
Gomokuku4KokoPuffs

Matthew Retchin (mhr2145)

December 2022

1 Overview

In this project, I implemented the classic minimax search algorithm with alpha-
beta pruning in Haskell, applying it to the classic Japanese board game of
Gomoku. I parallelize minimax to improve its performance.

Please note that some of the material in this writeup has been borrowed
from my proposal, which is why some sentences herein may appear familiar to
someone who has also read the proposal.

2 Background

Gomoku is a turn-based abstract strategy game that has been played for hun-
dreds of years. Gomoku is played on a Go board, an even older game, but it
has simpler rules than Go. Players take turns placing black and white stones
on a grid, attempting to place five stones in a row of the same color while also
preventing their opponent from doing the same. The first player is black and
must place their stone in the middle of the board. So-called ”overlines”, which
are lines longer than 5, do not win the game. The game only concludes when a
row of five has been produced from either player. Lines may proceed up, down,
or diagonally along the points of the grid. [1]

It is typically very difficult to beat a really good human Gomoku player
with a computer algorithm due to the high branch factor of its game tree. One
way to deal with this high branch factor is to employ DeepMind’s approach
with AlphaZero, which is to use a neural network combined with Monte Carlo
(game) tree search, also known as MCTS. [2]

While I didn’t use a neural network or MCTS for my project, I did use a
simpler game tree search algorithm known as minimax search combined with
some optimizations. Minimax search is a strategy for adversarial turn-based
games like Gomoku that relies on the minimax decision rule. As we minimize
our loss, we assume that our opponent’s goal is to maximize our loss. And we
assume that our opponent operates under the assumption that we are minimiz-
ing our loss. And so on; indeed, minimax is a recursive algorithm. Each possible
move/board state exists within a tree, and our objective is to search this tree
until we reach the leaves (completed games) with the minimum loss. If we can’t

1

reach the leaves in a reasonable amount of time, which often happens for games
with a high branch factor like Gomoku, then I use a heuristic on the incomplete
board state to determine the state’s value. As we will see, the speed of heuristic
has a highly significant effect on the AI’s performance overall.

Below is imperative Pythonic pseudocode for the sequential version of min-
imax (from Wikipedia) [3]:

1 def alphabeta(node , depth , alpha , beta , is_max):

2 if depth == 0 or node is terminal:

3 return heuristic_value(node)

4

5 if is_max:

6 value = -infinity

7 for child in node.children:

8 value = max(value , alphabeta(child , depth - 1, alpha ,

beta , False))

9 if value >= beta:

10 break

11 alpha = max(alpha , value)

12 return value

13 else:

14 value = infinity

15 for child in node.children:

16 value -= min(value , alphabeta(child , depth - 1, alpha ,

beta , True))

17 if value <= alpha:

18 break

19 beta = min(beta , value)

20 return value

21

22 alphabeta(root , depth , -infinity , infinity , True) # initial call

like so

As is apparent by the sequential for-loops, what’s tricky about parallelizing
alpha-beta pruned minimax is that it’s fundamentally a sequential algorithm.
You save work by skipping branches of the search tree you’ve already determined
aren’t worth checking — this serial nature of alpha-beta pruning is what makes
it an effective optimization for minimax. The solution I chose is to parallelize
vanilla minimax (without pruning) up to a certain depth in the search tree, after
which we switch to a sequential version and introduce alpha-beta pruning.

As mentioned, Gomoku has an exceedingly high branch factor in its game
search tree, so to manage this branch factor, I came up with data structures
uniquely suited to the game. This reduced the time taken per move and time
per evaluation of the heuristic so that branch factor didn’t present as an issue
too much.

3 Method

I focused on speed instead of features for my project. In other words, I did
not implement a way for a human to play against the AI. Instead, I just have
the AI play against itself. However, to my eye, the moves the AI suggests are

2

fairly decent, and it would probably be a fairly challenging opponent to a human
player.

In my implementation, I took a great deal of inspiration from a previous
years’ project, Gomokururu [4]. Cleverly, they reduce the time taken by their
is-terminal function (in other words, the function that determines if a game has
finished) by only examining whether a 5-line can be found at the most recent
stone placed on the board. I used this approach and extended its use in a further
optimization.

This approach actually came in handy too with move ordering to optimize
the alpha-beta minimax search algorithm. Once finding the children of a given
node in the search tree, a good rule of thumb is to sort the children by using this
most-recent-move heuristic before running minimax recursively on them one by
one, since the alpha-beta optimization is dependent on whether we get lucky in
a deeper level and reach a node that allows us to eschew searching the rest of
the children. If we order the children to start with, we can perhaps increase our
luck.

The data structures I used were as follows:

1 data Element = Empty | Black | White deriving (Enum , Show , Eq)

2

3 data Move = Move

4 { moveColor :: Element

5 , movePosition :: StonePosition

6 }

7

8 data Board = Board

9 { matrix :: Matrix

10 , blackStones :: StoneSet

11 , whiteStones :: StoneSet

12 , stones :: StoneSet

13 , mostRecentMove :: Move

14 }

The Element is an enum representing whether a space on the board’s grid
is empty or a black/white stone. The Move is a record of an Element and
a StonePosition, which isn’t shown but is simply a tuple of Ints. The most
interesting data structures is, however, the Board. The Board is a Matrix (a
vector of vectors containing Ints) and three HashSets representing the black
stones, the white stones, and all the stones. Finally, the Board keeps track of
its most recent move, which is used in the most-recent-move heuristic described
previously.

Excluding the minimax function, my program is fast because the sets allow
me to only consider the stones on the board, not the empty spaces that out-
number the stones, and the sets have near constant lookups and insertions, so
any operations involving the sets have a low overhead.

These stone sets are incredibly useful because when I compute my heuristic,
I can loop over the sets and have near-constant lookup to determine neighbors.
In addition, determining the legality of potential moves in order to generate
children of a board in the game tree is fast precisely because of the near-constant
lookup.

3

My heuristic takes advantage of the fast neighbor-lookup by generating all
possible combinations of directions (up, down, diagonal) and stones on the
board. For each stone, we go in each possible direction (both forwards and
reverse, since a stone could be in the middle of a line) until either a stone of a
different color is reached or an empty space is reached. Along the way, we count
the length of the line that is formed and associate those lengths with a range of
numbers.

Smaller lengths have small numbers, while large lengths (like 5, the winning
number) have huge numbers. We sum all these numbers together (being careful
to make all black lines positive and white lines negative), and that sum rep-
resents the value of a given board. As we will see in the results section, this
heuristic is already so fast that introducing parallelism doesn’t help the speed.
Below is an excerpt of the heuristic, the list comprehension generating all the
combinations of black stones and possible directions (up, down, diagonal) for
lines:

1 blackLines = [colorLine (pos , dir) Black | pos <- HSet.toList $
blackStones board , dir <- halfDirections]

Although this one line is fairly dense, you can hopefully see in this list
comprehension that I’m generating every combination of black stone position
(”pos”) and direction (”dir”).

To aid understanding of the heuristic, I’ve provided some Pythonic pseu-
docode:

1 def color_heuristic(board , color):

2 combinations = [(pos , dir) for pos in board.stones(color) for

dir in all_directions]

3 lines = map generate_line combinations

4 counts = map generate_counts lines

5 return sum(counts)

6

7 def heuristic(board):

8 return 2* color_heuristic(board , Black) - color_heuristic(board ,

White)

A minor detail to note is that I scale Black’s count slightly when I subtract
White’s count from it because Black went first; Black has an advantage. As an
illustrative example, suppose there is a board with four black stones and four
white stones on it. It would be deceptive to claim that this board’s heuristic
should be 0 based on the fact that 4 − 4 = 0. In fact, the first player to play
(Black) has the advantage, because in the next move, Black could place one
more stone and win. The heuristic for the board would then ideally be > 0,
in that case. We wouldn’t have this issue if our minimax game tree could be
infinitely deep — in that case, we could eliminate the scalar term and have a
truly zero-sum heuristic — but using infinite levels is an intractable approach.

3.1 Parallelism

After a lot of trial and error, I found that the optimal amount of parallelism
(where sparking and managing threads didn’t just introduce overhead) for this

4

project is in parallelizing the first level of the minimax search tree, while leaving
the rest of the search tree serial and using alpha-beta pruning. I did attempt
to parallelize the heuristic too, even limiting the size of the buffer of sparks,
but a parallel heuristic always hemorrhaged speed. Introducing parallelism into
the heuristic translated into a lot of additional overhead for no demonstrable
benefit.

4 Results

I’ve used the open source program Threadscope [5] to analyze how helpful par-
allelism is in improving the performance of my algorithm. Unfortunately, as is
clear from the figures, the lion’s share of the program runtime is dominated by
serial processing. The part of the program that benefits from parallelize can
only improve performance so much once parallelized, in other words. This tru-
ism is known as Amdahl’s Law. Figures 1-3 are screenshots of the Threadscope
program showing an event log for thread counts ranging from 2 to 6, confirming
that, at least for this project, this truism is indeed true.

Figure 1: Threadscope with N=2 Threads

Figure 2: Threadscope with N=4 Threads

Figure 3: Threadscope with N=6 Threads

5

Figure 1 shows that using two threads does indeed increase the speed of the
program, but it doesn’t double the speed. As can be seen in Figure 2, increasing
from two to four threads increases the speed a little more, but this trend is not
linear. By the time we have six threads in Figure 3, the overhead of parallelism
is hurting more than it helps. Threads are often left waiting. Amdahl’s Law is
upheld.

5 Tests

I ran some unit tests on various board states to ensure that my heuristic worked
for lines ranging from 2 to 5, increasing in points. Importantly, Gomoku has
the overline rule, where lines longer than 5 actually do not win the game and
are worth 0 points. Thus, one of my tests confirmed my heuristic accounted
for overlines even as it could successfully process shorter lines. I also ran tests
to ensure that the children of a node in the game tree was correct, and that
parallelizing the serial version of my code did not alter the output. It would
be truly surprising if the latter test failed because Haskell’s powerful functional
purity guarantees that introducing parallelism should have no side effects.

6 Conclusion

My program’s speed in its serial mode comes from data structures tailored for
the domain of Gomoku, particularly the various sets, which I was able to prof-
itably use to cheaply determine the legality of moves and also cheaply compute
heuristics within the minimax algorithm.

Finally, Amdahl’s Law rears its head within this project, empirically showing
that parallelism is not a silver bullet. Because we can only parallelize a fraction
of our code, increasing threads has no impact on the serial portion, which is
really the bulk of the computation overall. This is why parallelizing had an
unfortunately sublinear effect on performance.

7 Source Code

The following code was compiled/built with all warnings switched on. For fur-
ther instructions, download the code and carefully follow the instructions in the
README file.

The Main.hs file is as follows:

1 module Main (main) where

2

3 import Lib

4

5 main :: IO ()

6 main = gomokuMain

The Lib.hs file, referenced by the Main and Spec modules, is as follows:

6

1 {-# LANGUAGE BangPatterns # -}

2 {-# LANGUAGE PackageImports #-}

3

4 module Lib

5 (

6 -- app

7 gomokuMain

8 -- testing

9 , Element (Empty , Black , White)

10 , Board

11 , showBoard

12 , getChildren

13 , initializeBoard

14 , move

15 , isTerminal

16 , heuristic

17 , scoreLine2

18 , scoreLine3

19 , scoreLine4

20 , scoreLine5

21 , loopSerial

22 , loopPar

23) where

24

25 import Data.List (sortBy)

26 import Data.Maybe

27 import qualified Data.HashSet as HSet

28 import qualified Data.Matrix as M

29 import Control.Parallel.Strategies

30 import Control.DeepSeq

31 import System.Environment (getArgs)

32 import System.Exit (die)

33

34 addTuple :: (Int , Int) -> (Int , Int) -> (Int , Int)

35 addTuple (a, b) (c, d) = (a + c, b + d)

36

37 multTuple :: Int -> (Int , Int) -> (Int , Int)

38 multTuple s (a, b) = (a*s, b*s)

39

40 generateNeighbors :: HSet.HashSet (Int , Int) -> Int -> (Int , Int)

-> HSet.HashSet (Int , Int)

41 generateNeighbors availableSpaces amount position = HSet.filter (‘

HSet.member ‘ availableSpaces) possibleNeighbors

42 where possibleNeighbors = HSet.fromList $ map (addTuple position)

directions ++

43 map (addTuple position

. multTuple amount) directions

44 directions = [(-1, 0), (1, 0), (0, -1), (0, 1), (-1, 1),

(1, -1), (-1, -1), (1, 1)]

45

46 data Element = Empty | Black | White deriving (Enum , Show , Eq)

47

48 toElement :: Int -> Element

49 toElement i = toEnum i :: Element

50

51 type StonePosition = (Int , Int)

52 type StoneSet = HSet.HashSet StonePosition

7

53 type Matrix = M.Matrix Int

54

55 data Move = Move

56 { moveColor :: Element

57 , movePosition :: StonePosition

58 }

59

60 data Board = Board

61 { matrix :: Matrix

62 , blackStones :: StoneSet

63 , whiteStones :: StoneSet

64 , stones :: StoneSet

65 , mostRecentMove :: Move

66 }

67

68 instance NFData Board where

69 rnf b = b ‘seq ‘ ()

70

71 showBoard :: Board -> Matrix

72 showBoard = matrix

73

74 isWithinBounds :: (Int , Int) -> Bool

75 isWithinBounds (a, b) = a >= 0 && a <= 8 && b >= 0 && b <= 8

76

77 isAvailable :: Board -> StonePosition -> Bool

78 isAvailable board position = (not $ HSet.member position $ stones

board) && isWithinBounds position

79

80 move :: Board -> Element -> (Int , Int) -> Board

81 move board color pos@(x, y) = Board m’ b’ w’ s’ (Move color pos)

82 where i = fromEnum color

83 m = matrix board

84 b = blackStones board

85 w = whiteStones board

86 s = stones board

87 m’ = M.setElem i (x+1, y+1) m

88 s’ = HSet.insert pos s

89 b’ = if color == Black then HSet.insert pos b else b

90 w’ = if color == White then HSet.insert pos w else w

91

92 initializeBoard :: (Int , Int) -> Board

93 initializeBoard = move (Board m b w s startMove) Black

94 where b = HSet.fromList []

95 w = HSet.fromList []

96 s = HSet.fromList []

97 m = M.fromList 15 15 (repeat 0)

98 startMove = Move Empty (-1, -1)

99

100 getStoneChildren :: Board -> StonePosition -> HSet.HashSet (Int ,

Int)

101 getStoneChildren board position = HSet.filter (isAvailable board) $
generateNeighbors allSpaces 1 position

102 where allSpaces = HSet.fromList allPositions

103 allPositions = [(i, j) | i <- [0..8] , j <- [0..8]]

104

105 childUnion :: [HSet.HashSet (Int , Int)] -> HSet.HashSet (Int , Int)

106 childUnion [] = HSet.fromList []

8

107 childUnion (x:xs) = foldr HSet.union x xs

108

109 getChildren :: Board -> Element -> [Board]

110 getChildren board color = map (move board color) newPositions

111 where setList b = map (getStoneChildren b) $ HSet.toList $ stones

b

112 newPositions = HSet.toList $ childUnion $ setList board

113

114 get :: Matrix -> (Int , Int) -> Maybe Int

115 get m (x, y) = M.safeGet (x+1) (y+1) m

116

117 oppositeColor :: Element -> Element

118 oppositeColor color = if color == Black then White else Black

119

120 goInDirHelper :: Matrix -> [Int] -> (Int , Int) -> (Int , Int) ->

Element -> [Int]

121 goInDirHelper m l pos dir color

122 | stop = r : l

123 | stopBorder = l

124 | otherwise = goInDirHelper m (r : l) (addTuple pos dir) dir

color

125 where stop = r == fromEnum (oppositeColor color) || r == 0

126 stopBorder = r == -1

127 r = fromMaybe (-1) $ get m pos

128

129 goInDir :: M.Matrix Int -> (Int , Int) -> (Int , Int) -> Element -> [

Element]

130 goInDir m pos dir color = map toElement $ init (goInDirHelper m []

pos (multTuple (-1) dir) color) ++ reverse (goInDirHelper m []

pos dir color)

131

132 scoreLine2 :: Element -> [Element] -> Int

133 scoreLine2 color line

134 | length line == 3 = helper3 line

135 | length line == 4 = helper4 line

136 | otherwise = 0

137 where helper3 l

138 | l == [Empty , color , color] || l == [color , color ,

Empty] = 50

139 | otherwise = 0

140

141 helper4 l

142 | l == [Empty , color , color , Empty] = 100

143 | l == [Empty , color , color , oppositeColor color] ||

144 l == [oppositeColor color , color , Empty] = 50

145 | otherwise = 0

146

147 scoreLine3 :: Element -> [Element] -> Int

148 scoreLine3 color line

149 | length line == 4 = helper4 line

150 | length line == 5 = helper5 line

151 | otherwise = 0

152 where helper4 l

153 | l == [Empty , color , color , color] || l == [color ,

color , color , Empty] = 250

154 | otherwise = 0

155

9

156 helper5 l

157 | l == [Empty , color , color , color , Empty] = 500

158 | l == [Empty , color , color , color , oppositeColor color

] ||

159 l == [oppositeColor color , color , color , color , Empty

] = 250

160 | otherwise = 0

161

162 scoreLine4 :: Element -> [Element] -> Int

163 scoreLine4 color line

164 | length line == 5 = helper5 line

165 | length line == 6 = helper6 line

166 | otherwise = 0

167 where helper5 l

168 | l == [Empty , color , color , color , color] || l == [

color , color , color , color , Empty] = 500000

169 | otherwise = 0

170

171 helper6 l

172 | l == [Empty , color , color , color , color , Empty] =

1000000

173 | l == [Empty , color , color , color , color ,

oppositeColor color] ||

174 l == [oppositeColor color , color , color , color , color

, Empty] = 500000

175 | otherwise = 0

176

177 scoreLine5 :: Element -> [Element] -> Int

178 scoreLine5 color line

179 | length line >= 5 && length line <= 7 = helper line

180 | otherwise = 0

181 where helper [] = 0

182 helper [_] = 0

183 helper [_, _] = 0

184 helper [_, _, _] = 0

185 helper [_, _, _, _] = 0

186 helper l@(a:b:c:d:e:_)

187 | [a, b, c, d, e] == [color , color , color , color , color

] = 10000000000

188 | otherwise = scoreLine5 color (tail l)

189

190 halfDirections :: [(Int , Int)]

191 halfDirections = [(1, 0), (0, 1), (1, 1), (1, -1)]

192

193 reduce :: [Int] -> [Int] -> [Int] -> [Int] -> Int

194 reduce two three four five = ((sum two) ‘div ‘ 2) + ((sum three) ‘

div ‘ 3) + ((sum four) ‘div ‘ 4) + ((sum five) ‘div ‘ 5)

195

196 heuristic :: Board -> Bool -> Int

197 heuristic board isSerial = 2* blackCount - whiteCount

198 where m = matrix board

199 colorLine (pos , dir) = goInDir m pos dir

200

201 blackLines = [colorLine (pos , dir) Black | pos <- HSet.

toList $ blackStones board , dir <- halfDirections]

202 black2Serial = map (scoreLine2 Black) blackLines

203 black3Serial = map (scoreLine3 Black) blackLines

10

204 black4Serial = map (scoreLine4 Black) blackLines

205 black5Serial = map (scoreLine5 Black) blackLines

206

207 black2Par = parMap (rpar . force) (scoreLine2 Black)

blackLines

208 black3Par = parMap (rpar . force) (scoreLine3 Black)

blackLines

209 black4Par = parMap (rpar . force) (scoreLine4 Black)

blackLines

210 black5Par = parMap (rpar . force) (scoreLine5 Black)

blackLines

211

212 blackCount = if isSerial

213 then reduce black2Serial black3Serial

black4Serial black5Serial

214 else reduce black2Par black3Par black4Par

black5Par

215

216 whiteLines = [colorLine (pos , dir) White | pos <- HSet.

toList $ whiteStones board , dir <- halfDirections]

217

218 white2Serial = map (scoreLine2 White) whiteLines

219 white3Serial = map (scoreLine3 White) whiteLines

220 white4Serial = map (scoreLine4 White) whiteLines

221 white5Serial = map (scoreLine5 White) whiteLines

222

223 white2Par = parMap (rpar . force) (scoreLine2 White)

whiteLines

224 white3Par = parMap (rpar . force) (scoreLine3 White)

whiteLines

225 white4Par = parMap (rpar . force) (scoreLine4 White)

whiteLines

226 white5Par = parMap (rpar . force) (scoreLine5 White)

whiteLines

227

228 whiteCount = if isSerial

229 then reduce white2Serial white3Serial

white4Serial white5Serial

230 else reduce white2Par white3Par white4Par

white5Par

231

232 isTerminal :: Board -> Bool

233 isTerminal board = elem 10000000000 $ map (scoreLine5 color)

colorLines

234 where m = matrix board

235 r = mostRecentMove board

236 (p, color) = (movePosition r, moveColor r)

237 colorLine (pos , dir) = goInDir m pos dir

238 colorLines = [colorLine (p, dir) color | dir <-

halfDirections]

239

240 infinity :: Int

241 infinity = maxBound :: Int

242

243 -- Inspired by the "star lines" of http :// www.cs.columbia.edu/~

sedwards/classes /2021/4995 - fall/reports/Gomokururu.pdf

244 recentMoveHeuristic :: Board -> Int

11

245 recentMoveHeuristic board = colorCount

246 where m = matrix board

247 r = mostRecentMove board

248 (p, color) = (movePosition r, moveColor r)

249 colorLine (pos , dir) = goInDir m pos dir

250 colorLines = [colorLine (p, dir) color | dir <-

halfDirections]

251 color2 = map (scoreLine2 color) colorLines

252 color3 = map (scoreLine3 color) colorLines

253 color4 = map (scoreLine4 color) colorLines

254 color5 = map (scoreLine5 color) colorLines

255 colorCount = reduce color2 color3 color4 color5

256

257 orderMoves :: Bool -> [Board] -> [Board]

258 orderMoves isSerial moves = result

259 where hmoves = zip heuristics moves

260 sortedMoves = sortBy compareHeuristic hmoves

261 compareHeuristic (ha , _) (hb, _)

262 | ha > hb = LT

263 | otherwise = GT

264 extractMoves (_, m) = m

265 heuristics = if isSerial

266 then map recentMoveHeuristic moves

267 else parMap (rpar . force)

recentMoveHeuristic moves

268 result = if isSerial

269 then map extractMoves sortedMoves

270 else parMap (rpar . force) extractMoves

sortedMoves

271

272 minimax :: Board -> Int -> Int -> Int -> Element -> Bool -> (Int ,

Board)

273 minimax board depth alpha beta color isSerial

274 | depth == 0 || isTerminal board = (h, board)

275 | color == Black = playBlack (-infinity) board alpha beta

children

276 | otherwise = playWhite infinity board alpha beta children

277 where children = orderMoves isSerial $ getChildren board color

278 h = heuristic board isSerial

279

280 playBlack maxValue maxChild _ _ [] = (maxValue , maxChild)

281 playBlack maxValue maxChild a b (c:cs) =

282 let (pvalue , _) = minimax c (depth -1) a b White

isSerial

283 comparison = pvalue > maxValue

284 (maxValue ’, maxChild ’) = if comparison then (pvalue

, c) else (maxValue , maxChild)

285 a’ = max a maxValue ’

286 in if maxValue >= b

287 then (maxValue ’, maxChild ’) -- break loop

288 else playBlack maxValue ’ maxChild ’ a’ b cs --

continue loop

289

290 playWhite minValue minChild _ _ [] = (minValue , minChild)

291 playWhite minValue minChild a b (c:cs) =

292 let (pvalue , _) = minimax c (depth -1) a b Black

isSerial

12

293 comparison = pvalue < minValue

294 (minValue ’, minChild ’) = if comparison then (pvalue

, c) else (minValue , minChild)

295 b’ = min b minValue ’

296 in if minValue <= a

297 then (minValue ’, minChild ’) -- break loop

298 else playWhite minValue ’ minChild ’ a b’ cs --

continue loop

299

300 chooseMove :: Element -> [(Int , Board)] -> (Int , Board)

301 chooseMove color moves = if color == Black then last sortedMoves

else head sortedMoves

302 where sortedMoves = sortBy compareHeuristic moves

303 compareHeuristic (ha , _) (hb, _)

304 | ha > hb = GT

305 | otherwise = LT

306

307 parmapMinimax :: Int -> Board -> Element -> [(Int , Board)]

308 parmapMinimax depth board color

309 | depth == 0 = parMap (rpar . force) play children

310 -- playP was used during debugging , but I found that partial

parallelization beyond one level didn ’t help

311 | otherwise = parMap (rpar . force) playP children

312 where children = getChildren board color

313 play child = (fst $ minimax child 4 (-infinity) infinity (

oppositeColor color) True , child)

314 -- playP was used during debugging , but I found that

partial parallelization beyond one level didn ’t help

315 playP child = (fst $ chooseMove color $ parmapMinimax (

depth -1) child $ oppositeColor color , child)

316

317 mapMinimax :: Board -> Element -> [(Int , Board)]

318 mapMinimax board color = map play children

319 where children = getChildren board color

320 play child = (fst $ minimax child 4 (-infinity) infinity (

oppositeColor color) True , child)

321

322 loopNoMap :: Board -> Element -> Int -> [Board] -> [Board]

323 loopNoMap board color n boards

324 | n == 0 = reverse boards

325 | otherwise = loopNoMap next (oppositeColor color) (n-1) (next

: boards)

326 where next = snd $ minimax board 5 (-infinity) infinity color

True

327

328 loopSerial :: Board -> Element -> Int -> [Board] -> [Board]

329 loopSerial board color n boards

330 | n == 0 = reverse boards

331 | otherwise = loopSerial next (oppositeColor color) (n-1) (next

: boards)

332 where next = snd $ chooseMove color $ mapMinimax board color

333

334 loopPar :: Board -> Element -> Int -> [Board] -> [Board]

335 loopPar board color n boards

336 | n == 0 = reverse boards

337 | otherwise = loopPar next (oppositeColor color) (n-1) (next :

boards)

13

338 where next = snd $ chooseMove color $ parmapMinimax 0 board color

339

340 gomokuMain :: IO ()

341 gomokuMain = do

342 putStrLn "BEGIN GAME"

343

344 let startStone = (7, 7)

345 let board = initializeBoard startStone

346

347 args <- getArgs

348 if length args /= 1

349 then do die $ "Usage: stack exec gomokuku -exe <argument >\n<

argument > may be serial , parallel , or no -map"

350 else if head args == "serial"

351 then do

352 putStrLn "SERIAL"

353 let solutions = loopSerial board White 10 []

354 mapM_ putStrLn $ map (show . (‘heuristic ‘ True))

solutions

355 mapM_ print $ map showBoard solutions

356 else if head args == "parallel"

357 then do

358 putStrLn "PARALLEL"

359 let solutions = loopPar board White 10 []

360 mapM_ putStrLn $ map (show . (‘heuristic ‘ True))

solutions

361 mapM_ print $ map showBoard solutions

362 else do

363 putStrLn "NO MAP"

364 let solutions = loopNoMap board White 10 []

365 mapM_ putStrLn $ map (show . (‘heuristic ‘ True)) solutions

366 mapM_ print $ map showBoard solutions

1 import Lib

2

3 initialBoard :: Board

4 initialBoard = initializeBoard (7, 7)

5

6 evaluateTest :: String -> Bool -> IO ()

7 evaluateTest testName test = if test then putStrLn $ "Test {" ++

testName ++ "} passed." else putStrLn $ "Test {" ++ testName ++

"} failed."

8

9 testGetChildren :: Bool

10 testGetChildren = (length $ getChildren initialBoard White) == 8

11

12 testOverline :: Bool

13 testOverline = ((‘heuristic ‘ True) $ (move (move (move (move (move

initialBoard Black (7, 8)) Black (7, 9)) Black (7, 10)) Black

(7, 11)) Black (7, 12))) == 0

14

15 testScore2 :: Bool

16 testScore2 = ((‘heuristic ‘ True) $ (move initialBoard Black (7, 8))

) == 200

17

18 testScore3 :: Bool

19 testScore3 = ((‘heuristic ‘ True) $ (move (move initialBoard Black

(7, 8)) Black (7, 9))) == 1000

14

20

21 testScore4 :: Bool

22 testScore4 = ((‘heuristic ‘ True) $ (move (move (move initialBoard

Black (7, 8)) Black (7, 9)) Black (7, 10))) == 2000000

23

24 testScore5 :: Bool

25 testScore5 = ((‘heuristic ‘ True) $ (move (move (move (move

initialBoard Black (7, 8)) Black (7, 9)) Black (7, 10)) Black

(7, 11))) == 20000000000

26

27 testIsTerminal :: Bool

28 testIsTerminal = isTerminal $ (move (move (move (move initialBoard

Black (7, 8)) Black (7, 9)) Black (7, 10)) Black (7, 11))

29

30 testParSerialMatch :: Bool

31 testParSerialMatch = (map showBoard $ serialSolutions) == (map

showBoard $ parallelSolutions)

32 where serialSolutions = loopSerial initialBoard White 10 []

33 parallelSolutions = loopPar initialBoard White 10 []

34

35 main :: IO ()

36 main = do

37 putStrLn "BEGIN TESTING"

38 evaluateTest "Get Children of Board" testGetChildren -- initial

board should have eight children

39 evaluateTest "Overline" testOverline -- lines with length

greater than 5 actually have a heuristic of 0

40 evaluateTest "Score 2" testScore2

41 evaluateTest "Score 3" testScore3

42 evaluateTest "Score 4" testScore4

43 evaluateTest "Score 5" testScore5

44 evaluateTest "Termination" testIsTerminal

45 evaluateTest "Parallel = Serial Output" testParSerialMatch

8 References

[1] http://gomokuworld.com/gomoku/2
[2] https://www.theverge.com/2019/11/27/20985260/ai-go-alphago-lee-se-dol-retired-deepmind-defeat
[3] https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning#Pseudocode
[4] http://www.cs.columbia.edu/~sedwards/classes/2021/4995-fall/

reports/Gomokururu.pdf

[5] https://wiki.haskell.org/ThreadScope
[6] https://huggingface.co/spaces/stabilityai/stable-diffusion

15

http://gomokuworld.com/gomoku/2
https://www.theverge.com/2019/11/27/20985260/ai-go-alphago-lee-se-dol-retired-deepmind-defeat
https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning#Pseudocode
http://www.cs.columbia.edu/~sedwards/classes/2021/4995-fall/reports/Gomokururu.pdf
http://www.cs.columbia.edu/~sedwards/classes/2021/4995-fall/reports/Gomokururu.pdf
https://wiki.haskell.org/ThreadScope
https://huggingface.co/spaces/stabilityai/stable-diffusion

9 Project Mascot

Generated courtesy of Stability AI’s Stable Diffusion 2 [6]:

Figure 4: The meaning of ”Gomokuku for Koko Puffs” translated into pixels.
Determining the true prompt that generated this image is left as an exercise for
the reader.

16

	Overview
	Background
	Method
	Parallelism

	Results
	Tests
	Conclusion
	Source Code
	References
	Project Mascot

