
GRNPar: Parallel Inference of Gene Regulatory
Networks Using Boolean Network Models and Mutual

Information

Anushka Gupta (ag4351), William Das (whd2108)

December 22, 2022

1 Introduction
Gene regulatory networks (GRNs) are graph-like representations of genes prone to activating
or inhibiting the expression of other genes in a localized network. Boolean networks are often
used to model GRNs—these networks consist of a series of nodes with connections between
genes represented as boolean functions. Each node is a boolean variable that encodes its
state (0 or 1). Each node’s state is determined by a boolean expression that takes as input
the states of a subset of other nodes in the network. Researchers have developed algorithms
for inferring these boolean expressions to model gene regulation activity.

For our project, we implemented a parallelized algorithm for inferring gene regulatory networks
from gene expression time-series data using the boolean network model. Specifically, we
modified a state-of-the-art approach put forth by Barman & Kwon (2017), which used a
mutual information based approach coupled with a ”swapping” subroutine to select dependent
genes in the network and infer logical relations between input and output nodes.

In particular, we implemented and parallelized: (1) a mutual information approach for
inferring depenencies in a boolean network, (2) boolean expressions mapping input nodes to
output nodes, optimizing for a ”gene-wise dynamics consistency” criterion, and a (3) method
for visualizing and graphing the inferred boolean network. We parallelized each step, and
specifically optimized key operations in the computation of possible boolean expressions
that satisfy the various gene expression interactions in the network, where we saw the most
speed-up.

1.1 Boolean Networks
The boolean network model G(V, A) proposed by Barman & Kwon consists of nodes:
V = {v1, ..., vn} and a set of interactions, or directed edges between input and output nodes:
A = {(vi, vj) | vi, vj ∈ V }, where vj is a target node whose state depends on that of vi.

1

We further extend this model to account for boolean logic between the inferred input nodes
and output nodes.

2 GRNPar Algorithm

2.1 Overview
We infer gene regulatory networks from time-series data by:

1. First, finding the k input nodes with the highest mutual information in relation to
every target node.

2. Second, finding an optimal boolean expression that takes the k inferred input nodes
with the highest dynamics criterion with respect to the target node. We choose the
expression among a combination of 2k−1 possible boolean expressions.

We also plot the inferred network to visualize our results as a final feature.

To determine the k most ”closely related” input nodes for each node in the network, we
used a mutual inference feature selection (MIFS) method based on entropy values (2.2.1).
The testing of boolean expressions consists of finding possible boolean expressions which can
be evaluated using the top k input nodes mapping to each target node, and choosing the
one with highest gene-wise dynamics consistency (2.2.2).

Let V = {v0, v1, ..., vn} where each vector vi corresponds to a gene and vi(t) corresponds
to its value, 0 or 1, at time t.

Algorithm 1 GRNPar algorithm
procedure GRNPar(V)

network ← generateNetwork(k, V)
optimalExpressions ← getOptimalBoolExpressions(network,|v0|)
networkImage ← plotBoolNetwork(network)
return network, optimalExpressions, networkImage

end procedure

|v0| in getOptimalBoolExpressions corresponds to a target node—given the network and
connections generated, we iterate through each node and test for boolean expressions of its
top k input nodes.

Finally, we plot the network as a directed graph, and return the inferred network, optimal
boolean expressions for each node, and the image.

2

2.2 Criterions
2.2.1 Mutual Information

The mutual information metric used in Algorithm 2 I(X; Y) is based on the entropy of two
variables. First, the entropy H(X) of a discrete random variable (gene) X is defined to
measure the uncertainty of X over all time steps. A joint entropy H(X, Y) between X and
Y measures the joint probability distribution between X and Y. The mutual information
metric is then calculated based on these two entropy values.

H(X) = −
∑
x∈X

(p(x) log p(x))

H(X, Y) = −
∑
x∈X

∑
y∈Y

(p(x) log p(x))

I(X; Y) = H(X) + H(Y)−H(X, Y)

2.2.2 Gene-wise Dynamics Consistency

Given the length of the time-series T , and the observed and inferred boolean states of a node
v and v′ across a time-series, respectively, the gene-wise dynamics consistency is:

E(v, v′) =

T∑
t=2

I(v(t) = v′(t))

T − 1 (1)

where I(v(t) = v′(t)) here is equal to 1 if the condition v(t) = v′(t) is true, and 0 if false.
v′(t) is obtained from a possible boolean expression that maps the inferred input nodes at
time t with the target node at v′(t).

In essence, this criterion exposes the proportion of nodes whose states are predicted correctly
given a boolean expression that outputs v′(t) at every timestep in the series. We used this
criterion to choose an optimal boolean expression that maps the states of inferred input
nodes to a target node.

2.2.3 searchUpdateRule

The searchUpdateRule function in src/BDDUtils.hs we implemented is where we search
for possible boolean expressions that can be evaluated using the top k input nodes for each
target node.

The authors from the original study included a second subroutine that iteratively swaps
the selected k nodes with unselected nodes to see if different input nodes could yield higher
dynamics consistency metrics—in their algorithm, the resulting number of input nodes could
be less than or equal to k—whereas our implementation, due to time constraints, does not
implement this swapping routine and selects a fixed k input nodes for each target node.

The essence of their swapping routine was a ”search update rule” that searched through

3

Algorithm 2 Generation of Boolean Network
procedure generateNetwork(k, V)

for each node vi ∈ V do
connections ← {}
create empty BoolNetwork boolNetwork
for each node w ∈ W (W = V \vi) do

mutualInfo ← I(vi, w)
if mutualInfo in highest k values then

connections += w
end if
boolNetwork += newNodeState(vi, connections)

end for
end for
return boolNetwork

end procedure

Algorithm 3 Optimal Boolean Expression Inference
procedure getOptimalBoolExpressions(boolNetwork, timeLength)

for each node vi ∈ the nodes in boolNetwork do
regulatoryNodes ← boolNetwork(vi)
allValidExpressions ← createExpressions(regulatoryNodes)
for each expression exp ∈ allValidExpressions do

find expression with highest geneWiseDynamicCosnsitency value and return
end for

end for
end procedure

4

possible boolean expressions between the selected input nodes and updated the rule for each
target node with the boolean expression that yielded the highest dynamics consistency. Our
implementation of this lies in getOptimalBoolExpressions (Algorithm 3).

3 Haskell Implementation

3.1 Data Types
3.1.1 NodeState

NodeState represents the states of each node across the time-series. It consists of a String
attribute as the name of the node/gene, and an [Int] to represent the boolean states/expression
of that particular node across the time-series from time 1..T, where T is the length of the
time-series.

3.1.2 BoolEdge

BoolEdge consists of two NodeState attributes—v i and v j, which represents a directed edge
dependency in the network from node v i to v j.

3.1.3 BoolNetwork

BoolNetwork represents a boolean network as a directed graph. It contains a an attribute of
[NodeState] consisting of the different nodes and their states across the time series, and an
attribute of [BoolEdge] to represented the directed edges.

3.1.4 BDD

BDD is a recursive data type similar to a binary decision diagram. We created a variation
to represent and evaluate boolean expressions. BDD consists of several different states:

• Name String: Represents the name of a particular boolean variable.

• State Int: Represents the state, 1 or 0, of a particular boolean variable.

• AND BDD BDD: Represents an AND logical operation between two BDD types.

• OR BDD BDD: Represents an OR logical operation between two BDD types.

• XOR BDD BDD: Represents an XOR logical operation between two BDD types.

• NOT BDD: Represents a NOT operation to be applied to a BDD.

The idea with BDD is to map out a boolean expression specifying variable names, and supply
a [(String, Int)] which consists of Int boolean values for each variable name to a BDD data
type that can evaluate the expression—evaluateFunc in src/BDDUtils.hs performs this
task, like so:

5

-- Define a boolean expression with variable names x, y, a, z:
f = XOR (AND (Name "x") (OR (Name "y") (Name "a"))) (NOT (Name "z"))

-- Evaluate function by supplying values for each variable:
fromEnum $ evaluateFunc f [("x", 1), ("y", 0), ("a", 1), ("z", 1)]

This outputs 1 when evaluated. For simplicity, based on the original algorithm, we only look
at a combination of conjunctive and disjunctive operations (AND/OR) evaluated using the
the top k input nodes, sorted in descending order based on each node’s mutual information
in relation to the target node.

3.2 Generating Random Time-Series Data
We generate random time series gene expression data in src/generate data.py, which takes
as input the number of nodes and timesteps—boolean states are randomly generated at each
timestep.

4 Code Analysis
4.0.1 Mutual Information

First, we find the top k input nodes for each node in genBoolEdgesSeq, combining it into
one list of BoolEdge and creating a BoolNetwork with the observed nodeStates and all of the
generated BoolEdge connections (set of interactions).

genNetworkSeq :: [NodeState] -> Int -> BoolNetwork
genNetworkSeq nodeStates k = BoolNetwork nodeStates (combineEdgesSeq

nodeStates k)↪→

combineEdgesSeq :: [NodeState] -> Int -> [BoolEdge]
combineEdgesSeq nodeStates k = concatMap (genBoolEdgesSeq nodeStates k)

nodeStates↪→

genBoolEdgesSeq :: [NodeState] -> Int -> NodeState -> [BoolEdge]
genBoolEdgesSeq nodeStates k targetNode =

let topKMutual = getMutualInfoSeq targetNode (filter (/= targetNode)
nodeStates) k↪→

in map (`BoolEdge` targetNode) topKMutual

4.0.2 Extracting Optimal Boolean Expressions

Next, we determine the optimal boolean expressions (getOptimalBoolExpressions - line
223 BDDUtils.hs) for each input node. Using the boolNetwork and top k connections
generated for each node, we generate a set of 2k−1 possible boolean expressions and use
each expression to infer a time-series to compare with the observed expressions of each node
and calculate the gene-wise dynamics consistency (searchUpdateRule - line 169 BDDUtil.hs).

6

Figure 1: Sequential program for a randomized sample where 300 nodes are generated for
300 time steps and k=5

For each boolean expression, we take the state of each target node from time 2 to time
T, and infer its value at every timestep t by evaluating the expression using the states of the
selected k input nodes at time t-1. Using the inferred time series expression for the target
node, we compare it with observed time series expression for the target node, and calculate
the dynamics consistency. We choose the boolean expression that maximizes the genewise
dynamics consistency for each target node, and assign that expression to it.

Lastly, we plot the BoolNetwork using the Data.Graph.DGraph library and graphviz library.

plotBoolNetworkPng :: BoolNetwork -> FilePath -> Bool -> IO FilePath
plotBoolNetworkPng network fname labelEdges = plotDGPng networkDG fname

labelEdges↪→

where
networkDG = boolNetworkToDG network labelEdges

5 Parallel Solution
We used genNetworkPar, getOptimalBoolExpressionsPar, and plotBoolNetworkPngPar
in Main.hs to run parallel strategies. We made NFData instances for NodeState, BoolEdge,

7

Figure 2: Parallel program for a randomized sample where 300 nodes are generated for 300
time steps and k=5

and BoolNetwork to perform these computations.

There are three layers of parallelism applied to the implementation to improve the performance
of the program. The first layer uses the parMap deepSeq functions from the package
Control.Parallel.Strategies. The second and third layer use parBuffer and parChunkList,
respectively.

We used parMap rdeepseq to parallelize map computations. We used parMap to combine the
results of generating the top k connections into one list, shown in the new combineEdgesPar
function in GRPPar.hs. Similarly, when parsing through all the possible nodes to determine
the top k nodes based on mutual information, we applied parMap rdeepseq and ran the
calculations in parallel.

allMutualInfo =
map (\inp ->

(inp, mutualInformation (timeStates inp) (timeStates targetNode)
- sum (parMap rdeepseq (mutualInformation (timeStates inp) . timeStates)

$ map fst regNodes))) inpNodes `using` parBuffer 3 rdeepseq

Here, we use parBuffer to iterate through the input nodes and calculate mutual information.

8

Figure 3: Sequential (left) and Parallel (right) program for GRNPar on Insilico E. coli
Dataset using 4 cores. k = 8.

Figure 2 shows the eventlog when running parallel on a randomly generated time-series
containing 300 nodes and 300 timesteps. The test was run on 4 cores with k = 5. The
average runtime was 33.9 seconds.

6 Performance Analysis

6.1 Results
6.1.1 Real-world Datasets

We tested GRNPar with three real gene expression datasets: an E. coli network with 10
genes and 20 timesteps, an Insilico E.coli network with 100 genes and 20 timesteps, and a
fission yeast cell cycle network with 10 genes and 10 timesteps. We discretized the InSilico
data using a rudimentary KMeans clustering algorithm, and the other datasets had been
discretized to boolean states using KMeans clustering prior by Barman & Kwon.

We ran the Insilico E. coli dataset through GRNPar, only generating the network without
computing expressions or outputting an image, both in parallel and sequentially—the results
are shown in Figure 3. There was a 2.16x speedup in total time and 2.25x reduction in
mutator time from the sequential to parallel run.

When running the Insilico data through GRNPar, there was an extra period for generating
the image, in both the sequential and parallel versions of the algorithm. This is seen in the
extra time taken to complete the algorithm in Figure 4. In both the sequential and parallel
algorithms, it took 1.5 seconds extra to run as compared with the runs when the graph image
was not generated.

The graph generated for the Insilico set is shown in figure 5. There is a tendency for
the central nodes to be in the center of the graph, as they have more dependencies. Figure
6 shows the graphs generated by testing GRNPar on the other E. coli dataset and fission
yeast cell cycle network-similar to the Insilico set, we observe 3.33x speedup between the

9

Figure 4: Generation of network + plotting image -¿ both the sequential (left) and parallel
(right) implementation took 1.5 extra seconds, compared to figure 3

sequential and parallel usage of GRNPar.

6.1.2 Randomly Generated Data

We also analyzed how changing the number of nodes (genes), cores, and k-values affected
performance of GRNPar on randomly generated time-series expression data. Figure 8 shows
three tables worth of runtime data. In Table 1, as the number of nodes (genes) increases,
the runtime for sequential GRNPar increases at a much larger rate than parallel GRNPar.
However, when compared with the parallel runtime in Table 2 (Figure 8), the sequential
runtime increases as the number of cores increases, since unnecessary garbage collection
occurs during the sequential run as more cores are added on.

6.2 Running GRNPar
This program takes in five arguments:

1 stack exec GRNPar-exe <csvFilename> <k> <genExpressions> <genImage> <mode>

Specific implementation details can be found in the README. The output of the program
is a .png file that has the boolean network mapped out in src/output files.

7 References
Barman S, Kwon YK (2017) A novel mutual information-based Boolean network inference
method from time-series gene expression data. PLOS ONE 12(2): e0171097.
https://doi.org/10.1371/journal.pone.0171097

Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG, Xue X, et al. Towards
a Rigorous Assessment of Systems Biology Models: The DREAM3 Challenges. PLOS One.

10

Figure 5: Boolean Network Inferred for InSilico Ecoli Protein Trajectories

Figure 6: E. coli gene regulatory network(left) & a fission yeast cell cycle network (right)

11

Figure 7: Randomly Generated Data: 500 Nodes over 300 time steps (4 cores) in a sequential
and parallel method

Figure 8: From left to right, Table 1, 2, 3. Table 1: Change in runtime for a parallel and
sequential implementation as the number of nodes increases. Table 2: Change in runtime for
a parallel and sequential implementation as the number of cores increases. Table 3: Change
in runtime for a parallel and sequential implementation as the k value increases

12

8 Code Listing

8.1 app/Main.hs
1 {-
2 Main application program:
3 -}
4

5 module Main (main) where
6

7 import System.IO ()
8 import System.Environment (getArgs)
9 import Control.Monad

10

11 import GRNPar (genNetworkSeq, genNetworkPar)
12 import GraphUtils (plotBoolNetworkPng, plotBoolNetworkPngPar, NodeState(..))
13 import BDDUtils (getOptimalBoolExpressions, getOptimalBoolExpressionsPar)
14 import ProcessData (csvToNodeStates)
15

16 import Control.DeepSeq
17

18 {-
19 Main script:
20 1. Infer + generate boolean network from input file
21 2. Determine optimal boolean expression
22 3. Output network to png file
23

24 Usage: GRNPar-exe <csvFilename> <k> <outputFile> <genExpressions> <genImage>
<mode>↪→

25 -}
26 main :: IO ()
27 main = do
28 args <- getArgs
29 case args of
30 [fname, k, genExpressions, genImage, mode] -> do
31 putStrLn fname
32 putStrLn "Parsing data..."
33 nodeStates@(x:_) <- csvToNodeStates fname 1
34

35 -- Generate network with dependencies
36 let k' = read k :: Int
37 timeLength = length $ timeStates x
38 network = if mode == "par"
39 then force $ genNetworkPar nodeStates k'
40 else force $ genNetworkSeq nodeStates k'
41 putStrLn "Generated network."
42

43 when (genExpressions == "1") $ do

13

44 -- Get optimal boolean expressions for each node
45 let optimalExpressions = if mode == "par"
46 then force $

getOptimalBoolExpressionsPar network timeLength↪→

47 else force $
getOptimalBoolExpressions network timeLength↪→

48 putStrLn "Optimal boolean expressions for each variable:"
49 mapM_ (\(n, b, c) -> putStrLn $ name n ++ " = " ++ show b ++

". Gene-wise consistency: " ++ show c) optimalExpressions↪→

50 --print optimalExpressions
51

52 when (genImage == "1") $ do
53 -- Print image
54 let outputFile = "src/output_files/" ++ substring (length

"src/data/") (length fname - 4) fname↪→

55 print outputFile
56 imgFilepath <- if mode == "par"
57 then plotBoolNetworkPngPar network

outputFile False↪→

58 else plotBoolNetworkPng network outputFile
False↪→

59 putStrLn $ "Printed to " ++ imgFilepath ++ "."
60

61 putStrLn "Finished."
62 _ -> putStrLn "Usage: GRNPar-exe <csvFilename> <k> <outputFile>

<genExpressions> <genImage> <mode>"↪→

63

64 substring :: Int -> Int -> String -> String
65 substring x y s = take (y - x) (drop x s)

8.2 src/GRNPar.hs
1 {-# LANGUAGE ParallelListComp #-}
2

3 module GRNPar
4 (genNetworkSeq
5 , genNetworkPar
6) where
7

8

9 import Control.Monad ()
10

11 import qualified Data.Map as Map
12 import Data.Ord (comparing)
13 import Data.List (maximumBy, sortBy)
14

15 import GraphUtils (NodeState(..), BoolEdge(..), BoolNetwork(..))

14

16

17 import Control.Parallel.Strategies (parMap, rdeepseq, parBuffer, using)
18 import Control.DeepSeq ()
19

20 {-
21 -- Testing with sample nodes:
22 x_1 :: NodeState
23 x_1 = NodeState "x_1" [1, 1, 0, 0, 0, 1, 0, 1]
24

25 x_2 :: NodeState
26 x_2 = NodeState "x_2" [1, 0, 1, 0, 1, 0, 1, 0]
27

28 x_3 :: NodeState
29 x_3 = NodeState "x_3" [1, 0, 1, 0, 1, 0, 1, 0]
30

31 x_4 :: NodeState
32 x_4 = NodeState "x_4" [1, 0, 0, 0, 1, 0, 1, 1]
33

34 x_5 :: NodeState
35 x_5 = NodeState "x_5" [1, 0, 1, 0, 0, 0, 0, 0]
36

37 x_6 :: NodeState
38 x_6 = NodeState "x_6" [1, 1, 0, 0, 1, 1, 1, 0]
39

40 sampleNodes :: [NodeState]
41 sampleNodes = [x_1,x_2,x_3,x_4,x_5,x_6]
42 -}
43

44 {-
45 Parallel pipeline for inferring boolean network given NodeState data.
46 -}
47 genNetworkPar :: [NodeState] -> Int -> BoolNetwork
48 genNetworkPar nodeStates k = BoolNetwork nodeStates (combineEdgesPar nodeStates

k)↪→

49

50 {-
51 Sequential pipeline for inferring boolean network given NodeState data.
52 -}
53 genNetworkSeq :: [NodeState] -> Int -> BoolNetwork
54 genNetworkSeq nodeStates k = BoolNetwork nodeStates (combineEdgesSeq nodeStates

k)↪→

55

56 {-
57 Combine all BoolEdge connections for each target node into one array.
58 -}
59 combineEdgesSeq :: [NodeState] -> Int -> [BoolEdge]
60 combineEdgesSeq nodeStates k = concatMap (genBoolEdgesSeq nodeStates k)

nodeStates↪→

15

61

62 {-
63 Generate BoolEdge connections in network given NodeState and a targetNode
64 -}
65 genBoolEdgesSeq :: [NodeState] -> Int -> NodeState -> [BoolEdge]
66 genBoolEdgesSeq nodeStates k targetNode =
67 let topKMutual = getMutualInfoSeq targetNode (filter (/= targetNode)

nodeStates) k↪→

68 in map (`BoolEdge` targetNode) topKMutual
69

70 combineEdgesPar :: [NodeState] -> Int -> [BoolEdge]
71 combineEdgesPar nodeStates k = concat $ parMap rdeepseq (genBoolEdgesPar

nodeStates k) nodeStates↪→

72

73 genBoolEdgesPar :: [NodeState] -> Int -> NodeState -> [BoolEdge]
74 genBoolEdgesPar nodeStates k targetNode = map (`BoolEdge` targetNode) topKMutual
75 where
76 topKMutual = getMutualInfoPar targetNode (filter (/= targetNode) nodeStates)

k↪→

77

78 {-
79 Get top k input nodes with the highest mutual information relative to a target

node.↪→

80

81 Return input nodes sorted descending based on mutual information with target
node.↪→

82

83 * inputNodes should not contain targetNode when calling getMutualInfo
84 -}
85 getMutualInfoSeq :: NodeState -> [NodeState] -> Int -> [NodeState]
86 getMutualInfoSeq targetNode inputNodes k = map fst
87 $ sortBy (flip (comparing snd))
88 $ getMutualInfo' [maxMutualNodeInfo]
89 (filter (/= maxMutual) inputNodes) k
90 where
91 maxMutualNodeInfo@(maxMutual, _) = maximumBy (comparing snd)
92 $ map (\inp -> (inp, mutualInformation

(timeStates inp) (timeStates targetNode))) inputNodes↪→

93 getMutualInfo' :: [(NodeState, Double)] -> [NodeState] -> Int -> [(NodeState,
Double)]↪→

94 getMutualInfo' regNodes inpNodes k'
95 | length regNodes == k' = regNodes
96 | otherwise =
97 let newMaxInfo@(newMax, _) = maximumBy (comparing snd)
98 $ map (\inp -> (inp, mutualInformation

(timeStates inp) (timeStates targetNode)↪→

99 - sum (map (mutualInformation
(timeStates inp) . timeStates) $ map fst regNodes))) inpNodes↪→

16

100 newInpNodes = filter (/= newMax) inpNodes
101 newRegNodes = regNodes ++ [newMaxInfo]
102 in getMutualInfo' newRegNodes newInpNodes k'
103

104 getMutualInfoPar :: NodeState -> [NodeState] -> Int -> [NodeState]
105 getMutualInfoPar targetNode inputNodes k = map fst
106 $ sortBy (flip (comparing snd))
107 $ getMutualInfo' [maxMutualNodeInfo]
108 (filter (/= maxMutual) inputNodes) k
109 where
110 mutualInfo' = map (\inp -> (inp, mutualInformation

(timeStates inp) (timeStates targetNode)))↪→

111 inputNodes `using` parBuffer 3
rdeepseq↪→

112 maxMutualNodeInfo@(maxMutual, _) = maximumBy (comparing snd) mutualInfo'
113 getMutualInfo' :: [(NodeState, Double)] -> [NodeState] -> Int -> [(NodeState,

Double)]↪→

114 getMutualInfo' regNodes inpNodes k'
115 | length regNodes == k' = regNodes
116 | otherwise =
117 let allMutualInfo = map (\inp -> (inp, mutualInformation

(timeStates inp) (timeStates targetNode)↪→

118 - sum (parMap rdeepseq
(mutualInformation (timeStates inp) . timeStates) $ map fst regNodes)))↪→

119 inpNodes `using` parBuffer 3
rdeepseq↪→

120 newMaxInfo@(newMax, _) = maximumBy (comparing snd) allMutualInfo
121 newInpNodes = filter (/= newMax) inpNodes
122 newRegNodes = regNodes ++ [newMaxInfo]
123 in getMutualInfo' newRegNodes newInpNodes k'
124

125 -- Compute the entropy of a list of numerical values
126 entropy :: (Ord a) => [a] -> Double
127 entropy xs = sum [-p * logBase 2 p | p <- ps]
128 where
129 counts = Map.fromListWith (+) [(x, 1 :: Int) | x <- xs]
130 values = Map.elems counts
131 total = sum values
132 ps = [fromIntegral v / fromIntegral total | v <- values]
133

134 -- Compute the mutual information of discrete variables x and y
135 mutualInformation :: (Ord a) => [a] -> [a] -> Double
136 mutualInformation xs ys = entropy xs + entropy ys - entropy (zip xs ys)

17

8.3 src/GraphUtils.hs
1 module GraphUtils
2 (NodeState(..)
3 , BoolEdge(..)
4 , BoolNetwork(..)
5 , plotBoolNetworkPng
6 , plotBoolNetworkPngPar
7 , plotDGPng
8) where
9

10 import Data.GraphViz
11 import Data.GraphViz.Attributes.Complete
12 import Data.Hashable
13

14 import Control.Parallel.Strategies (parListChunk, rdeepseq, using)
15 import Control.DeepSeq (NFData(..))
16

17 import qualified Data.Text.Lazy as TL
18 import qualified Data.Graph.DGraph as DG
19 import qualified Data.Graph.Types as GT
20

21 {-
22 Data types representing boolean states of genes and boolean network consisting of

NodeStates and directed edges.↪→

23

24 - NodeState:
25 - name :: String -> name of gene
26 - timeStates :: [Int] -> expression of gene across time-series in order
27 -}
28

29 data NodeState = NodeState { name :: String
30 , timeStates :: [Int] } deriving (Eq, Ord)
31

32 instance Show NodeState where
33 show (NodeState n _) = n
34

35 instance NFData NodeState where
36 rnf (NodeState n ts) = rnf n `seq` rnf ts
37

38 {-
39 - BoolEdge
40 - v_i :: NodeState -> source node
41 - v_j :: NodeState -> target node
42 -}
43 data BoolEdge = BoolEdge { v_i :: NodeState
44 , v_j :: NodeState } deriving (Eq)
45

18

46 instance Show BoolEdge where
47 show (BoolEdge i j) = "(" ++ name i ++ " -> " ++ name j ++ ")"
48

49 instance NFData BoolEdge where
50 rnf (BoolEdge i j) = rnf i `seq` rnf j
51

52 {-
53 - BoolNetwork
54 - nodes :: [NodeState] -> all nodes/genes in network
55 - connections :: [BoolEdge] -> directed edges between genes
56 -}
57 data BoolNetwork = BoolNetwork { nodes :: [NodeState]
58 , connections :: [BoolEdge] } deriving (Eq, Show)
59 instance NFData BoolNetwork where
60 rnf (BoolNetwork n c) = rnf n `seq` rnf c
61

62 {-
63 Modified from graphite lib source code:
64 - Functions for plotting directed graph and BoolNetwork to png file
65 - graphviz needs to be installed on local machine to see output:
66 - brew install graphviz
67 OR
68 - sudo apt install graphviz
69

70 Example: Plot DGraph foundationUniverse to "foundation.png"
71

72 foundationUniverse :: DG.DGraph String Double
73 foundationUniverse = DG.fromArcsList
74 [GT.Arc "Helicon" "Nishaya" 200.00
75 , GT.Arc "Helicon" "Wencory" 382.20
76 , GT.Arc "Nishaya" "Wencory" 820.32
77]
78

79 plotDGraphPng foundationUniverse "foundation"
80

81 -}
82 -- Plot a BoolNetwork to png file
83 boolNetworkToDG :: BoolNetwork -> Bool -> DG.DGraph String String
84 boolNetworkToDG network labelEdges = DG.fromArcsList
85 $ map (\(BoolEdge inp out) ->
86 GT.Arc (name inp) (name out) (if

labelEdges then "test" else ""))↪→

87 (connections network)
88

89 -- Plot a BoolNetwork to png file
90 boolNetworkToDGPar :: BoolNetwork -> Bool -> DG.DGraph String String
91 boolNetworkToDGPar network labelEdges = DG.fromArcsList

19

92 (map (\(BoolEdge inp out) ->
93 GT.Arc (name inp) (name out) (if

labelEdges then "test" else ""))↪→

94 (connections network)
95 `using` parListChunk 50 rdeepseq)
96

97 -- Plot BoolNetwork to png file
98 plotBoolNetworkPng :: BoolNetwork -> FilePath -> Bool -> IO FilePath
99 plotBoolNetworkPng network fname labelEdges = plotDGPng networkDG fname

labelEdges↪→

100 where
101 networkDG = boolNetworkToDG network labelEdges
102

103 plotBoolNetworkPngPar :: BoolNetwork -> FilePath -> Bool -> IO FilePath
104 plotBoolNetworkPngPar network fname labelEdges = plotDGPng networkDG fname

labelEdges↪→

105 where
106 networkDG = boolNetworkToDGPar network labelEdges
107

108 -- | Plot a directed 'DGraph' to a PNG image file
109 plotDGPng :: (Hashable v, Ord v, PrintDot v, Show v, Show e)
110 => DG.DGraph v e
111 -> FilePath
112 -> Bool
113 -> IO FilePath
114 plotDGPng g fname labelEdges = addExtension (runGraphvizCommand Sfdp $

toDirectedDot labelEdges g) Png fname↪→

115

116 labeledNodes :: (GT.Graph g, Show v) => g v e -> [(v, String)]
117 labeledNodes g = (\v -> (v, show v)) <$> GT.vertices g
118

119 labeledArcs :: (Hashable v, Eq v, Show e) => DG.DGraph v e -> [(v, v, String)]
120 labeledArcs g = (\(GT.Arc v1 v2 attr) -> (v1, v2, show attr)) <$> DG.arcs g
121

122 toDirectedDot :: (Hashable v, Ord v, Show v, Show e)
123 => Bool -- ˆ Label edges
124 -> DG.DGraph v e
125 -> DotGraph v
126 toDirectedDot labelEdges g = graphElemsToDot params (labeledNodes g) (labeledArcs

g)↪→

127 where params = sensibleDotParams True labelEdges
128

129 sensibleDotParams
130 :: Bool -- ˆ Directed
131 -> Bool -- ˆ Label edges
132 -> GraphvizParams t l String () l
133 sensibleDotParams directed edgeLabeled = nonClusteredParams

20

134 { isDirected = directed
135 , globalAttributes =
136 [GraphAttrs [Overlap ScaleOverlaps]
137 , EdgeAttrs [FontColor (X11Color DarkGreen)]
138]
139 , fmtEdge = edgeFmt
140 }
141 where
142 edgeFmt (_, _, l) = if edgeLabeled
143 then [Label $ StrLabel $ TL.pack l]
144 else []

8.4 src/BDDUtils.hs
1 {-# LANGUAGE TupleSections #-}
2

3 module BDDUtils
4 (BDD(..)
5 , evaluateFunc
6 , getOptimalBoolExpressions
7 , getOptimalBoolExpressionsPar
8 , getRegulatoryNodes
9 , searchUpdateRule

10 , getBDDFromFunc
11) where
12

13 import GraphUtils (NodeState(..), BoolEdge(..), BoolNetwork(..))
14

15 import Data.Ord (comparing)
16 import Data.List (maximumBy)
17

18 import qualified Data.Matrix as M
19 import qualified Data.Vector as Vec
20

21 import Control.Parallel.Strategies (parMap, rdeepseq, using, parListChunk,
parBuffer)↪→

22 import Control.DeepSeq(NFData(..))
23

24 {-
25 Functions for evaluating and representing binary decision diagrams.
26 -}
27

28 {-
29 Binary decision diagram data type used for evaluating boolean expressions.
30

31 Example:
32 - f = XOR (AND (Name "x") (OR (Name "y") (Name "a"))) (NOT (Name "z"))

21

33 - fromEnum $ evaluateFunc f [("x", 1), ("y", 0), ("a", 1), ("z", 1)]
34 - Output: 1
35 -}
36

37 -- Define binary decision diagram
38 data BDD = Name String -- name of node (gene name)
39 | State Int -- state of node (0 or 1)
40 | AND BDD BDD -- an AND node
41 | OR BDD BDD -- an OR node
42 | XOR BDD BDD -- an XOR node
43 | NOT BDD -- a NOT node
44 deriving (Eq)
45

46 instance Show BDD where
47 show (Name x) = x
48 show (State x) = show x
49 show (AND x y) = "(" ++ show x ++ " AND " ++ show y ++ ")"
50 show (OR x y) = "(" ++ show x ++ " OR " ++ show y ++ ")"
51 show (XOR x y) = "(" ++ show x ++ " XOR " ++ show y ++ ")"
52 show (NOT x) = "(NOT " ++ show x ++ ")"
53

54 instance NFData BDD where
55 rnf (Name x) = rnf x
56 rnf (State x) = rnf x
57 rnf (AND x y) = rnf x `seq` rnf y
58 rnf (OR x y) = rnf x `seq` rnf y
59 rnf (XOR x y) = rnf x `seq` rnf y
60 rnf (NOT x) = rnf x
61

62 {-
63 Evaluate a boolean expression given a BDD data type and a list of tuples

specifying values for each variable.↪→

64

65 Params:
66 - BDD data type
67 - func: list of tuples [(varName, value)], where varName is a boolean variable

name in the BDD, and value is the value assigned to it↪→

68

69 Example:
70 - f = XOR (AND (Name "x") (OR (Name "y") (Name "a"))) (NOT (Name "z"))
71 - fromEnum $ evaluateFunc f [("x", 1), ("y", 0), ("a", 1), ("z", 1)]
72 - Output: 1
73

74 -}
75 -- evaluate a BDD for a given assignment of the variables
76 evaluateFunc :: BDD -> [(String, Int)] -> Bool
77 evaluateFunc (Name x) func = case lookup x func of

22

78 Just a -> a == 1
79 Nothing -> error "Variable not in assignment"
80 evaluateFunc (AND x y) func = evaluateFunc x func && evaluateFunc y func
81 evaluateFunc (OR x y) func = evaluateFunc x func || evaluateFunc y func
82 evaluateFunc (XOR x y) func
83 | andTrue = False
84 | otherwise = evaluateFunc (OR x y) func
85 where
86 andTrue = evaluateFunc x func && evaluateFunc y func
87 evaluateFunc (NOT b) func = not (evaluateFunc b func)
88 evaluateFunc (State x) _
89 | x == 1 = True
90 | otherwise = False
91

92

93 {-
94 Get gene wise dynamics consistency metric given a predicted time series and the

actual time series.↪→

95

96 Params:
97 - predictedStates :: [Int]
98 - actualStates :: [Int]
99

100 -}
101 geneWiseDynamicsConsistency :: [Int] -> [Int] -> Double
102 geneWiseDynamicsConsistency predictedStates actualStates = sumPredictions /

fromIntegral timeLength↪→

103 where
104 sumPredictions = sum $ zipWith (\x y -> if x == y then 1 :: Double else 0 ::

Double) predictedStates actualStates↪→

105 timeLength = length predictedStates
106

107 {-
108 Get all combinations of conjunctive and disjunctive boolean expressions.
109

110 Params:
111 - n :: Int -> number of operators to evaluate
112

113 Returns:
114 - [[Int]] -> list of Int lists, where each list corresponds to a sequence of

AND/OR operations.↪→

115

116 Each list, e.g. [1, 0, 1], signifies a sequence of AND/OR operators, where 1 =
AND and 0 = OR↪→

117

118 Example: given a list of truth values, such as [1, 0, 0, 1], and a boolean
expression combination represented as [1, 0, 1]:↪→

23

119 - Using the BDD data type, we would evaluate this as: ((1 AND 0) OR 0) AND 1
120 -}
121 getConjDisjCombos :: Int -> [[Int]]
122 getConjDisjCombos 1 = [[0], [1]]
123 getConjDisjCombos n = [[mod x 2ˆi | i <- [0..n-1]] | x <- [0..(2ˆn)-1]]
124

125

126 {-
127 Construct a BDD given boolean variable names and a combination of

conjunctive/disjunctive operations.↪→

128

129 Params:
130 - (x:xs) :: [String] -> boolean variable names
131 - ops :: [Int] -> conjunctive/disjunctive combinations as one element outputted

by getConjDisjCombos↪→

132

133 Returns: BDD
134

135 The number of variables should always be 1 more than the number of operations.
136

137 Example:
138 - getBDDFromFunc ["v1", "v2", "v3"] [1, 0] returns a BDD of: ((v1 AND v2) OR v3)
139 - bdd = getBDDFromFunc ["v1", "v2", "v3"] [1, 0]
140 - fromEnum $ evaluateFunc bdd [("v1", 1), ("v2", 0), ("v3", 1)]
141 - Output: 1
142 -}
143 getBDDFromFunc :: [String] -> [Int] -> BDD
144 getBDDFromFunc [] _ = error "Invalid input."
145 getBDDFromFunc [_] _ = error "Invalid input."
146 getBDDFromFunc (x:xs) ops = foldl (\acc (y, ys) -> if ys == 1 then AND acc (Name

y) else OR acc (Name y)) (Name x) tailZipped↪→

147 where
148 tailZipped = zip xs ops
149

150 {-
151 Get regulatory genes of node given target node and boolean network.
152

153 Params:
154 - targetNode: target gene
155 - network : BoolNetwork
156 -}
157 getRegulatoryNodes :: NodeState -> BoolNetwork -> [NodeState]
158 getRegulatoryNodes targetNode network = map v_i $ filter (\(BoolEdge _ out) ->

out == targetNode) $ connections network↪→

159

160

161 {-

24

162 Compute genewise dynamics consistency metric for possible boolean expressions in
input nodes sorted by mutual information.↪→

163

164 Params:
165 - inpNodes :: [NodeState] -> top k input nodes with highest mutual information

with respect to targetNode↪→

166 - targetNode :: NodeState
167 - timeLength :: Int -> length of time series
168 -}
169 searchUpdateRule :: [NodeState] -> NodeState -> Int -> [(Double, BDD)]
170 searchUpdateRule inpNodes targetNode timeLength =
171 case allTargetStates of
172 [] -> error "Invalid target states."
173 [_] -> error "Invalid target states."
174 (_:targetStates) -> map (\(p, r) -> (geneWiseDynamicsConsistency p

targetStates, r)) predStates↪→

175 where
176 -- Get target states of target node
177 allTargetStates = timeStates targetNode
178

179 inpNodeNames = map name inpNodes
180 inpMatrix = M.fromLists $ map (\xs -> map (name xs,) (timeStates xs))

inpNodes↪→

181

182 -- Get boolean expression combos
183 ruleCombos = map (getBDDFromFunc inpNodeNames) $ getConjDisjCombos (length

inpNodes - 1)↪→

184

185 -- Predict states using boolean expression
186 predStates = map (\ruleBDD ->
187 let p = map (fromEnum . \t -> evaluateFunc ruleBDD

(filter (\(nn, _) -> nn `elem` inpNodeNames)↪→

188 $ Vec.toList (M.getCol t
inpMatrix)))↪→

189 [1..(timeLength - 1)]
190 in (p, ruleBDD))
191 ruleCombos
192

193 searchUpdateRulePar :: [NodeState] -> NodeState -> Int -> [(Double, BDD)]
194 searchUpdateRulePar inpNodes targetNode timeLength =
195 case allTargetStates of
196 [] -> error "Invalid target states."
197 [_] -> error "Invalid target states."
198 (_:targetStates) -> map (\(p, r) -> (geneWiseDynamicsConsistency p

targetStates, r)) predStates↪→

199 where
200 -- Get target states of target node

25

201 allTargetStates = timeStates targetNode
202

203 inpNodeNames = map name inpNodes
204 inpMatrix = M.fromLists $ map (\xs -> map (name xs,) (timeStates xs)

`using` parBuffer 50 rdeepseq) inpNodes↪→

205

206 -- Get boolean expression combos
207 ruleCombos = map (getBDDFromFunc inpNodeNames) (getConjDisjCombos

(length inpNodes)) `using` parBuffer 100 rdeepseq↪→

208

209 -- Predict states using boolean expression
210 predStates = parMap rdeepseq (\ruleBDD ->
211 let p = map (fromEnum . \t -> evaluateFunc ruleBDD

(filter (\(nn, _) -> nn `elem` inpNodeNames)↪→

212 $ Vec.toList (M.getCol t inpMatrix)))
213 [1..(timeLength - 1)]
214 `using` parBuffer 50 rdeepseq
215 in (p, ruleBDD))
216 ruleCombos
217

218 {-
219 Get optimal boolean expressions for each node in network that optimizes genewise

dynamics consistency.↪→

220 -}
221 getOptimalBoolExpressions :: BoolNetwork -> Int -> [(NodeState, BDD, Double)]
222 getOptimalBoolExpressions inferredNetwork timeLength = map (\targetNode ->
223 let inpNodes

= getRegulatoryNodes targetNode inferredNetwork↪→

224 -- Get
consistency metrics for each boolean expression↪→

225

consistencyMetrics = searchUpdateRule inpNodes targetNode
timeLength

↪→

↪→

226 -- Get boolean
expression with max consistency metric↪→

227 (maxConsistency,
optimalBDD) = maximumBy (comparing fst) consistencyMetrics↪→

228 in (targetNode,
optimalBDD, maxConsistency))↪→

229 $ nodes inferredNetwork
230

231 getOptimalBoolExpressionsPar :: BoolNetwork -> Int -> [(NodeState, BDD, Double)]
232 getOptimalBoolExpressionsPar inferredNetwork k = map (\targetNode ->
233 let inpNodes

= getRegulatoryNodes targetNode inferredNetwork↪→

234 consistencyMetrics
= searchUpdateRulePar inpNodes targetNode k↪→

26

235 (maxConsistency,
optimalBDD) = maximumBy (comparing fst) consistencyMetrics↪→

236 in (targetNode,
optimalBDD, maxConsistency))↪→

237 (nodes inferredNetwork)
238 `using` parListChunk 50 rdeepseq

8.5 src/ProcessData.hs
1 module ProcessData
2 (csvToNodeStates
3) where
4

5 import qualified Data.ByteString.Char8 as C
6

7 import GraphUtils (NodeState(..))
8 import qualified Data.Matrix as M
9 import qualified Data.Vector as Vec

10

11

12 -- Get CSV Data
13 -- Return (header, values as multi-D list)
14 getCSVData :: String -> IO ([String], [[Int]])
15 getCSVData fname = do
16 inp <- C.readFile fname
17 let inpLines = C.lines inp
18 case inpLines of
19 [] -> error "Invalid csv file."
20 [_] -> error "Invalid csv file."
21 (header:csvLines) -> do
22 let headerFormatted = map C.unpack (C.split ',' header)
23 csvLinesFormatted = map (map (\l2 -> read (C.unpack l2) :: Int) .

C.split ',') csvLines↪→

24 return (headerFormatted, csvLinesFormatted)
25

26 {-
27 Params:
28 - x: csvData returned by getCSVData
29 - axis: 0 = row, 1 = column
30 -}
31 parseCSVData :: IO ([String], [[Int]]) -> Int -> IO [NodeState]
32 parseCSVData x axis = do
33 csvData <- x
34 let (header, csvList) = csvData
35 csvMatrix = M.fromLists csvList
36 nodeStates = foldl (\acc (i, hName) -> acc ++ [NodeState hName

(Vec.toList $↪→

27

37 if axis == 0
38 then M.getRow i

csvMatrix↪→

39 else M.getCol i
csvMatrix↪→

40)])
41 []
42 $ filter (\(_, n) -> n /= "time") (zip [0..]

header)↪→

43

44 return nodeStates
45

46 {-
47 Params:
48 - fname: csv filename
49 - axis: 0 = row, 1 = column
50

51 Example:
52 t <- csvToNodeStates "../../test2.csv" 1
53 -}
54 csvToNodeStates :: String -> Int -> IO [NodeState]
55 csvToNodeStates fname = parseCSVData (getCSVData fname)

8.6 src/generate data.py
1 # Generate large test samples
2 """
3 Main script for generating random large datasets of input/output gene expression

samples↪→

4 """
5

6 import random
7 import pandas as pd
8 import numpy as np
9 import argparse

10

11 def generate_io_pairs(num_nodes, time):
12 nodes = ["v" + str(i) for i in range(1, num_nodes + 1)] + ["v" + str(i) + "'"

for i in range(1, num_nodes + 1)]↪→

13 state_series = []
14

15 inp_seen = []
16 out_seen = []
17

18 for t in range(1, time + 1):
19 rand_states_inp = [random.randint(0, 1) for _ in range(num_nodes)]
20 rand_states_out = [random.randint(0, 1) for _ in range(num_nodes)]

28

21

22 inp_done = False
23 out_done = False
24

25 while not (inp_done and out_done):
26 if rand_states_inp not in inp_seen:
27 inp_seen.append(rand_states_inp)
28 inp_done = True
29 else:
30 rand_states_inp = [random.randint(0, 1) for _ in

range(num_nodes)]↪→

31

32 if rand_states_out not in out_seen:
33 out_seen.append(rand_states_out)
34 out_done = True
35 else:
36 rand_states_out = [random.randint(0, 1) for _ in

range(num_nodes)]↪→

37

38 state_series.append(rand_states_inp + rand_states_out)
39

40 state_series_df = pd.DataFrame(state_series, columns = nodes)
41 return state_series_df
42

43

44 def generate_data_time_series(num_nodes, time):
45 nodes = ["v" + str(i) for i in range(1, num_nodes + 1)]
46 state_series = []
47 states_seen = []
48 for t in range(1, time + 1):
49 rand_states = [random.randint(0, 1) for _ in range(len(nodes))]
50 while True:
51 if rand_states not in states_seen:
52 states_seen.append(rand_states)
53 break
54 else:
55 rand_states = [random.randint(0, 1) for _ in range(len(nodes))]
56

57 state_series.append([t] + rand_states)
58

59 state_series_df = pd.DataFrame(state_series, columns = ["time"] + nodes)
60 return state_series_df
61

62 def output_data_to_file(state_series_df, fname):
63 state_series_df.to_csv(fname, index=False)
64 print("Printed data to {}".format(fname))
65

29

66 def parse_args():
67 parser = argparse.ArgumentParser()
68

69 parser.add_argument("--numNodes", type=int, help="Number of nodes")
70 parser.add_argument("--time", type=int, help="Length of time-series")
71 parser.add_argument("--outputFile", help="Output file")
72

73 args = parser.parse_args()
74

75 return args
76

77 # Example: python generate_data.py --numNodes 100 --time 300 --outputFile
"test.csv"↪→

78 if __name__ == "__main__":
79 args = parse_args()
80 data = generate_data_time_series(args.numNodes, args.time)
81 print(data)
82 output_data_to_file(data, args.outputFile)
83

30

