
Parallelizing a Maze Solver using an A * Search Algorithm

Reid Jesselson

Introduction

The first step for the project was to create a sequential maze solving program that utilized an A*
search algorithm. The program I wrote takes a file as a command line arguments, reads the maze
information from the file, then runs each maze through an A* maze solving function
sequentially. The file containing the mazes is formatted such that each line contains a maze. The
mazes are formatted with the following rules. The start of the maze is always the top right corner
and the solution to the maze is always the bottom right corner. The maze is depicted as a 2D
array of 1’s and 0’s in which 1’s represent open space and 0’s represent walls.

Obtaining the mazes

The first problem I had to address was finding a suitable data set of mazes to use in my solver,
then convert the mazes to the correct format in the file I need. Eventually, I was able to find an
open source maze generator in java that outputted the mazes as 2d arrays in a manner similar to
what I needed. After some modifications, I was able to change the program to output the mazes
in the proper format. This allowed me to generate the necessary mazes of any dimension.

A* Algorithm

As mentioned above, I utilized an A* algorithm to solve the mazes for this project. The steps to
the A* algorithm for solving a maze are as follows

1. Initiate the openlist to contain your starting node and the closedlist to be the empty list
2. Pop the first node of the openlist, call it n
3. Find all neighbors of n that are on the maze and are not walls
4. For each neighbor

a. If the neighbor is the end node, stop searching and recursively determine the route
through the maze

b. Otherwise, calculate the heuristic, which is equal to the distance traveled so far +
the manhattan distance to the end node

c. If there does not already exists a node on the closedlist or openlist with a lower
heuristic value than this node, add it to the open list

5. Put no on the closed list
6. Sort the open list by ascending heuristic value
7. Repeat steps 2 - 6

First Approach

The first approach to parallelizing the maze solved consisted of solving a large number of mazes
in parallel. To do this, the parMap function was used to iterate through the list of mazes to be
solved, generating a spark for each maze. The results comparing the sequential maze solver to
this iteration of the parallel maze solver are shown below:

When tested on solving 500 100x100 mazes, the sequential maze solver took ~19 seconds to
solve all 500 mazes. The output and threadscope can be viewed below.

When tested on solving 500 100x100 mazes, the parallel maze solver utilizing 2 cores took
~12.5 seconds to solve all 500 mazes. This gives a speedup of 19/12.5 ~= 1.52. The output and
threadscope can be viewed below. 500 sparks in total were generated (1 for each of the 500
mazes) and each spark was converted.

When tested on solving 500 100x100 mazes, the parallel maze solver utilizing 4 cores took ~7.1
seconds to solve all 500 mazes. This gives a speedup of 19/7.1 ~= 2.67. The output and
threadscope can be viewed below. Again, 500 sparks in total were generated and each spark was
converted.

When tested on solving 500 100x100 mazes, the parallel maze solver utilizing 16 cores took
~6.1 seconds to solve all 500 mazes. This gives a speedup of 19/6.1 ~= 3.11. The output and
threadscope can be viewed below. Again, 500 sparks in total were generated and each spark was
converted.

When tested on solving 500 100x100 mazes, the parallel maze solver utilizing 24 cores took ~6.7
seconds to solve all 500 mazes. This gives a speedup of 19/7.2 ~= 2.83. The output and
threadscope can be viewed below. Again, 500 sparks in total were generated and each spark was
converted.

Significant speedups occurred in the parallel implementation of the maze solver for each number
of cores used. The full chart can be found below.

of Cores Runtime (Speed Up)

Sequential (1 Core) 19 seconds (1)

Parallel (2 Cores) 12.5 seconds (1.52)

Parallel (4 Cores) 7.1 seconds (2.67)

Parallel (16 Cores) 6.1 seconds (3.11)

Parallel (24 Cores) 6.7 seconds (2.83)

Next Approach

Now that I had parallelized the solving of multiple mazes, I wanted to parallelize my algorithm
for solving an individual maze of a large size. A* is inherently a somewhat difficult algorithm to
parallelize, but there are a few different methods to consider. The first approach I chose was the
evaluation of the heuristic. In the A* search algorithm, the calculation of the heuristic is typically
a very time consuming step. Because of this, being able to calculate the heuristic of multiple
nodes in parallel should yield a significant decrease in runtime. To do this, once the neighbor
nodes had been calculated for the node on the front of the open list in our A* algorithm, instead
of sequentially calculating the heuristic for each node, parMap was used to calculate the heuristic
for each node in parallel. The results comparing this implementation of calculating the heuristic
in parallel vs sequential are shown below.

When tested on solving a 500x500 maze, the sequential maze solver took ~14.5 seconds to solve
all 500 mazes. The output and threadscope can be viewed below.

When tested on solving a 500x500 maze, the parallel maze solver utilizing 2 cores took ~18.3
seconds to solve all 500 mazes. This gives a speedup of 14.5/18.3 = .79, showing that this
parallel implementation leads to an increase in runtime. We will analyze that further later on in
the report. The output and threadscope can be viewed below. In total 68,385 sparks were
generated. Of those 28603 were converted, 39686 were GC’d and 96 fizzled.

When tested on solving a 500x500 maze, the parallel maze solver utilizing 4 cores took ~18.1
seconds to solve all 500 mazes. This gives a speedup of 14.5/18.1 = .81. This is slightly faster
than the implementation with 2 cores, but still significantly slower than the sequential
implementation. The output and threadscope can be viewed below. In total 68,385 sparks were
generated. Of those 28614 were converted, 39693 were GC’d and 78 fizzled. The total number of
sparks, and the result is very similar to the 2 core implementation.

We did not find speed ups in any of the parallel implementations of the maze solver for each
number of cores used. The full chart can be found below.

of Cores Runtime (Speed up)

Sequential (1) 14.5 (1)

Parallel (2) 18.3 (.79)

Parallel (4) 18 (.81)

Conclusions

For solving a large number of mazes in parallel my algorithm worked very well. The speedup
factor increased with the number of cores before steady leveling off at just above a factor of 3. A
speedup factor of 3.11 for 16 cores indicates that my algorithm for parallelizing the solving of
mazes is effective.

For solving a large, individual maze my algorithm did not work as I had hoped. From the data
above, we can see that parallelizing the calculation of the heuristic for the nodes being expanded
did not lead to the desired decrease in run time. In fact, it actually led to a slight increase in
runtime for both the 2 and 4 core implementations. This is likely due to the fact that the inherent
overhead required by using parMap is greater than the benefits of using a parallel
implementation to calculate the heuristic. The reason this is the case is because I was only able to
calculate at most 4 (for the 4 neighboring cells) heuristics concurrently, thus we were only
running parMap on lists of length 4 or less. I was unable to discover a way to efficiently calculate
all of the heuristics at once in parallel, then be able to access them when necessary throughout
the algorithm. Overall, this aspect of the project did not go the way I had hoped.

There is certainly opportunity to speedup the individual maze solving problem. One possibility I
considered was using a Divide and Conquer approach, where a larger maze is divided in several
smaller mazes. These smaller mazes are solved in parallel, then the individual solutions are
combined to find an overall solution to the larger maze. However, I was unable to determine how
to best select the (start,end) pairs for each of the smaller mazes to ensure that a solution to the
maze would be found should one exist. Another possibility I investigated was parallelizing the
selection of the nodes from the openlist in A*. (I.E. expanding on multiple nodes in parallel) But
my implementation of this led to a very significant increase in runtime.

Code Listing Part 1(Solving Multiple Mazes in Parallel)

import Control.Exception

import System.Environment

import Data.Maybe

import Data.List (sortBy)

import Data.Ord (comparing)

import Data.Char (digitToInt)

import Data.List.Split (splitOn)

import Control.Parallel.Strategies hiding (parMap)

import Control.Seq as Seq

import Control.DeepSeq

type Maze = [[Int]]

type Coord = (Int, Int)

type Route = [Coord]

data Node = Node { pos :: Coord,

d :: Int,

f :: Int,

parent :: Coord

} deriving (Eq, Show)

getValidNeighbors :: Coord -> Maze -> [Coord]

getValidNeighbors (x, y) maze = filter (isOpen maze) [(x1, y1) | (x1,y1)

<- [(x+1,y),(x-1,y),(x,y+1),(x,y-1)], x1 < (length maze), x1 >= 0, y1 <

(length (maze !! x)), y1 >= 0]

distance :: Coord -> Coord -> Int

distance (x1,y1) (x2,y2) = abs (x1 - x2) + abs(y1 - y2)

isOpen :: Maze -> Coord -> Bool

isOpen maze (x,y) = maze !! x !! y == 1

nodefilter :: Node -> [Node] -> Bool

nodefilter node nodes = any (\x -> pos x == pos node && f x <= f node)

nodes

sortByF :: [Node] -> [Node]

sortByF = sortBy (comparing f)

buildRoute :: Node -> Coord -> [Node] -> Route

buildRoute cur start nodes

| pos cur == start = [start]

| otherwise = (pos cur) : buildRoute (findNode (parent cur)

nodes) start nodes

findNode :: Coord -> [Node] -> Node

findNode cur (x:xs)

| cur == pos x = x

| otherwise = findNode cur xs

start :: Coord

start = (0,0)

solveMaze :: Maze -> Coord -> Coord -> [Node] -> [Node] -> Maybe Route

solveMaze maze cur end openList closedList

| openList == [] = Nothing

| cur == end = Just (reverse (buildRoute (head openList) start

closedList))

| otherwise =

let

curNode = head openList

neighbors = getValidNeighbors cur maze

neighborNodes = filter (not . checkClosed) [Node

{pos=x,d=(y+1),f=(y+1+(distance x end)),parent=cur} | x <- neighbors, let

y = d curNode]

where checkClosed n = nodefilter n (closedList ++

openList)

curOpenList = sortByF (tail openList ++ neighborNodes)

in solveMaze maze (pos (head curOpenList)) end curOpenList

(closedList ++ [(head openList)])

main :: IO()

main = do

[filename] <-getArgs

contents <- readFile filename

let mazeLines = lines contents

let mazeStrings = (map (map (splitOn ",")) (map (splitOn " ")

mazeLines))

let mazes = map (map (map (\x -> read x :: Int))) mazeStrings

print (length (filter isJust (deep $ runEval $ parMap solve

mazes)))

where solve maze = solveMaze maze start ((length maze)-1,(length

(maze !! 0))-1) [Node {pos=start,d=0,f=0,parent=start}] []

parMap :: (a -> b) -> [a] -> Eval [b]

parMap f [] = return []

parMap f (a:as) = do

b <- rpar (f a)

bs <- parMap f as

return (b:bs)

deep :: NFData a => a -> a

deep a = deepseq a a

Code List Part 2 (Solving an Individual Maze)

import Control.Exception

import System.Environment

import Data.Maybe

import Data.List (sortBy)

import Data.Ord (comparing)

import Data.Char (digitToInt)

import Data.List.Split (splitOn)

import Control.Parallel.Strategies (parMap, rseq)

type Maze = [[Int]]

type Coord = (Int, Int)

type Route = [Coord]

data Node = Node { pos :: Coord,

d :: Int,

f :: Int,

parent :: Coord

} deriving (Eq, Show)

getValidNeighbors :: Coord -> Maze -> [Coord]

getValidNeighbors (x, y) maze = filter (isOpen maze) [(x1, y1) | (x1,y1)

<- [(x+1,y),(x-1,y),(x,y+1),(x,y-1)], x1 < (length maze), x1 >= 0, y1 <

(length (maze !! x)), y1 >= 0]

distance :: Coord -> Coord -> Int

distance (x1,y1) (x2,y2) = abs (x1 - x2) + abs(y1 - y2)

isOpen :: Maze -> Coord -> Bool

isOpen maze (x,y) = maze !! x !! y == 1

nodefilter :: Node -> [Node] -> Bool

nodefilter node nodes = any (\x -> pos x == pos node && f x <= f node)

nodes

sortByF :: [Node] -> [Node]

sortByF = sortBy (comparing f)

buildRoute :: Node -> Coord -> [Node] -> Route

buildRoute cur start nodes

| pos cur == start = [start]

| otherwise = (pos cur) : buildRoute (findNode (parent cur)

nodes) start nodes

findNode :: Coord -> [Node] -> Node

findNode cur (x:xs)

| cur == pos x = x

| otherwise = findNode cur xs

start :: Coord

start = (0,0)

solveMaze :: Maze -> Coord -> Coord -> [Node] -> [Node] -> Maybe Route

solveMaze maze cur end openList closedList

| openList == [] = Nothing

| cur == end = Just (reverse (buildRoute (head openList) start

closedList))

| otherwise =

let

curNode = head openList

neighbors = getValidNeighbors cur maze

neighborNodes = parMap rseq getNeighborNodes neighbors

where getNeighborNodes x = Node {pos=x,d=((d

curNode) + 1),f=(((d curNode) + 1) + (distance x end)),parent=cur}

filt = filter (not . checkClosed) neighborNodes

where checkClosed n = nodefilter n (closedList ++

openList)

curOpenList = sortByF (tail openList ++ filt)

in solveMaze maze (pos (head curOpenList)) end curOpenList

(closedList ++ [(head openList)])

main :: IO()

main = do

args <- getArgs

case args of

[filename] -> do

contents <- readFile filename

let mazeLines = lines contents

let mazeStrings = (map (map (splitOn ",")) (map (splitOn

" ") mazeLines))

let mazes = map (map (map (\x -> read x :: Int)))

mazeStrings

print (length (filter isJust (map solve mazes)))

where solve maze = solveMaze maze start ((length

maze)-1,(length (maze !! 0))-1) [Node {pos=start,d=0,f=0,parent=start}] []

