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Introduction
We built an n-gram language model in Haskell that when given a corpus of English text and a
prefix of a word in a context (e.g., He was y…) can complete the word (e.g., He was yelling).
Through the use of parallelization, we were able to speed up the construction of the n-gram
model by 3.5x and generate predictions on-the-fly. We used corpus data from the “Linear Text”
section of, https://www.corpusdata.org/formats.asp

Overview
The program takes the name of the directory containing assorted corpus files. The program will
first build the n-gram model. Then, when the model is built, the program will repeatedly ask for
the user to provide a prefix, and will return a prediction until the user terminates the program.
Since the predictions are relatively fast to generate once the language model is built, the model
can quickly1 spit out a prediction given the prefix. The test datasets provided in the code include
a corpus of 14 million words (in fcorp), and a smaller test corpus of ~5 million words (in bcorp).
With our implementation, it takes about 45s to build the language model using bcorp, and we
are able to generate plausible, context-based predictions using the language model. The
contents of fcorp and bcorp are shown below:

fcorp: coca-text_acad.txt, coca-text_blog.txt,
coca-text_fic.txt, coca-text_mag.txt, coca-text_news.txt,
coca-text_spok.txt, coca-text_tvm.txt, coca-text_web.txt,
movies_text.txt, tv_text.txt, wiki.txt

bcorp: coca-text_acad.txt, coca-text_mag.txt, tv_text.txt,
wiki.txt

wiki.txt contains 1.8mw, movies_text.txt 1.6M, tv_test.txt 2.1mw, and the
coca-text* files collectively contain about 8.9mw.

1 On average, ~100ms



Sequential Implementation
Although the program was initially designed with parallelism in mind, we provide sequential
versions of most functions for comparison purposes.

Building the Language Model

Processing Input
Since the corpus can be of arbitrary size (i.e., very large), reading it all into memory at once,
then processing it, would be a waste of memory. Thus, we decided to lazily read the directory of
files specified by the command line argument using Data.Text.Lazy. Then, tokenizing the
content and turning everything to lowercase, before we start generating the Tries.

Storing the prefixes and their potential matches in Tries
To store individual words from the corpi and generate potential matches for an incomplete word,
we use a trie data structure. Each node in a trie will represent a prefix of a string and the
subtrees of a given node contain all words the current node is a prefix of. For example, the node
representing prefix “fa” might have the children “family”, “farm”, “fame”, and “farce” contained in
its subtrees. We know that a node represents a valid word from the corpus if the isEnd boolean
flag is set at a given node. The Trie is asymptotically  the best data structure for string storage
and prefix lookup, allowing for logarithmic prefix lookup times.

Using multiple corpus files from different contexts, e.g. television, magazines, and wikipedia
articles, we created a forest of n-gram Tries. We choose to create a separate trie for each
corpus for two reasons. First, each corpus has words from a different context, so it makes
organizational sense to keep the Tries separate. Second, a forest, or array of tries, works
handsomely with Haskell's concurrency, as the tries could be built and searched in parallel. Our
trie data structure is shown below:

data Trie = Node Bool Int (M.Map Char Trie) | Empty deriving (Eq, Read).

The creation of the forest of Tries is done concurrently in the makeForest function, which also
reads and processes the raw corpus files:

makeForest :: [String] -> IO [Trie]

makeForest filteredDirs = do

let docs = map TIO.readFile filteredDirs

let tok = TL.splitOn (TL.pack " ")

let fn =  (return::(a -> IO a)) (tok.TL.toLower) -- lowercase

let ws = map (fn <*>) docs

sequence (S.parMap S.rpar (return buildTreeT <*>) ws)



Building the Language Model
To build the language model, we needed to create a map of n-gram counts, which are used to
generate the scores for word-completion predictions. We knew that we ultimately were going to
parallelize the building of the n-gram maps (via computeNGramFrequencies) using the popular
mapreduce paradigm, but started with a started with a sequential version that essentially moves
a sliding window of size n across all the documents in a corpus to generate ngrams.

computeNGramFrequencies :: Int -> Corpus -> M.Map NGram Int

computeNGramFrequencies n corp = let tupCounts = map (\x -> (x, 1::Int)) (computeNGrams n corp)

histogram = M.toList $ M.fromListWith (+) tupCounts

in M.fromList histogram

We then called computeNGramFrequcies sequentially to compute the n-gram frequencies for all
the n-grams up to and including n (e.g., 1-grams, 2-grams, 3-grams, … n-grams) via our
createNGramMap function, shown below.

createNGramMap :: Int -> Corpus -> M.Map NGram Int

createNGramMap n corp = let mps = map (`computeNGramFrequencies` corp) [1..n] in

foldl (M.unionWith (+)) M.empty mps

Making Predictions
Now that the language model is built, we can finally use it to complete sentences! The function
getPrediction takes a sentence with an incomplete word as its end. Using the forest of tries
generated by makeForest, getPrediction generates all potential matches with the incomplete
word. For each of these ‘guesses’ (as it’s called in code below), we use the preceding words in
the sentence to generate a context-based prediction via the score function (also shown below),
which uses the ngram maps.

getPrediction :: String -> [M.Map NGram Int] -> [Trie] -> String

getPrediction sent mps tries = let sentence = map T.pack (words sent)

curNgram = delLast sentence

lst = last sentence

guesses = map (\x -> (T.pack $ reverse $ fst x, snd

x)) (generateMatches (T.unpack lst) tries)

scores = S.parMap S.rdeepseq (\x -> (T.unpack $ fst x,

snd x)) (map (getScore curNgram mps) guesses)

in (fst $ head (reverse $ sortOn snd scores))

To improve predictions for >2-gram inputs, we also consider the 2-gram score in addition to the
n-gram score (code omitted for brevity).



score :: NGram -> [M.Map NGram Int] -> (Token, Int) -> (Token, Double)

score curNgram mps (guess, _) = let freq = searchMaps (curNgram ++[guess]) mps in (guess,

fromIntegral freq / fromIntegral (searchMaps curNgram mps))

In the case where no matches were found in the Tries, such as in the case of a nonsensical
prefix (e.g., “asdf” or “ewfs”), getPrediction will return an error. We think this behavior is
justifiable as an autocomplete program should not be expected to complete nonsensical words,
and the model is able to complete most prefixes.

Parallelization Strategies
The design of our program clearly allowed for many opportunities for parallelism. The slowest
and most memory-hungry part of the program is, as mentioned above, generating the language
model. Getting the predictions is relatively fast, even for the sequential implementation, but we
can make it nearly instantaneous through parallelization, too. Below outlines the parallelization
strategies we employed (or attempted to employ) in our program. Note that when comparing
non-concurrent and concurrent aspects of our code, we mostly replaced maps with ParMaps.

All outputs shown are run on an  M1 mac with 32gb of RAM and a 2.3 GHz 8-Core Intel Core i9
processor. We ran our program with the -N8 flag when testing to fully take advantage of the
cores. Note that we tested separate modules in our code by simply commenting out the
non-relevant code for a test.

Searching for a prefix within the Forest of Tries
When searching for a common  prefix within a forest of tries in parallel, we get up to a 5X
speedup compared to our single-threaded version. The two Threadscope screenshots below
give great insight into the search for the matches with the prefix “app” within fcorp. We achieve
this parallelism by simply changing the map to a parMap in our generateMatches function:

generateMatches :: String -> [Trie] ->  [(String,Int)]

generateMatches sent tries = concat $ S.parMap S.rdeepseq (prefixNodePar 0 sent "") tries



In the parallel implementation, we see all cores are busy, although the second and sixth cores
have more work than the other cores (Figure 1). This can be explained by an imbalance in the
size of the tries :some of the corpi in bcorp differ in size by as much as 3M words . We have a
total time here of t = 7.007s. The speedup may have been limited by garbage collection, which
can be shown by the “choppiness” of each thread in the output (Figure 1).

Figure 1: Multi-core execution of prefix search

Figure 2: Single-core execution of prefix search. (total time: 30s)

Parallelising DFS searches on an individual Tree
Unfortunately, we obtained no speedup when parallelising the DFS search for prefixes on a
single Trie, regardless of depth (this is explained below). The overhead of the parallelism



negated any benefit over a regular, non-parallelized search for prefixes. This likely has to do
with the fact that most words get reused in common English writing, news, and entertainment,
meaning that for a given prefix, there are few (asymptotically speaking) children in the trie. Also,
the parallelism could not begin via DFS until we found the prefix node parent, which could
potentially be deep in the trie. We parallelized the DFS search for prefixes with our
prefixSearchPar function, which allowed us to test for several depths of parallelism on the trie.

prefixSearchPar:: Int -> (String, Trie) -> [(String,Int)]

prefixSearchPar depth (scat, Node isEnd count children)

| depth > 0 = let childList = zipWith (\a b -> (fst a:b, snd a) ) (M.toList children) (replicate (length children) scat)

curr = if isEnd then scat else ""

in (curr, count): (concat $ S.parMap S.rseq (prefixSearchPar (depth - 1)) childList)

| otherwise = prefixSearchSeq (scat, (Node isEnd count children))

prefixSearchPar _ _ = error "empty"

In an isolated experiment with depth = 3, we noticed no speedup over the single-core case. We
can see that a large portion of the computation is sequential in nature (building the Trie and
finding the parent prefix node), and the actual DFS produced a lot of sparks that were GC’d and
fizzled. The overhead of bookkeeping and the “overkill” of parallelism explains this extremely
choppy threadscope output (Figure 3). The Threadscope output looked similar for depths = 5, 4,
and 2, 1, with the output having less choppiness at lower depths.

Figure 3: Paralellized DFS search on a Trie with n=3

Generating the n-grams maps and frequencies in parallel
Computing the n-gram maps and the n-gram frequencies is actually sequential for each n, (e.g.
for 2-grams it must compute the n-grams map and then compute the frequencies), so in theory
we would get a significant speedup from computing both steps in parallel. This is achieved by



using `parmap` on both the functions createNGramMapPar and
computeNGramFrequenciesPar. For computeNGramFrequenciesPar in particular, we used a
mapreduce approach in which we divided the corpus documents into chunks corresponding to
each core, computed the frequencies in parallel, and combined these results into one map.

createNGramMapPar → generate up to n n-grams (e.g. 1-grams, 2-grams,
3-grams…)
By using parmap and deepseq in this function, we achieve 1 level of parallelism with generating
the 1-gram, 2-grams, 3-grams, .. n-grams. This in isolation generates n sparks total. There are a
couple drawbacks to this approach (in isolation). If we have 8 cores, then and n<8, then only n
cores are being used. Also, creating the n-gram maps for some n is faster than others, so we
don’t get great utilization of all cores (Figure 4).

Figure 4: Threadscope output for createNGramMap Par, for n=5. As shown, only 5 cores
are being used (despite running with 8 threads of execution), and some cores are being
less utilized than others.

createNGramMapPar :: Int -> Corpus -> M.Map NGram Int

createNGramMapPar n corp = let mps = S.parMap S.rdeepseq (flip

(computeNGramFrequenciesPar 8) corp) [1..n] in foldl (M.unionWith (+)) M.empty mps



computeNGramFrequenciesPar → split corpus into c chunks and
compute n-gram frequencies
Another way we parallelized is by splitting corpus into c chunks (Theoretically 1 for each core).
This in isolation generates c sparks. From the threadscope output (Figure 5), we realized that
creating the n-gram maps and computing the n-gram frequencies is actually sequential for each
n, so we see that when creating the n-gram maps it only uses 1 core.

Figure 5: Threadscope output for computeNGramFrequenciesPar. This function splits the
corpus into 8 chunks, and computes the n-gram frequencies for each of those chunks in
parallel.

computeNGramFrequencies :: Int -> Corpus -> M.Map NGram Int

computeNGramFrequencies n corp = let tupCounts = map (\x -> (x, 1::Int)) (computeNGrams n corp)

histogram = M.toList $ M.fromListWith (+) tupCounts

in M.fromList histogram

computeNGramFrequenciesPar :: Int -> Int -> Corpus -> M.Map NGram Int

computeNGramFrequenciesPar nochunks n corp = let chunks = splitInto nochunks corp in foldl (M.unionWith

(+)) M.empty (S.parMap S.rdeepseq (computeNGramFrequencies n) chunks)

Parellizing Both (the fastest option)
When combining both parallelization strategies of computing the 1-grams, 2-, … n-grams in
parallel and the n-gram frequencies of chunks of the corpus in parallel, we achieved a ~4x
speedup compared to the sequential implementation. This generates n*c sparks total, where n
is the n-grams generated (we used up to 5-grams), and c is the number of chunks to split the
corpus into.



Figure 6: Threadscope output for generating the n-gram maps and the frequencies in
parallel. The dips are likely due to garbage collection, but they are not significant.

Overall Performance of building the language model (Predicting in
parallel):

Using our good results from the parallel prefix search on the Tries and map-reduce on the
ngrams, we knew that we could obtain a sizable overall speedup, from generating the language
model to returning a single prediction.

By changing including the parMaps above, it took our parallel program around 60s to predict
“yelling” for, “he was y”. This represents about a 3X speedup over the non sequential version
overall!



Figure 7: Parallel implementation

Figure 8: Sequential Implementation: took a whopping 187s to predict “yelling” for, “he
was y”.



Overall performance - # of HEC’s vs runtime
Given our overall program - i.e, ingest the corpus, build the language model, and make 1
prediction -  we measured the performance for different numbers of threads of execution.
Overall, we found a maximum of a ~3x improvement by using 6 cores, on a 2021 Apple M1
MacBook Pro with 8 cores (6 “performance”, 2 “efficiency”).

We see that performance increases to a maximum of 6 threads. We predict that this is either
because the 2 “efficiency” cores on the MacbookPro suck, or other processors where being
used by other programs (e.g. Firefox, Spotify, Slack, etc.). We didn’t bother trying with over -N8
as the GHC documentation strongly suggests against asking GHC to create more threads than
the physical capabilities of the machine2 anyways.

2

https://downloads.haskell.org/ghc/latest/docs/users_guide/using-concurrent.html#rts-flag--maxN%20%E2
%9F%A8x%E2%9F%A9

https://downloads.haskell.org/ghc/latest/docs/users_guide/using-concurrent.html#rts-flag--maxN%20%E2%9F%A8x%E2%9F%A9
https://downloads.haskell.org/ghc/latest/docs/users_guide/using-concurrent.html#rts-flag--maxN%20%E2%9F%A8x%E2%9F%A9


Sample Predictions
spongebob s → squarepants
return of the j → jedi
hotel ca → california
java is a p → problem
programmers are very b → bitter
very b → bad
columbia u → university
fight for your r  → rights
rebel without a c → cause
my favorite sport is b → basketball

How to Run
Please retrieve the code, including the corpus collections, from our GitHub repository at
https://github.com/cbass1127/PFP2022.git.  We recommend trying the program w/ bcorp first as
it’s smaller and took ~ 60s to build on our machine. fcorp took ~ 130s to build the language
mode.

git clone git@github.com:cbass1127/PFP2022.git

When opening the tarball from CourseWorks, you may need to run stack init before the following
steps:

stack init

compile3 the code with

stack build

To obtain the path to the generated executable, run the command:

stack exec  -- which PFP2022-exe

Now, we can run our project on 8 cores (assuming bcorp is in your working directory) with the
command below. The -l flag will also generate a .eventlog file to be used with Threadscope.

3 We used LTS Haskell 19.23 (ghc-9.0.2)

https://github.com/cbass1127/PFP2022.git


/Users/sebastianhereu/Desktop/haskell/PFP2022/.stack-work/install/x86_64-os

x/2ab99416df1ad388088601365117d1e2769e99a1b2ed03357ed91c390ee86786/9.0.2/bi

n/PFP2022-exe bcorp +RTS -N8 -l

Note the path to the PFP2022-exe executable will be different for you.

Code Listing
Lib.hs

{-# OPTIONS_GHC -Wno-unrecognised-pragmas #-}

{-# HLINT ignore "Use tuple-section" #-}

module Lib

( parseCorpus,

computeNGramFrequenciesPar,

computeNGramFrequencies,

docDelim,

elimDots,

tokeniseDoc,

isSafeChar,

prefixNodePar,

insertTrie,

createNGramMapPar,

createNGramMap,

getPrediction,

computeNGrams,

computeNGramsPar,

prefixSearchSeq,

buildTree,

makeForest,

listDir,

drive,

Trie (..)

) where

import qualified Data.Text as T

import qualified Data.ByteString.Char8 as B

import Data.Text.Encoding as E (decodeUtf8)

import GHC.Unicode as U ( isSpace, isAlpha, toLower )

import Control.Parallel.Strategies as S

import qualified Data.Map.Strict as M

import Data.List.Split as Split

import Data.List (sortOn)

import Control.DeepSeq as DS

import System.Directory

( getCurrentDirectory, getDirectoryContents, setCurrentDirectory )

import System.Directory.Internal.Prelude (getArgs)

import System.Exit(die)



import System.Environment (getProgName)

import qualified Data.Text.Lazy as TL

import qualified Data.Text.Lazy.IO as TIO

import Data.Time

-- Data Constructors --

data Trie = Node Bool Int (M.Map Char Trie) | Empty deriving (Eq, Read)

instance Show Trie where

show (Node bool count tmap) = "("++show count++") " ++ show bool ++ ": " ++ show tmap

show _ = error "empty Trie"

instance NFData Trie where

rnf Empty = ()

rnf (Node _ _ mp) = DS.rnf mp `seq` ()

-- Types --

type Token = T.Text

type NGram = [Token]

type Line = [Token]

type Document = [Line]

type Corpus = [Document]

-- Constants --

docDelim :: T.Text

docDelim = T.pack "@@"

lineDelim :: T.Text

lineDelim = T.pack " . "

space :: T.Text

space = T.pack ""

threeDots :: T.Text

threeDots = T.pack ". . ."

fourDots :: T.Text

fourDots = T.pack ". . . ."

startDelim :: T.Text

startDelim = T.pack "<s/>"

smooth :: Int

smooth = 13

gramWeight:: Double

gramWeight = 5



-- Utility Functions --

splitInto :: Int -> [e] -> [[e]]

splitInto n xs = Split.chunksOf ((ceiling :: Double -> Int) (fromIntegral ( length xs `div`

n)))  xs

delLast :: [a] -> [a]

delLast []     = error "Empty list!"

delLast [_]    = []

delLast (h:t)  = h : delLast t

listDir:: String -> IO[String]

listDir path = do

setCurrentDirectory path

cd <- getCurrentDirectory

putStrLn ("Entering directory at: " ++ show cd)

getDirectoryContents cd

lastN :: Int -> [a] -> [a]

lastN n xs = foldl (const . drop 1) xs (drop n xs)

addScores :: (Token, Double) -> (Token, Double) -> (Token, Double)

addScores (a, s1) (_, s2) = (a, (gramWeight * s1) + s2)

-- Parsing, Cleaning, and Tokenizing functions --

isSafeChar :: Char -> Bool

isSafeChar c = isAlpha c || isSpace c || c == '@' || c == '-' || c == '.'

elimDots :: T.Text -> T.Text

elimDots t = T.replace fourDots space (T.replace threeDots space t)

tokeniseDoc :: T.Text -> Document

tokeniseDoc t = map T.words (T.splitOn lineDelim t)

parseCorpus:: B.ByteString -> Corpus

parseCorpus file = do

let cleaned_corpus = decodeUtf8 (B.map toLower file)

let docs = T.splitOn docDelim cleaned_corpus

let text_docs = map elimDots docs

S.parMap S.rdeepseq tokeniseDoc text_docs

-- Functions to generate Ngrams --

computeNGramsPar :: Int -> Corpus -> [NGram]

computeNGramsPar n corpus = let preppedDocs = map (prepareforNGram n) corpus in concat

(concatMap (S.parMap S.rdeepseq (ngram n)) preppedDocs)

computeNGrams :: Int -> Corpus -> [NGram]

computeNGrams n corpus = let preppedDocs = map (prepareforNGram n) corpus in concat

(concatMap (map (ngram n)) preppedDocs)



prepareforNGram:: Int -> Document -> Document

prepareforNGram n = map (replicate n startDelim ++ )

ngram :: Int -> Line -> [NGram]

ngram n xs

| n <= length xs = take n xs : ngram n (drop 1 xs)

| otherwise = [xs]

-- Functions to generate maps of Ngram frequencies --

makeMaps :: Int -> [Corpus] -> [M.Map NGram Int]

makeMaps n  = S.parMap S.rdeepseq (createNGramMapPar n)

searchMaps :: NGram -> [M.Map NGram Int] -> Int

searchMaps gram maps = foldl (+) smooth (S.parMap S.rdeepseq (M.findWithDefault 0 gram)

maps)

computeNGramFrequencies :: Int -> Corpus -> M.Map NGram Int

computeNGramFrequencies n corp = let tupCounts = map (\x -> (x, 1::Int)) (computeNGrams n

corp)

histogram = M.toList $ M.fromListWith (+) tupCounts

in M.fromList histogram

computeNGramFrequenciesPar :: Int -> Int -> Corpus -> M.Map NGram Int

computeNGramFrequenciesPar nochunks n corp = let chunks = splitInto nochunks corp in foldl

(M.unionWith (+)) M.empty (S.parMap S.rdeepseq (computeNGramFrequencies n) chunks)

createNGramMapPar :: Int -> Corpus -> M.Map NGram Int

createNGramMapPar n corp = let mps = S.parMap S.rdeepseq (flip (computeNGramFrequenciesPar

8) corp) [1..n] in foldl (M.unionWith (+)) M.empty mps

createNGramMap :: Int -> Corpus -> M.Map NGram Int

createNGramMap n corp = let mps = map (`computeNGramFrequencies` corp) [1..n] in foldl

(M.unionWith (+)) M.empty mps

-- Functions for Tries --

makeForest :: [String] -> IO [Trie]

makeForest filteredDirs = do

let docs = map TIO.readFile filteredDirs

let tok = TL.splitOn (TL.pack " ")

let fn =  (return::(a -> IO a)) (tok.TL.toLower) -- lowercase

let ws = map (fn <*>) docs

sequence (S.parMap S.rpar (return buildTreeT <*>) ws)

generateMatches :: String -> [Trie] ->  [(String,Int)]

generateMatches sent tries = concat $ S.parMap S.rdeepseq (prefixNodePar 0 sent "") tries

insertTrieT :: TL.Text -> Trie -> Trie

insertTrieT _ Empty = error "insert into empty Trie"

insertTrieT txt (Node bool count tmap)

| txt == TL.empty = Node True (count + 1) tmap



| M.member x tmap = let map' = M.insert x (insertTrieT xs (tmap M.! x)) tmap in (Node

bool count map')

| otherwise = let map' = M.insert x (insertTrieT xs (Node False 0 M.empty)) tmap in

(Node bool count map')

where

x = TL.head txt

xs = TL.tail txt

insertTrie :: String -> Trie -> Trie

insertTrie _ Empty = error "insert into empty Trie"

insertTrie (x:xs) (Node bool count tmap)

| M.member x tmap = let map' = M.insert x (insertTrie xs (tmap M.! x)) tmap in (Node

bool count map')

| otherwise = let map' = M.insert x (insertTrie xs (Node False 0 M.empty)) tmap in

(Node bool count map')

insertTrie [] (Node _ count tmap) = Node True (count + 1) tmap

prefixNodePar :: Int -> String -> String -> Trie -> [(String, Int)]

prefixNodePar depth [] scat (Node isEnd count children) = prefixSearchPar depth (scat, (Node

isEnd count children))

prefixNodePar depth (x:xs) scat (Node _ _ children)

| M.member x children = prefixNodePar depth xs (x:scat) (children M.! x)

| otherwise = []

prefixNodePar _ _ _ _ = error "args"

prefixSearchSeq::(String, Trie) -> [(String,Int)]

prefixSearchSeq (scat, (Node isEnd count children)) = let childList = zipWith (\a b -> ((fst

a):b, snd a) ) (M.toList children) (replicate (length children) scat)

curr = if isEnd then scat else ""

in (curr, count):concatMap

prefixSearchSeq childList

prefixSearchSeq _ = error "args"

prefixSearchPar:: Int -> (String, Trie) -> [(String,Int)]

prefixSearchPar depth (scat, Node isEnd count children)

| depth > 0 = let childList = zipWith (\a b -> (fst a:b, snd a) ) (M.toList children)

(replicate (length children) scat)

curr = if isEnd then scat else ""

in (curr, count): (concat $ S.parMap S.rseq (prefixSearchPar (depth

- 1)) childList)

| otherwise = prefixSearchSeq (scat, (Node isEnd count children))

prefixSearchPar _ _ = error "empty"

buildTree :: [String] -> Trie

buildTree = foldl (flip insertTrie) (Node True 0 M.empty)

buildTreeT :: [TL.Text] -> Trie

buildTreeT = foldl (flip insertTrieT) (Node True 0 M.empty)

-- Functions to generate predictions --



getPrediction :: String -> [M.Map NGram Int] -> [Trie] -> String

getPrediction [] _ _ = "Error: invalid input"

getPrediction sent mps tries = fst $ last' (sortOn snd scores) where

sentence = map T.pack (words sent)

curNgram = delLast sentence

lst = last sentence

guesses = map (\x -> (T.pack $ reverse $ fst x, snd x)) (generateMatches (T.unpack

lst) tries)

scores = S.parMap S.rdeepseq (\x -> (T.unpack $ fst x, snd x)) (map (getScore

curNgram mps) guesses)

last' :: [(String, Double)] -> (String, Double)

last' [] = ("Error: Unable to complete word", 0.0)

last' [x] = x

last' (_:xs) = last' xs

getScore :: NGram -> [M.Map NGram Int] -> (Token, Int) -> (Token, Double)

getScore curNgram mps token

| length curNgram > 2 = let twoGramScore = score (lastN 2 curNgram) mps token

nGramScore =  score curNgram mps token

in addScores nGramScore twoGramScore

| otherwise = score curNgram mps token

score :: NGram -> [M.Map NGram Int] -> (Token, Int) -> (Token, Double)

score curNgram mps (guess, _) = let freq = searchMaps (curNgram ++[guess]) mps in (guess,

fromIntegral freq / fromIntegral (searchMaps curNgram mps))

-- Driver Functions --

makeCorpi :: [String] -> IO [Corpus]

makeCorpi filteredDirs = do

let docs = map B.readFile filteredDirs

let fn = (return::(a -> IO a)) parseCorpus

-- let fn =  (return::(a -> IO a)) (words.(map toLower.filter

isSafeChar))

let corpi = S.parMap S.rpar (fn <*>) docs

sequence corpi

drive :: Int -> IO ()

drive n  = do

args <- getArgs

dirName <- case args of

[fn] -> return fn

_ -> do pn <- getProgName

die $ "Usage: "++pn++" <corpus-directory>"

dirs <- listDir dirName -- directory of files

let filteredDirs = filter (\x -> x /= "." && x /= "..") dirs



start <- getCurrentTime

tries <- makeForest filteredDirs

corpi <- makeCorpi filteredDirs

let maps = makeMaps n corpi

let prediction = getPrediction "he was y" maps tries -- dummy prediction to force

language model to be built fully

end <- prediction `deepseq` getCurrentTime

putStrLn ("language model built successfully in " ++ show (diffUTCTime end start))

_ <- printPredictions maps tries

return ()

printPredictions :: [M.Map NGram Int] -> [Trie] -> IO b

printPredictions maps tries = do

putStrLn "enter a prefix: "

prefix <- getLine

-- putStrLn ("prediction for: " ++ prefix)

let prediction = getPrediction prefix maps tries

putStrLn prediction

printPredictions maps tries

Main.hs

module Main (main) where

import Lib

main:: IO()

main = drive 5 -- up to of n-grams to use

Package.yaml

name: PFP2022

version: 0.1.0.0

github: "githubuser/PFP2022"

license: BSD3

author: "Author name here"

maintainer: "example@example.com"

copyright: "2022 Author name here"

extra-source-files:

- README.md

- CHANGELOG.md

# Metadata used when publishing your package

# synopsis:            Short description of your package

# category:            Web



# To avoid duplicated efforts in documentation and dealing with the

# complications of embedding Haddock markup inside cabal files, it is

# common to point users to the README.md file.

description: Please see the README on GitHub at

<https://github.com/githubuser/PFP2022#readme>

dependencies:

- base >= 4.7 && < 5

- parallel

- text

- bytestring

- split

- containers

- directory

- mtl

- deepseq

- directory

- time

ghc-options:

- -Wall

- -Wcompat

- -Widentities

- -Wincomplete-record-updates

- -Wincomplete-uni-patterns

- -Wmissing-export-lists

- -Wmissing-home-modules

- -Wpartial-fields

- -Wredundant-constraints

- -eventlog

library:

source-dirs: src

executables:

PFP2022-exe:

main: Main.hs

source-dirs:         app

ghc-options:

- -threaded

- -rtsopts

- -with-rtsopts=-N

dependencies:

- PFP2022

tests:

PFP2022-test:

main: Spec.hs

source-dirs:         test

ghc-options:

- -threaded



- -rtsopts

- -with-rtsopts=-N

dependencies:

- PFP2022


