
Project Report: Parallel Convex Hull

Andrei Coman, ac4808@columbia.edu

December 18, 2022

1 Introduction

This report presents a parallel Haskell implementation for the Convex Hull problem. More formally, given
N points in the xy-plane, we want to find their convex hull - the smallest convex set containing all N points,
or, alternatively, the intersection of all convex sets containing all N points.

An efficient solution to this problem is called Graham’s Scan and is presented in Section 2. Then, the
remaining sections present the parallelization of this algorithm along with several performance measures of
the accompanying Haskell implementation. The complete code listing and usage are presented in the Annex.

2 Sequential Algorithm

Graham’s Scan considers the convex-hull of the N points as composed of an upper-hull and a lower-hull.
If we let L denote the leftmost point of this convex hull and R denote the rightmost point, the upper-hull
contains all the vertices which lie above the [LR] segment, whereas the lower-hull contains the ones below.
To compute the upper-hull, the algorithm first sorts the points in increasing order of their x-coordinate.
Then, it iterates through the points, maintaining at each step a ”convex” stack - where, by convex, we mean
that any three adjacent points on the stack form a clockwise turn. Whenever a point is inserted, the stack
is popped as much as needed to preserve the convexity property (see Fig. 1 and Fig. 2). The computation
of the lower-hull is symmetric, but a concavity property is now enforced. Once the upper and lower hull are
computed, the convex hull is their union. This algorithm has complexity O(NlogN) for the sort and O(N)
for the following sweeps. A Haskell implementation of this idea can be found in Annex B, under src/Lib.hs.

0 2 4 6 8 10
0

2

4

6

8

10

x-axis

y
-a
x
is

Figure 1: Stack Before Insertion (Convexity
Violated)

0 2 4 6 8 10
0

2

4

6

8

10

x-axis

y
-a
x
is

Figure 2: Stack Following Insertion (Con-
vexity Restored)

1



3 Parallel Algorithm

3.1 Convex Hull Merging

To parallelize this algorithm, we can adopt the following divide and conquer approach: instead of computing
the hull of the entire dataset directly, we split the dataset into two halves, compute their individual hulls in
parallel, then merge them to obtain the overall hull. While merging two arbitrary possibly intersecting convex
polygons (in particular, convex hulls) can be performed efficiently using more involved data structures, we
can choose a split that minimizes the complexity of this operation.

In particular, let us choose some arbitrary vertical line in the xy-plane and partition the points into two
subsets according to the side of the separating line they fall on. Then, the convex hulls corresponding to these
two subsets will be linearly separated by the aforementioned line. Thus, we only need to handle the problem
of merging two linearly-separated convex hulls. This operation can be performed efficiently as follows.

Consider, as in the sequential algorithm, that a convex hull is the union of an upper-hull and a lower-hull.
Then, the convex hull resulting from the merge is determined by the common upper-tangent of the two
upper-hulls and the common lower-tangent of the two lower-hulls (Fig. 3, Fig. 4).

0 2 4 6 8 10
0

2

4

6

8

10

x-axis

y
-a
x
is

”upper tangent”
”lower tangent”

Figure 3: Upper/Lower Tangents

0 2 4 6 8 10
0

2

4

6

8

10

x-axis

y
-a
x
is

Figure 4: Merged Convex Hulls

Now, these two common tangents can be found by the following ”iterative” algorithm. We will look at the
process for finding the upper-tangent (the one for the lower-tangent is symmetric). Consider the segment
between the left hull’s rightmost point and the right hull’s leftmost point as the first candidate for the
upper-tangent. If shifting this segment to the next point on the left would create a concave angle (Fig. 5),
shift the tangent to the left and continue the process recursively. If shifting the segment to the next point
on the right would create a concave angle (Fig. 6), shift the tangent to the right and continue the process
recursively. Otherwise, the current candidate is the common upper-tangent of the two hulls.

3.2 Parallelism Strategies

Having this merging algorithm for linearly-separated convex hulls, I considered several possible strategies for
parallelizing the overall algorithm. The most obvious strategy is to first sort the points by their x-coordinate,
then split them into several contiguous chunks and compute the convexHull of each chunk in parallel using
parList. Since the points had been sorted before the split, the resulting convex-hulls are necessarily separated
by some vertical lines and, so, the algorithm discussed above can be applied. The merging can either be
applied as a fold over the resulting hulls or in a divide-and-conquer manner. However, since the convex hull
has a logarithmic size in the number of points, this choice does not have a big impact.

2



0 2 4 6 8 10
0

2

4

6

8

10

x-axis

y
-a
x
is

”initial tangent”
”left-shifted tangent”

Figure 5: Left-shifting a Tangent

0 2 4 6 8 10
0

2

4

6

8

10

x-axis

y
-a
x
is

”initial tangent”
”right-shifted tangent”

Figure 6: Right-shifting a Tangent

Parallelization using parList

1 convexHullHelper :: [Point] -> Hull

2 convexHullHelper xs =

3 let chunks = chunksOf chunkSize xs in

4 let hulls = map (force . convexHullNaive) chunks ‘using ‘ parList rseq in

5 List.foldl1 mergeHulls hulls

However, profiling this solution reveals that, when using several threads, the runtime becomes dominated by
the sorting algorithm. This can be improved by implementing a simple parallel quicksort which partitions
the array using some pivot, but then proceeds to sort the two partitions in parallel before merging them. To
reduce the number of unnecessary (overflowed/fizzled/GC’d) sparks, we can also introduce a threshold for
parallelism, after which the algorithm is just executed in series.

Parallel Naive QuickSort

1 quicksort :: (NFData a, Ord a) => [a] -> [a]

2 quicksort [] = []

3 quicksort (x : xs) =

4 let l = quicksort [y | y <- xs, y <= x] in

5 let r = quicksort [y | y <- xs, y > x] in

6 if length xs > chunkSize then

7 let parRes = do l’ <- rpar (force l)

8 r’ <- rpar (force r)

9 _ <- rseq l’

10 _ <- rseq r’

11 return (l’, r’) in

12 let (l’, r’) = runEval $ parRes in

13 l’ ++ [x] ++ r’

14 else l ++ [x] ++ r

These two ideas already lead to good parallel performance. However, the runtime can still be improved by
leveraging the similarity between the sorting algorithm and the divide-and-conquer approach for splitting
and merging the convex hulls. More specifically, we can modify the parallel computation of the convex
hull can be modified to follow the same structure as the sort: split the dataset into three partitions using
some arbitrary pivot: elements to the left of the pivot, the pivot, elements to the right of the pivot. Then,
depending on whether some threshold is exceeded, either compute the convex hull using the naive sequential
algorithm or recursively compute the convex hull for all partitions recursively. Then, merge the left hull with
the pivot and the right hull.

3



Divide-and-Conquer Parallelism (see Annex B for full code listing)

1 {- recursively partition the input array; call naive

2 - convex hull algorithm on leaves; merge left and right

3 - hulls at internal nodes

4 -}

5 convexHullHelper :: [Point] -> Hull

6 convexHullHelper xs =

7 if length xs <= chunkSize

8 then convexHullNaive $ quicksort xs

9 else -- partition list of points into left/right halves

10 let pivot = head xs in

11 let (ls, _, rs) = partition xs pivot [] [] [] in

12
13 -- compute the convex hulls of the two halves in parallel

14 let lhull = convexHullHelper ls in

15 let rhull = convexHullHelper rs in

16 let parRes = do lhull ’ <- rpar (force lhull)

17 rhull ’ <- rpar (force rhull)

18 _ <- rseq lhull ’

19 _ <- rseq rhull ’

20 return (lhull ’, rhull ’) in

21 let (lhull ’, rhull ’) = runEval $ parRes in

22
23 -- merge the left hull , the pivot and the right hull

24 lhull ’ ‘mergeHulls ‘ (Hull (Cap [pivot] [pivot]) (Cap [pivot] [pivot ]))

25 ‘mergeHulls ‘ rhull ’

This implementation outperforms the others mentioned so far and is, therefore, the final parallel approach.
For a full listing of the code with all the helper functions, see Annex B.

4 Parameter Fitting

104 105 106
20

22

24

26

28

30

32

Leaf Size (log scale)

T
im

e
(s
)

”2”
”3”
”4”
”5”

Figure 7: Runtime for different numbers of threads at different granularities (107-point dataset)

4



1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5
·104

Number of threads

O
p
ti
m
al

le
a
f
si
ze

Figure 8: Optimal leaf size for different numbers of threads

The approach detailed above requires the user to set one parameter: the chunk size or leaf size - the number
of points beyond which employing parallelism in the convex hull computation becomes less efficient than
the sequential method. Fig. 7 shows how the runtime of the algorithm differs for different leaf sizes given
different numbers of threads. Taking the optimal size for each number of threads, we obtain Fig. 8. The
optimal chunk size follows a function resembling a reverse-sigmoid. So, if one were to automate setting this
parameter, fitting this graph with a reverse-sigmoid should yield good results.

5 Results

Running the sequential implementation and the parallel implementation (with different numbers of threads,
always with the optimal chunk/leaf size) yields the following runtimes and speedups:

No. threads RT Speedup

sequential 41.37 -

2 27.74 x1.49
3 25.02 x1.65
4 23.06 x1.79
5 22.30 x1.86
6 21.37 x1.94
7 20.97 x1.97
8 21.13 x1.96
9 21.71 x1.90

Table 1: Speedup

Here, we can see that the optimal speedup is close to x2 and is obtained for 7 threads.

5



Using Threadscope, we can visualize how the load is balanced throughout the entire run:

Figure 9: Overall Runtime of Algorithm (Threadscope)

and just throughout the parallel section:

Figure 10: Parallel Section of the Algorithm (Threadscope)

We can see that, after the data is read from disk (which still takes a considerable amount of time due to
the size of the input), the parallel section is fairly-well balanced. In the case depicted above, which uses
only 4 threads, all threads are performing work consistently throughout the parallel section of the execution.
However, the overall profile is not smooth because of the large amount of garbage collection - garbage is
generated by the partitioning of the dataset, the sorting, and the stack in Graham’s algorithm.

6



6 Sample Input/Output

Sample Input/Output

1 2.0 0.0

2 0.0 2.0

3 1.0 3.0

4 0.0 4.0

5 3.0 3.0

6 2.0 6.0

7 4.0 2.0

8 4.0 4.0

1 (0.0, 2.0)

2 (2.0, 0.0)

3 (4.0, 2.0)

4 (4.0, 4.0)

5 (2.0, 6.0)

6 (0.0, 4.0)

Note: the implementation presented here produces only the vertices of the convex hull. Other tools must
be used for visualization.

−2 0 2 4 6

0

2

4

6

x-axis

y
-a
x
is

Figure 11: Dataset Visualization

−2 0 2 4 6

0

2

4

6

x-axis

y
-a
x
is

Figure 12: Convex Hull Visualization

7 Conclusion

This report presents how Graham’s scan can be efficiently parallelized, resulting in an almost-x2 speedup
over the entire runtime of the program. This shows that, even though Graham’s scan has a linear complex-
ity, the stack based algorithm preceeded by a sorting of the dataset can be made much more efficient by
introducing parallelism at all stages (besides I/O). The best performance was obtained for 7 threads and
a parallel/sequential threshold of 1,000 points. This allowed the processing of 10,000,000 points in 20.97
seconds.

The workload is distributed well amongst the working threads, which leads to fairly good balancing. However,
the garbage collection is a noticeable setback to this approach, constantly fragmenting the execution of the
threads and resulting in long, frequent garbage collection breaks. The question of how garbage production
could be minimized could be considered as further work.

7



A Usage

The following command runs the parallel algorithm with n threads:

1 stack run -- +RTS -Nn -s -ls -RTS p <input -file > <output -file >

As a side effect, this command also prints runtime statistics to standard error and produces an associated
.eventlog file which can be inspected with Threadscope. To run the sequential implementation mentioned in
the beginning of this report, use the command:

1 stack run -- +RTS -Nn -s -ls -RTS s <input -file > <output -file >

Input files must contain a sequence of points, each represented as a space-separated pair of doubles per line.
To test the implementation, run:

1 stack test

B Code Listing

app/Main.hs

1 module Main (main) where

2
3 import qualified Data.Text as B (words , lines)

4 import qualified Data.Text.IO as B (readFile)

5 import qualified Data.Text.Read as B (double)

6 import Types (Point (..))

7 import qualified Lib (convexHull)

8 import qualified ParLib (convexHull)

9 import System.Environment (getArgs , getProgName)

10 import System.Exit (exitFailure)

11 import System.IO (hPutStrLn , stderr , withFile , IOMode(WriteMode))

12
13 main :: IO ()

14 main = do

15 args <- getArgs

16 case args of

17 [mode , inputFilename , outputFilename] -> do

18 contents <- B.readFile inputFilename

19 let pts = map (\p -> case p of

20 [xstr , ystr] -> (case (B.double xstr , B.double ystr) of

21 (Right (x, _), Right (y, _)) ->

22 Point x y

23 _ -> error "error while parsing input"

24 )

25 _ -> error "malformed input"

26 )

27 (map B.words $ B.lines contents)

28 let hull = case mode of

29 "p" -> ParLib.convexHull pts

30 "s" -> Lib.convexHull pts

31 _ -> error "invalid mode"

32 withFile outputFilename WriteMode

33 (\h -> do mapM_ (\p -> hPutStrLn h $ show p) $ hull)

34
35 _ -> do

36 pn <- getProgName

37 hPutStrLn stderr $ "Usage: " ++

38 pn ++

39 "<mode(p/s)> <input -filename > <output -filename >"

40 exitFailure

8



src/Types.hs

1 module Types

2 ( Point (..)

3 , Cap (..)

4 , Hull (..)

5 ) where

6
7 import Control.Parallel.Strategies

8 import Control.DeepSeq

9 -- a cap is either the top or the bottom half of a hull

10 -- consists of its left -right and its right -left traversal

11 -- a hull is made out of its upper -hull/cap and its lower one

12 data Cap = Cap [Point] [Point]

13 data Hull = Hull Cap Cap

14 instance NFData Hull where

15 rnf (Hull (Cap upperLR upperRL)

16 (Cap lowerLR lowerRL)) = (rnf upperLR) ‘seq ‘

17 (rnf upperRL) ‘seq ‘

18 (rnf lowerLR) ‘seq ‘

19 (rnf lowerRL)

20
21 data Point = Point Double Double

22 instance Eq Point where

23 (Point ax ay) == (Point bx by) = (ax == ay) && (bx == by)

24 instance Ord Point where

25 (Point ax ay) ‘compare ‘ (Point bx by) =

26 case (ax ‘compare ‘ bx) of

27 LT -> LT

28 GT -> GT

29 EQ -> ay ‘compare ‘ by

30 instance Show Point where

31 show (Point x y) = "(" ++ (show x) ++ ", " ++ (show y) ++ ")"

32 instance NFData Point where

33 rnf (Point x y) = (rnf x) ‘seq ‘ (rnf y)

app/ParLib.hs

1 module ParLib

2 ( convexHull

3 ) where

4
5 import qualified Data.List as List

6 import Control.Parallel.Strategies

7 import Control.DeepSeq

8 import Types (Point (..), Cap (..), Hull (..))

9
10 {- get the convexity of an ordered triplet of points

11 - by computing a quantity proportional to the signed

12 - area of the triangle formed by these points

13 - this is > 0 when convex , < 0 when concave and

14 - = 0 for collinear points

15 -}

16 convexity :: Point -> Point -> Point -> Double

17 convexity (Point ax ay)

18 (Point bx by)

19 (Point cx cy) = (ax * by + bx * cy + cx * ay) -

20 (ax * cy + bx * ay + cx * by)

21
22 {- find the upper hull of an xy -sorted set of points

23 - maintain a stack and enforce convexity at insertion

24 -}

25 upperHull :: [Point] -> [Point]

26 upperHull xs = List.foldl insertConvex [] xs -- for every point

27 where insertConvex :: [Point] -> Point -> [Point]

28 insertConvex stack@(a : pop@(b : _)) p =

29 if convexity b a p < 0

9



30 then p : stack -- add on top of stack

31 else insertConvex pop p -- pop and retry

32 insertConvex stack p =

33 p : stack

34
35 {- find the lower hull of an xy -sorted set of points

36 - maintain a stack and enforce cocavity at insertion

37 -}

38 lowerHull :: [Point] -> [Point]

39 lowerHull xs = List.foldl insertConcav [] xs -- for every point

40 where insertConcav :: [Point] -> Point -> [Point]

41 insertConcav stack@(a : pop@(b : _)) p =

42 if convexity b a p > 0

43 then p : stack -- add on top of stack

44 else insertConcav pop p -- pop and retry

45 insertConcav stack p =

46 p : stack

47
48 {- compute the lower and upper hull using the naive

49 - Graham ’s scan algorithm and then wrap them into

50 - a "Hull" instance

51 -}

52 convexHullNaive :: [Point] -> Hull

53 convexHullNaive xs =

54 let lower = lowerHull xs in

55 let upper = upperHull xs in

56 Hull (Cap (reverse lower) lower) (Cap (reverse upper) upper)

57
58 {- find the common upper tangent of two hulls

59 - the input consists of the list starting at the

60 - rightmost point of the left hull , followed by

61 - the list starting at the leftmost point of the

62 - right hull

63 - algorithm: shift the tangent incrementally

64 - until the optimum is reached

65 -}

66 upperTangent :: [Point] -> [Point] -> ([ Point], [Point])

67 upperTangent xl xr

68 -- can shift tangent to the right

69 | (l : _) <- xl

70 , (r : xrs@(rnext : _)) <- xr

71 , convexity l r rnext > 0 = upperTangent xl xrs

72 -- can shift tangent to the left

73 | (l : xls@(lnext : _)) <- xl

74 , (r : _) <- xr

75 , convexity lnext l r > 0 = upperTangent xls xr

76 -- optimum reached

77 | otherwise = (xl, xr)

78
79 {- similar to upperTangent , but checks for concavity

80 - instead of convexity

81 -}

82 lowerTangent :: [Point] -> [Point] -> ([ Point], [Point])

83 lowerTangent xl xr

84 -- can shift tangent to the right

85 | (l : _) <- xl

86 , (r : xrs@(rnext : _)) <- xr

87 , convexity l r rnext < 0 = lowerTangent xl xrs

88 -- can shift tangent to the left

89 | (l : xls@(lnext : _)) <- xl

90 , (r : _) <- xr

91 , convexity lnext l r < 0 = lowerTangent xls xr

92 -- optimum reached

93 | otherwise = (xl, xr)

94
95 {- to merge two hulls , compute their common upper tangent

96 - and lower tangent , then reconstruct the resulting hull

97 -}

10



98 mergeHulls :: Hull -> Hull -> Hull

99 mergeHulls (Hull (Cap _ lowerRL) (Cap _ upperRL))

100 (Hull (Cap lowerLR _) (Cap upperLR _)) =

101 -- compute upper/lower tangents

102 let (lowerL , lowerR) = lowerTangent lowerRL lowerLR in

103 let (upperL , upperR) = upperTangent upperRL upperLR in

104 -- combine into a ‘Hull ‘ instance

105 let lower = (reverse lowerL) ++ lowerR in

106 let upper = (reverse upperL) ++ upperR in

107 Hull (Cap lower $ reverse lower) (Cap upper $ reverse upper)

108
109 {- recursively partition the input array; call naive

110 - convex hull algorithm on leaves; merge left and right

111 - hulls at internal nodes

112 -}

113 convexHullHelper :: [Point] -> Hull

114 convexHullHelper xs =

115 if length xs <= 200

116 then convexHullNaive $ quicksort xs

117 else -- partition list of points into left/right halves

118 let pivot = head xs in

119 let (ls, _, rs) = partition xs pivot [] [] [] in

120
121 -- compute the convex hulls of the two halves in parallel

122 let lhull = convexHullHelper ls in

123 let rhull = convexHullHelper rs in

124 let parRes = do lhull ’ <- rpar (force lhull)

125 rhull ’ <- rpar (force rhull)

126 _ <- rseq lhull ’

127 _ <- rseq rhull ’

128 return (lhull ’, rhull ’) in

129 let (lhull ’, rhull ’) = runEval $ parRes in

130
131 -- merge the left hull , the pivot and the right hull

132 lhull ’ ‘mergeHulls ‘ (Hull (Cap [pivot] [pivot]) (Cap [pivot] [pivot ]))

133 ‘mergeHulls ‘ rhull ’

134
135 {- very simple quicksort method used in the leaves of

136 - the helper above; for some reason , this is faster

137 - than the library List.sort

138 -}

139 quicksort :: (NFData a, Ord a) => [a] -> [a]

140 quicksort [] = []

141 quicksort (x : xs) =

142 let l = quicksort [y | y <- xs, y <= x] in

143 let r = quicksort [y | y <- xs, y > x] in

144 l ++ [x] ++ r

145
146 {- partition function used in the convexHullHelper;

147 - splits a list into elements less than , equal to,

148 - and greater than a given pivot

149 -}

150 partition :: Ord a => [a] -> a -> [a] -> [a] -> [a] -> ([a], [a], [a])

151 partition [] _ lt eq gt = (lt, eq, gt)

152 partition (x : xs) pivot lt eq gt =

153 case x ‘compare ‘ pivot of

154 LT -> partition xs pivot (x : lt) eq gt

155 EQ -> partition xs pivot lt (x : eq) gt

156 GT -> partition xs pivot lt eq (x : gt)

157
158 {- convert a Hull to list -of-point representation

159 - since the upper/lower hulls have two common endpoints ,

160 - we have to remove these duplicates before concatenating

161 - their associated lists; because of Haskell laziness ,

162 - the use of ‘init ‘ and ‘++‘ should not decrease the

163 - performance by a lot

164 -}

165 toList :: Hull -> [Point]

11



166 toList (Hull (Cap lowerLR _) (Cap _ upperRL)) =

167 (init lowerLR) ++ (init upperRL)

168
169 {- entry point into the convex -hull library

170 - calls the underlying helper method and converts the output to

171 - a list -of-point format

172 -}

173 convexHull :: [Point] -> [Point]

174 convexHull xs =

175 toList $ convexHullHelper xs

app/Lib.hs

1 module Lib

2 (convexHull

3 ) where

4
5 import qualified Data.List as List

6 import Types (Point (..))

7
8 {- get the convexity of an ordered triplet of points

9 - by computing a quantity proportional to the signed

10 - area of the triangle formed by these points

11 - this is > 0 when convex , < 0 when concave and

12 - = 0 for collinear points

13 -}

14 convexity :: Point -> Point -> Point -> Double

15 convexity (Point ax ay)

16 (Point bx by)

17 (Point cx cy) = (ax * by + bx * cy + cx * ay) -

18 (ax * cy + bx * ay + cx * by)

19
20 {- find the upper hull of an xy -sorted set of points

21 - maintain a stack and enforce convexity at insertion

22 -}

23 upperHull :: [Point] -> [Point]

24 upperHull xs = List.foldl insertConvex [] xs

25 where insertConvex :: [Point] -> Point -> [Point]

26 insertConvex stack@(a : pop@(b : _)) p =

27 if convexity b a p < 0

28 then p : stack

29 else insertConvex pop p

30 insertConvex stack p =

31 p : stack

32
33 {- find the lower hull of an xy -sorted set of points

34 - maintain a stack and enforce cocavity at insertion

35 -}

36 lowerHull :: [Point] -> [Point]

37 lowerHull xs = List.foldl insertConcav [] xs

38 where insertConcav :: [Point] -> Point -> [Point]

39 insertConcav stack@(a : pop@(b : _)) p =

40 if convexity b a p > 0

41 then p : stack

42 else insertConcav pop p

43 insertConcav stack p =

44 p : stack

45
46 {- compute the lower and upper hull and concatenate

47 - them; the two hulls have two common endpoints , so

48 - remove these from the upper hull before appending

49 -}

50 convexHull :: [Point] -> [Point]

51 convexHull xs =

52 let xsSorted = quicksort xs in

53 let lower = lowerHull xsSorted in

54 let upper = upperHull xsSorted in

12



55 combine lower upper

56 where combine :: [Point] -> [Point] -> [Point]

57 combine as bs =

58 let ta = List.reverse .tail $ as in

59 let tb = init bs in

60 ta ++ tb

61
62 quicksort :: Ord a => [a] -> [a]

63 quicksort [] = []

64 quicksort (x : xs) =

65 let l = quicksort [y | y <- xs, y <= x] in

66 let r = quicksort [y | y <- xs, y > x] in

67 l ++ [x] ++ r

References

[1] Miller Russ Chen, Weiyang. Parallel Implementation of the Convex Hull Problem.
https://cse.buffalo.edu/faculty/miller/Courses/ CSE633/Weiyang-Chen-Spring-2020.pdf.

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algo-
rithms, Third Edition. The MIT Press, 3rd edition, 2009.

[3] Petr Felkel. Convex Hulls. https://cw.fel.cvut.cz/b181/ media/courses/ cg/lectures/04-convexhull.pdf.

13


