
jar2333 MCTS.hs

Jose A. Ramos
jar2333
Parallel Functional Programming

Report: MCTS.hs

Introduction
For the final project, I implemented the Monte Carlo Tree Search1 general game playing

algorithm in Haskell, with support for parallelizing it using Haskell’s Control.Parallel.Strategies. The
library is provided as a module called MCTS in a stack package, and includes two executables: a
demo (player vs agent) and a simulation (agent vs agent), with tunable command line parameters.
For these executables, a sample usage of the library is provided: an implementation of a Connect 4
playing agent. As we will see, this choice of game severely limited the potential of big gains from the
specific form of parallelism employed, which will be discussed.

Algorithm
Monte Carlo Tree Search (MCTS) is an algorithm for playing any two player game. It

searches the game tree, where each node is a possible state of the game. The children of a node are
those game states which can be reached by a move from the current player. A node with no children
(a tree leaf) is a terminal state, where the outcome of the game is decided (who won and who lost).
Unlike other tree-based algorithms which prune the search space like Minimax2 variants, MCTS does
not require any heuristics or custom evaluation function for a given game. Instead, it “samples” the
outcome of a game from a given game state, by simulating an entire game starting at said
state—usually by randomly sampling moves until completion. This implies that the algorithm can be
applied to any two-player game, given that the rules of the game are known. More precisely, one has
to define a game state struct/object, which has any relevant game state information, along with a
few functions:

● One which takes a game state and returns all possible children.
● One which takes a terminal game state and returns the outcome of the game (or

returns something indicating that the state is not terminal).
● One which takes a game state, simulates an entire game to completion, and returns

the outcome of the game.

Implementation: Typeclass
The above description can be formalized in Haskell using typeclasses. The MCTS module

can define a GameState typeclass (given a Player data type):

data Player = One | Two | Tie deriving (Eq, Show)

2 https://en.wikipedia.org/wiki/Minimax
1 https://en.wikipedia.org/wiki/Monte_Carlo_tree_search

jar2333 MCTS.hs

class GameState g where

next :: g -> [g]

eval :: g -> Maybe(Player)

pick :: g -> [g] -> g

sim :: g -> Player

sim g = case next g of

[] -> case eval g of

Just result -> result

Nothing -> Tie

gs -> let picked = pick g gs

in case eval picked of

Just result -> result

Nothing -> sim picked

Any instance of this type class can be used in the MCTS algorithm, making the implementation as
generic as possible. An implementation of a Connect Four state is given, which is plugged into the
generic algorithm and works perfectly:

data (RandomGen r) => ConnectFourState r = State { board :: Matrix Color,

currentPlayer :: Color,

lastMove :: (Int, Int),

rng :: r }

instance (RandomGen r) => GameState (ConnectFourState r) where

next State{board=b, currentPlayer=p, rng=r} = states

where

states = zipWith (\childBoard move -> State childBoard nextPlayer move newRNG) boards indeces

nextPlayer = other p

newRNG = snd $ split r

boards = map (\(i,j) -> setElem p (i,j) b) indeces

indeces = zip rowIndeces colIndeces

rowIndeces = map (place b) colIndeces

colIndeces = filter (\j -> (getElem 1 j b) == Blank) [1..ncols b]

eval State{board=b, currentPlayer=p, lastMove=l} = if isRun

then Just(toPlayer $ other p)

else Nothing

where

-- If a run is encountered, last move completed it, hence last player won

isRun = maxRun sndDiag >= 4 || maxRun fstDiag >= 4 || maxRun row >= 4 || maxRun col >= 4

sndDiag = [getElem (r+i) (c+j) b | (i, j) <- zip [-7..7] [7,6..(-7)], 1 <= r+i && r+i <= 6 && 1

<= c+j && c+j <= 7]

fstDiag = [getElem (r+i) (c+j) b | (i, j) <- zip [-7..7] [-7..7], 1 <= r+i && r+i <= 6 && 1 <=

jar2333 MCTS.hs

c+j && c+j <= 7]

row = Data.Vector.toList $ getRow r b

col = Data.Vector.toList $ getCol c b

(r, c) = l

pick State{rng=r} states = states !! i

where (i, _) = uniformR (0 :: Int, length states - 1) r

Implementation: Monads
In the implementation of the algorithm as presented in the MCTS wikipedia page (or more

authoritatively, this Swarthmore page3), the algorithm is characterized as a sequence of N
transformations applied to the game tree. Each transformation can be described imperatively as 4
steps:

1. Selection: walk down the game tree and
select a leaf node using UCB formula.

2. Expansion: expand the leaf node and
add n of its children to the tree.

3. Simulation: simulate games starting
from each of the n children.

4. Backpropagation: propagate the
simulation results up the tree.

After N iterations of the above process, the root node’s child with the highest score is chosen as the
next state to be reached. In my current implementation, the selection and backpropagation occur in
the same function walk, which recursively walks down the tree to a leaf node, uses the State monad
to store the simulation results obtained at said leaf as a state, then reconstructs or “updates” the
current node’s information using the state. The step function is simply an invocation of evalState on
the results of walk. The full generic mcts function utilizes this step function as its primitive.

Library

The primary exported function besides pretty printing and testing functions from the MCTS. The
function takes some parameters to tune the tree search:

● Iterations: the number of times that a full MCTS iteration is performed on the root node to
expand the game tree.

● Rollout: The number of nodes that are simulated in the Simulation step from the children
added in the Expansion step.

● First: The player who moves at the root of the game tree (moves first).

3 https://www.cs.swarthmore.edu/~mitchell/classes/cs63/f20/reading/mcts.html

jar2333 MCTS.hs

-- Number of iterations, number of rollouts, initial player, starting state

mcts :: GameState g => Int -> Int -> Player -> g -> g

mcts iter rollout first s = gameState choice

where choice = getGameData $ maximumBy (compare `on` getScore . getGameData) ch

Node _ ch = applyNtimes iter (step rollout) $ root first s

Implementation: Parallelism
According to the wikipedia article, there are 3 main ways to parallelize MCTS:

● Leaf parallelization, i.e. parallel execution of many playouts from one leaf of the game tree.
● Root parallelization, i.e. building independent game trees in parallel and making the move

based on the root-level branches of all these trees.
● Tree parallelization, i.e. parallel building of the same game tree…

Of these, leaf parallelization was the one implemented in the project. This was accomplished by
using Control.Parallel.Strategies. An evaluation strategy was plugged into the expression which
simulates the rollout children nodes in the Simulation step:

let results = map sim toSimulate `using` parList rseq --parallelism

Using threadscope, we can compare the performance of the simulation executable when run on 1, 2,
and 4 cores. The command run was
stack exec MCTS-simulation 5000 6 209 -- +RTS -ls -C0.01 -NX

Where X was the number of cores that were to be used in the execution of the simulation. Two
MCTS agents played against each other until a game was completed.

From the profiling, it can be seen that sparks were consumed in the two core and four core runs.
Nevertheless, the time taken only increased. This can partially be explained by the simplicity of
connect four. Since only leaf parallelization was implemented, the parallelization was used to
distribute the simulations across the different cores. However, due to the fact that simulation is not
an intensive part of MCTS for Connect Four, the overhead of spark scheduling overtook any
benefits that leaf parallelization could have offered. In the future, more complex games with more
resource intensive simulations could be tried. In the case of Connect Four, ever move necessarily
brings the game closer to ending. For something like chess, this is not necessarily the case, and as
such a uniform random playout may take a very very long time.
One Core (-N1):

jar2333 MCTS.hs

jar2333 MCTS.hs

Two Cores (-N2):

jar2333 MCTS.hs

Four Cores (-N4):

jar2333 MCTS.hs

Code Listing:

src/MCTS.hs

-- stack --resolver lts-19.23 ghci

module MCTS

(

Player(..),

opposing,

GameState,

next,

eval,

pick,

sim,

mcts,

drawGameTree,

testMCTS,

testStep

) where

{-# LANGUAGE InstanceSigs #-}

import Control.Monad.State

import Data.Tree

import Data.List(sortBy, maximumBy)

import Data.Function

import Control.Parallel.Strategies

data Player = One | Two | Tie deriving (Eq, Show)

class GameState g where

next :: g -> [g] -- gets gamestates available from given

eval :: g -> Maybe(Player) -- determines the winner of the given gamestate

pick :: g -> [g] -> g -- picks a gamestate from a list of available ones

sim :: g -> Player -- gets outcome of a game state (default is simulation)

sim g = case next g of

[] -> case eval g of

Just result -> result

Nothing -> Tie

jar2333 MCTS.hs

-- if nothing new is possible, and no clear outcome, it's a Tie

gs -> let picked = pick g gs

in case eval picked of

Just result -> result

Nothing -> sim picked

opposing :: Player -> Player

opposing One = Two

opposing Two = One

opposing Tie = Tie

-- Number of iterations, number of rollouts, initial player, starting state

mcts :: GameState g => Int -> Int -> Player -> g -> g

mcts iter rollout first s = gameState choice

where choice = getGameData $ maximumBy (compare `on` getScore .

getGameData) ch

Node _ ch = applyNtimes iter (step rollout) $ root first s

-- MCTS Data Structures

-- Holds info relevant to MCTS in each node of the tree

data GameData g = GameData {wins :: Int, total :: Int, player :: Player,

gameState :: g}

showGameData :: Show g => GameData g -> String

showGameData (GameData w t p g) = show w ++ ", " ++ show t ++ ", " ++ show p ++

", " ++ show g

getScore :: GameData g -> Double

getScore GameData{wins=w, total=t} = (fromIntegral w) / (fromIntegral t) ::

Double

type GameResult = Player

-- Takes a game result specifying the win amount and player who won to update

game data

updateWins :: GameResult -> GameData g -> GameData g

updateWins pl (GameData w t p g)

| p == pl = GameData (w+1) (t+1) p g

| otherwise = GameData w (t+1) p g

jar2333 MCTS.hs

-- The MCTS game tree which is incrementally created

type GameTree g = Tree (GameData g)

drawGameTree :: Show g => Tree (GameData g) -> String

drawGameTree = drawTree . fmap showGameData

getGameData :: GameTree g -> GameData g

getGameData = rootLabel

root :: Player -> g -> GameTree g

root p g = Node (GameData 0 0 p g) []

-- MCTS Algorithm

-- Number of rollouts, and a game tree

step :: GameState g => Int -> GameTree g -> GameTree g

step r t = evalState (walk t) ([], r)

ucb :: GameData g -> GameData g -> Double

ucb GameData{total=p_total} GameData{wins=c_wins, total=c_total} = (w / n) + c

* sqrt (log np / n)

where n = fromIntegral c_total --infinity when 0: desired behavior!

np = fromIntegral p_total

w = fromIntegral c_wins

c = sqrt (2.0 :: Double)

-- Returns a list of child GameData from given GameData

possibleMoves :: GameState g => GameData g -> State ([GameResult], Int)

[GameData g]

possibleMoves GameData{gameState=g, player=p} = do

(_, rollout) <- get

let states = next g

let (toSimulate, other) = splitAt rollout states

let results = map sim toSimulate `using` parList rseq --parallelism

let simulatedChildren = zipWith updateWins results [GameData 0 0 (opposing

p) gs | gs <- toSimulate]

let otherChildren = [GameData 0 0 (opposing p) gs | gs <- other]

jar2333 MCTS.hs

put (results, rollout)

return $ simulatedChildren ++ otherChildren

-- Returns a list of children tree nodes created from given node's game state

expand :: GameState g => GameTree g -> State ([GameResult], Int) [GameTree g]

expand (Node d ch) = do

if total d == 0 --if never visited

then return [] --we create no children (part of MCTS)

else do

moves <- possibleMoves d

let newChildren = [Node cd [] | cd <- moves]

return $ ch++newChildren

-- Takes a tree, traverses to a leaf using UCB, then expands it

-- Use the state monad to propagate upwards the list of winning player in

simulated/evaluated nodes as a state

walk :: GameState g => GameTree g -> State ([GameResult], Int) (GameTree g)

walk n@(Node d []) = do -- Leaf node

newChildren <- expand n

case newChildren of

-- If no tree children created, simulate game from leaf and update it with

results

[] -> do

let result = sim $ gameState d

(_, rollout) <- get

put ([result], rollout)

let updatedData = updateWins result d

return $ Node updatedData []

-- If tree children created, some games were simulated. Update current node

with sim results.

ch -> do

(results, _) <- get

let updatedData = foldr updateWins d results

return $ Node updatedData ch

walk (Node d ch) = do -- Branch node

updatedChild <- walk selected

(results, _) <- get

let children = updatedChild:rest

let updatedData = foldr updateWins d results

return $ Node updatedData children

where

jar2333 MCTS.hs

selected:rest = sortBy compareUCB ch

compareUCB = compare `on` ((*(-1)) . ucb d . getGameData) --max

instead of min hence *-1

-- TESTING

testStep :: (Show g, GameState g) => Int -> Int -> Player -> g -> IO ()

testStep n r p g = (putStrLn . drawGameTree) (applyNtimes n (step r) $ root p

g)

testMCTS :: (Show g, GameState g) => Int -> Int -> Player -> g -> IO ()

testMCTS n r p g = print $ mcts n r p g

-- Helpers

-- From https://gist.github.com/thekarel/9964975

applyNtimes :: (Num n, Ord n) => n -> (a -> a) -> a -> a

applyNtimes 1 f x = f x

applyNtimes n f x = f (applyNtimes (n-1) f x)

jar2333 MCTS.hs

src/ConnectFour.hs

module ConnectFour (

simulation,

game,

initial

) where

import MCTS

import Data.Matrix

import System.Random

import Data.Vector(findIndex, toList)

-- CONNECT 4 IMPLEMENTATION

data Color = Red | Yellow | Blank deriving (Eq)

instance Show Color where

show Red = "R"

show Yellow = "Y"

show Blank = "."

other :: Color -> Color

other Red = Yellow

other Yellow = Red

other Blank = Blank

toPlayer :: Color -> Player

toPlayer Red = One

toPlayer Yellow = Two

toPlayer Blank = error "No corresponding player"

--

-- Game specific helpers

--

place :: Matrix Color -> Int -> Int

place brd = getRowIndex . findIndex (/= Blank) . \j -> getCol j brd

where getRowIndex (Just i) = i

getRowIndex Nothing = nrows brd

maxRun :: [Color] -> Int

maxRun [] = 0

maxRun lst@(h:_) = (case h of

jar2333 MCTS.hs

Blank -> 0

_ -> length run) `max` maxRun rest

where (run, rest) = span (== h) lst

--

-- MCTS GameState instance definitions!

--

data (RandomGen r) => ConnectFourState r = State { board :: Matrix Color,

currentPlayer :: Color,

lastMove :: (Int, Int),

rng :: r }

instance (RandomGen r) => Show (ConnectFourState r) where

show (State b p l _) = "\n" ++ show b ++ "\ncurrent player: " ++ show p ++

"\nlast move: " ++ show l

instance (RandomGen r) => GameState (ConnectFourState r) where

next State{board=b, currentPlayer=p, rng=r} = states

where

states = zipWith (\childBoard move -> State childBoard nextPlayer

move newRNG) boards indeces

nextPlayer = other p

newRNG = snd $ split r

boards = map (\(i,j) -> setElem p (i,j) b) indeces

indeces = zip rowIndeces colIndeces

-- Get colummns corresponding to indeces then

-- find index of first row that isn't blank

rowIndeces = map (place b) colIndeces

-- Get column indeces where there is space

colIndeces = filter (\j -> (getElem 1 j b) == Blank) [1..ncols b]

eval State{board=b, currentPlayer=p, lastMove=l} = if isRun

then Just(toPlayer $ other p)

else Nothing

where

-- If a run is encountered, last move completed it, hence last

player won

isRun = maxRun sndDiag >= 4 || maxRun fstDiag >= 4 || maxRun row

>= 4 || maxRun col >= 4

sndDiag = [getElem (r+i) (c+j) b | (i, j) <- zip [-7..7]

jar2333 MCTS.hs

[7,6..(-7)], 1 <= r+i && r+i <= 6 && 1 <= c+j && c+j <= 7]

fstDiag = [getElem (r+i) (c+j) b | (i, j) <- zip [-7..7] [-7..7],

1 <= r+i && r+i <= 6 && 1 <= c+j && c+j <= 7]

row = Data.Vector.toList $ getRow r b

col = Data.Vector.toList $ getCol c b

(r, c) = l

pick State{rng=r} states = states !! i

where (i, _) = uniformR (0 :: Int, length states - 1) r

initial :: Int -> ConnectFourState StdGen

initial seed = State (matrix 6 7 $ _ -> Blank) Red (-1,-1) (mkStdGen seed)

-- ENTRY POINT

game :: Int -> Int -> ConnectFourState StdGen -> Int -> IO ()

game n rollout s@(State b _ _ r) turn = do

putStrLn $ "Turn " ++ show turn ++ ":\nPlayer's turn (choose a column): "

++ show s ++ "\n"

j <- readLn :: IO Int

let i = place b j

let playerState = State (setElem Red (i,j) b) Yellow (i,j) r

putStrLn $ show playerState ++ "\n"

-- win check

case eval playerState of

Just(One) -> putStrLn "Player Win!"

_ -> do

putStrLn $ "Turn " ++ show (turn+1) ++ ":\nComputer's turn: \n"

let newState = mcts n rollout Two playerState

putStrLn $ show newState ++ "\n"

-- win check

case eval newState of

Just(Two) -> putStrLn "Computer Win!"

_ -> game n rollout newState (turn+2)

simulation :: Int -> Int -> ConnectFourState StdGen -> Int -> IO ()

simulation n rollout s@(State _ current _ _) turn = do

let player = toPlayer current

putStrLn $ "Turn " ++ show turn ++ ":\nPlayer " ++ show player ++"'s turn

(choose a column): " ++ show s ++ "\n"

jar2333 MCTS.hs

let newState = mcts n rollout player s

putStrLn $ show newState ++ "\n"

-- win check

case eval newState of

Just(p) | p == player -> putStrLn $ "Player " ++ show player ++ "(" ++

show current ++ ")" ++ " Win!"

_ -> simulation n rollout newState (turn+1)

jar2333 MCTS.hs

app/demo/Main.hs

module Main (main) where

import ConnectFour

import System.Environment(getArgs)

main :: IO ()

main = do

args <- getArgs

let arg1:arg2:arg3:_ = args

let n = (read arg1) :: Int

let rollout = (read arg2) :: Int

let seed = (read arg3) :: Int

let initialState = initial seed

putStrLn $ "MCTS DEMO: CONNECT 4"

putStrLn $ "Warning: no bounds checking on user input yet please be kind to

me."

game n rollout initialState 1

app/simulation/Main.hs

module Main (main) where

import ConnectFour

import System.Environment(getArgs)

main :: IO ()

main = do

args <- getArgs

let arg1:arg2:arg3:_ = args

let n = (read arg1) :: Int

let rollout = (read arg2) :: Int

let seed = (read arg3) :: Int

putStrLn $ "MCTS SIMULATION: CONNECT 4"

simulation n rollout (initial seed) 1

jar2333 MCTS.hs

