
T.toList subTrie

if null topk
then putStrLn "No words found"
else do

putStrLn "Found the following words:"
mapM_ (\(n :: Int, (a, _)) -> putStrLn $ show n ++ ". " ++

BC.unpack a) (zip [1..] topk)
putStrLn ""
autocomplete trie

auto :: FilePath -> IO ()
auto directory = do

outputExists <- doesFileExist ".autocomplete_out"
if outputExists

then putStrLn "Output file already exists, skipping
wordCount. run with -F to re-read files."

else wordCount directory ".autocomplete_out"
loadedMap <- loadWords ".autocomplete_out"
let trie = createTrie loadedMap
autocomplete trie

MapReduce.hs
module MapReduce (mapReduce, seqMapReduce)

where

import Control.Parallel
import Control.Parallel.Strategies

mapReduce :: NFData b => (a -> b) -> ([b] -> c) -> [a] -> c
mapReduce mapper reducer input = pseq mOutput rOutput

where mOutput = parMap (rpar `dot` rdeepseq) mapper input
rOutput = reducer mOutput `using` rseq

seqMapReduce :: (a -> b) -> ([b] -> c) -> [a] -> c
seqMapReduce mapper reducer input = reduceResult

where mapResult = map mapper input
reduceResult = reducer mapResult

WordCount.hs
{-# LANGUAGE TupleSections #-}

module WordCount
(wordCount
)

where

import Data.Char (isAlpha, isSpace, toLower)
import MapReduce
import System.Directory
import qualified Data.Map as M
import System.IO.Error (catchIOError)

mapper :: String -> M.Map String Int
mapper = getWordFreqMap . getWords

getWordFreqMap :: [String] -> M.Map String Int
getWordFreqMap = M.fromListWith (+) . map (, 1)

getWords :: String -> [String]
getWords = words . filter (\x -> isAlpha x || isSpace x) . map
toLower

reducer :: [M.Map String Int] -> [(String, Int)]
reducer = M.toList . foldl (M.unionWith (+)) M.empty

wordCount :: FilePath -> FilePath -> IO ()
wordCount filePath output = do

files <- listDirectory filePath
let myFiles = filter (\x -> x `notElem` [".", ".."]) (map

(filePath ++) files)
parsedFiles <- mapM readFile myFiles
let freqs = mapReduce mapper reducer parsedFiles
printFreqs freqs output

printFreqs :: [(String, Int)] -> FilePath -> IO ()
printFreqs freqs output = do

let outputText = unlines $ map (\(word, count) -> word ++ "," ++
show count) freqs

if output == "-"
then putStrLn outputText
else catchIOError (writeFile output outputText) (_ ->

putStrLn "Error: could not write to file")

