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1 Overview & Background

Item-based Collaborative Filtering is an algorithm that computes item similarity based on ratings
or interactions by users. With this algorithm, we can recommend users the items they might like by
computing the similarity between the items they actually like and other items they haven’t bought
or interacted with yet.

Let the number of items be |I|, the number of users be |U |, an item can be represented by a 1D
vector of length |U |. If a user has rated this item, the corresponding entry will be the rating that
the user gave to the item. If a user hasn’t rated this item, the corresponding will simply be 0. Here
is an example of the utility matrix with 6 items and 12 users (min rating: 1, max rating: 5):

i\u 1 2 3 4 5 6 7 8 9 10 11 12

1 1 3 ? 5 5 4

2 5 4 4 2 1 3

3 2 4 1 2 3 4 3 5

4 2 4 5 4 2

5 4 3 4 2 2 5

6 1 3 3 2 4

Recommending a user items involves the following steps:

1. Mean-center the utility matrix

2. Compute the similarities between items with the mean-centered matrix

3. Predict the score of the items that the user hasn’t rated yet and returns the list of items with
higher score.

The following sections describes the exact method of the above steps:

Mean-centering

If an item is not rated by a user yet, the corresponding entry will remain 0 in the mean-centered
matrix. If an item is already rated, then the mean-centered value will be the original value minus
the average value. Let the rating of item i by user x be rix, ci be the number of users that have
rated item i, the mean-centered rating of an item by user x will be:

mean− centereredix = rix − Σu∈Usersriu
ci

(1)
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Computing Cosine Similarity

In the mean-centered matrix, each row is a vector that represents an item. Let veci and vecj be the
vectors representing item i and item j respectively, the cosine similarity between the two items is:

Similarityij =
veci · vecj
|veci||vecj |

(2)

Rating Prediction

Let Sij be the similarity between movie i and j, rjx be the rating of user x on movie j, N(i;x) be
the items rated by user x that are similar to i. The predicted rating for item i by user x:

rix =
Σj∈N(i;x)Sij ·rjx
Σj∈N(i;x)Sij

(3)

, which is the weighted average of the items that are similar to item i.

2 Problem Formulation

In this project, the MovieLens dataset is used. The MovieLens dataset provides 100000 ratings
(943 users, 1682 movies). The program will compute the similarities between the items, predict the
rating of each of them, and recommend a list of items to the specified user.

The input to the program contains the user’s id, the number of items that we wished to used
to predict the ratings with, and the number of items that we want to recommend to the user. The
output of the program will simply be a list of item ids.

3 Data Preprocessing

Each entry in the MovieLens dataset is as follows (Range of user id: 1-943, item id: 1-1682, rating:
1-5):

UserId ItemId Rating Timestamp

My original plan was to read the data line by line and initialize the utiltiy matrix with each of
the entries. However, it takes a huge amount of time to initialized the matrix, such that the program
just halts. I think this is because the setElem function returns an entirely new matrix every time
an entry is set.:

1 setElem :: a

2 -> (Int , Int)

3 -> Matrix a

4 -> Matrix a

Therefore, I wrote a Python program that pre-processes the MovieLens data into the utility
matrix and the mean-centered matrix. There are two input files to my Haskell program, one is the
original utility matrix, and the other one is the mean-centered matrix. Each of them is text file with
a 1682 ∗ 643 matrix.
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4 Main Procedure

The above chart shows the procedure of the program.

1. First, a Python program is used to read and preprocess the MovieLens data into two text files.
One of them is the original utility matrix, and the other one is the mean-centered matrix.
Both files contains 1682 rows and 943 columns.

2. The Haskell program reads the matrix text files into two Data.Matrix.

3. A list of item id pairs are generated. This is used to compute the similarity later. Example
look of the lis [(1, 2), (1, 3), ..., (1681, 1682)]

4. A function that computes the cosine similarity between items will take the list generated
in the last step and computes the cosine similarity between each items. After the com-
putation we will get a list of tuples with the items’ ids and the similarities between them:
[(item1, item2, similarity1,2)...]

5. Obtaining the item similarity map: When we are computing the predicted score for an item,
we need to be able to access the items that are highly similar to it quickly. A map is suitable
in the situation. With the list of item pairs and similarities in the last steps, we can initialize
an item similarity map. The key of the map is the item’s id, and the value of the map is a
Heap that that stores tuples of a similarity value and an item id.

6. For the queried user, we predicted the ratings of all 1682 items and return a list of type
[(Rating, ItemId)]

7. The list [(Rating, ItemId)] is then sorted by the rating.

8. Items that are already rated by the user will be filtered from the list obtained in the previous
step. The rating is also removed from the list, so we are only getting a list of item ids from
this step.

9. For the final step, the top k items are recommended to the user. k is also a user input for the
program.

3



5 Implementation

I have written several modules with different purposes for this project.

5.1 CFDataStructures

This module contains the data type that are used over the entire project so that the code would be
more descriptive:

1 type Rating = Double

2 type UserId = Int

3 type ItemId = Int

4 type ItemRating = Vector Rating

5 type Similarity = Double

6 type ItemSimHeap = Heap.MaxPrioHeap Similarity ItemId

7

8 data RatingEntry = RatingEntry {

9 rUserId :: UserId ,

10 rItemId :: ItemId ,

11 rRating :: Rating

12 } deriving (Eq , Show)

1. Rating: Data type of an element in the matrix (could be an element of the original utility
matrix or the mean-centered matrix).

2. UserId: Data type that represents a user’s id.

3. ItemId: Data type that represents an item’s id.

4. ItemRating: A vector of Rating.

5. Similarity: Data type that represents the similarity between two items.

6. ItemSimHeap: This is a heap that is sorted by the similarity. Items with a larger similarity
will be on the top of the heap. When we are doing the actual computation, each item will have
it’s own ItemSimHeap. This data structure is used to fetch the top items that are similiar to
an item.

7. RatingEntry: This data structure stores a row of data of the MovieLens data (mentioned
in section 3). This data structure is used to store the test data in the dataset. With a
list of RatingEntry object, we can compute the RMSE (Root-mean-square Error) and verify
the correctness of the program. However, this data structure is not directly related to the
recommendation process.

5.2 IOUtils

This module includes helper functions that read the input matrix. I referenced my code for hw5 for
the implementation.

1. readTableFile

1 readTableFileLambda :: Handle -> (Handle -> IO a) -> IO [a]

2 readTableFileLambda hdl getFunc = do

3 t <- hIsEOF hdl

4 if t then return []

5 else do

6 x <- getFunc hdl -- x is a string

7 fmap ([x] ++) (readTableFileLambda hdl getFunc)

8

9 readTableFile :: String -> (Handle -> IO a) -> IO [a]

10 readTableFile fname getFunc = do

11 withFile fname ReadMode $ \hdl -> readTableFileLambda hdl getFunc

12

2. One of the inputs of the readTableFile function is getFunc. The getFunc for reading a row of
the input data is named getMatrixRow:
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1 getMatrixRow :: Handle -> IO [Rating]

2 getMatrixRow h = do

3 inputs <- hGetLine h

4 let rowString = words inputs

5 let rowRating = map (\x -> read x :: Double) rowString

6 return rowRating

7

3. Combining the above functions we get readMatrixData. The returned type of this function is
IO[[Rating]], which is actually 1682 lists of list of Ratings. Each list corresponds to an item:

1 readMatrixData :: String -> IO[[ Rating ]]

2 readMatrixData filename = readTableFile filename getMatrixRow

3

The original utility matrix and the mean-centered matrix are read in Main.hs with the above
functions. The resulting IO[[Rating]] is later used to initialize two

Data.Matrix (ratingMatrix, meanCentered):

1 ratingMatrixData <- readMatrixData filenameOri

2 mcMatrixData <- readMatrixData filenameMc

3 let ratingMatrix = Matrix.fromLists ratingMatrixData

4 let meanCentered = Matrix.fromLists mcMatrixData

5.3 SimilarityLib

This module contains functions that are used to compute the cosine similarity.

1. getDotProduct: Computes the dot product of two vectors

1 getDotProduct :: ItemRating -> ItemRating -> Double

2 getDotProduct ir1 ir2 = Vector.sum $ Vector.zipWith (\x y -> x * y) ir1 ir2

3

2. getVectorLen: Computes the length of a vector:

1 getVectorLen :: ItemRating -> Double

2 getVectorLen ir = sqrt $ (Vector.sum $ Vector.zipWith (\x y -> x * y) ir ir)

3

3. getCosSimilarityHelper: Computes the cosine similarity of two items. (An item is represented
by a vector of rating, which is of type ItemRating).

1 getCosSimilarityHelper :: ItemRating -> ItemRating -> Similarity

2 getCosSimilarityHelper ir1 ir2

3 | dotProduct == 0 = 0

4 | vecLen1 == 0 = 0

5 | vecLen2 == 0 = 0

6 | otherwise = dotProduct / (vecLen1 * vecLen2)

7 where dotProduct = getDotProduct ir1 ir2

8 vecLen1 = getVectorLen ir1

9 vecLen2 = getVectorLen ir2

10

4. getCosSimilarity: Takes the mean-centered utility matrix and two items’ ids and returns the
similarity between the two items:

1 getCosSimilarity :: Matrix Rating -> ItemId -> ItemId -> Similarity

2 getCosSimilarity mc iid1 iid2 =

3 getCosSimilarityHelper (getRow iid1 mc) (getRow iid2 mc)

4
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5.4 CFLib

This library contains the main functions for collaborative filtering.

1. getItemPairs: To compute the similarity between all pairs of item, we need a list of tuples
that contains all combinations of items. Note that there are no duplicate pairs here (if (i, j) is
present, (j, i) will not be in the list).

1 getItemPairs :: Int -> [(ItemId , ItemId)]

2 getItemPairs 0 = []

3 getItemPairs itemNum = [(i, j) | i <- [1.. itemNum], j <- [(i + 1).. itemNum ]]

4

2. getSimTuple: Takes a pair of items, and the mean-centered matrix, and computes the simi-
larity between them. The function returns a tuple with the item ids and the similarity.

1 getSimTuple :: Matrix Rating -> (ItemId , ItemId) -> (ItemId , ItemId , Similarity)

2 getSimTuple mc (itemId1 , itemId2) =

3 (itemId1 , itemId2 , getCosSimilarity mc itemId1 itemId2)

4

3. Different flavors of getSimTuples:

The goal of getSimTuples is to generate a list of (ItemId, ItemId, Similarity) for all the
possible combinations. We can parallelize this part since the computation of two pairs of items
will not affect each other.

(a) getSimTuples0: The sequential version

1 getSimTuples0 :: Matrix Rating -> [(ItemId , ItemId)] -> [(ItemId , ItemId ,

Similarity)]

2 getSimTuples0 _ [] = []

3 getSimTuples0 mc x = map f x

4 where f :: (ItemId , ItemId) -> (ItemId , ItemId , Similarity)

5 f (itemId1 , itemId2) = (itemId1 , itemId2 , getCosSimilarity mc

itemId1 itemId2)

6

(b) getSimTuples1: Parallelism with parList rseq

1 getSimTuples1 :: Matrix Rating -> [(ItemId , ItemId)] -> [(ItemId , ItemId ,

Similarity)]

2 getSimTuples1 _ [] = []

3 getSimTuples1 mc x = map (getSimTuple mc) x ‘using ‘ parList rseq

4

(c) getSimTuples2: Parallelism with parListChunk chunkSize rseq

1 getSimTuples2 :: Matrix Rating -> [(ItemId , ItemId)] -> Int -> [(ItemId ,

ItemId , Similarity)]

2 getSimTuples2 _ [] _ = []

3 getSimTuples2 mc x chunkSize = map(getSimTuple mc) x ‘using ‘ parListChunk

chunkSize rseq

4

(d) getSimTuplesStatic: Partitions the item pair list into two and compute the similarity
of items separately. This function is not involved in the main experiment because it is
not paired with a getPredictRatings function. But the effect of it is explored in my
presentation.

1 getSimTuplesStatic :: Matrix Rating -> [(ItemId , ItemId)] -> [(ItemId ,

ItemId , Similarity)]

2 getSimTuplesStatic _ [] = []

3 getSimTuplesStatic mc x = runEval $ do

4 let (as, bs) = splitAt(length x ‘div ‘ 2) x

5 as’ <- rpar (force (map (getSimTuple mc) as))

6 bs’ <- rpar (force (map (getSimTuple mc) bs))

7 _ <- rseq as’

8 _ <- rseq bs’

9 return (as ’ ++ bs ’)

10
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4. Functions for generating the item similarity map:

(a) createItemHeapList: Creates a list of tuples for each item id and it’s corresponding
Heap.

1 createItemHeapList :: Int

2 -> ItemId

3 -> [(ItemId , Heap.MaxPrioHeap Similarity ItemId)]

4 createItemHeapList 0 _ = []

5 createItemHeapList itemNum itemId

6 = (itemId , Heap.fromList [] :: Heap.MaxPrioHeap Similarity ItemId) :

createItemHeapList (itemNum - 1) (itemId + 1)

7

(b) createItemSimilarityMap: Takes the list of tuples obtained with createItemHeapList

and create a map that maps an item to its corresponding heap.

1 createItemSimilarityMap :: Int

2 -> Map.Map ItemId (Heap.MaxPrioHeap Similarity ItemId)

3 createItemSimilarityMap 0 = Map.fromList [] :: SimilarityMap

4 createItemSimilarityMap itemNum = Map.fromList $
5 createItemHeapList itemNum 1

6

(c) setItemSimilarityMap: Set the empty map created with the above functions with the
computed item similarities.

1 setItemSimilarityMap :: Map.Map ItemId (Heap.MaxPrioHeap Similarity ItemId)

2 -> [(ItemId , ItemId , Similarity)]

3 -> Map.Map ItemId (Heap.MaxPrioHeap Similarity ItemId)

4 setItemSimilarityMap sm [] = sm

5 setItemSimilarityMap sm ((itemId1 , itemId2 , sim):xs) = do

6 case Map.lookup itemId1 sm of

7 Just itemSimHeap1 -> do

8 let itemSimHeap1 ’ = Heap.insert(sim , itemId2) itemSimHeap1

9 let sm’ = Map.insert itemId1 itemSimHeap1 ’ sm

10 case Map.lookup itemId2 sm of

11 Just itemSimHeap2 -> do

12 let itemSimHeap2 ’ = Heap.insert(sim , itemId1)

itemSimHeap2

13 let sm’’ = Map.insert itemId2 itemSimHeap2 ’ sm’

14 setItemSimilarityMap sm’’ xs

15 Nothing -> setItemSimilarityMap sm’ xs

16 Nothing -> do

17 case Map.lookup itemId2 sm of

18 Just itemSimHeap2 -> do

19 let itemSimHeap2 ’ = Heap.insert (sim , itemId1)

itemSimHeap2

20 let sm’ = Map.insert itemId2 itemSimHeap2 ’ sm

21 setItemSimilarityMap sm’ xs

22 Nothing -> setItemSimilarityMap sm xs

23

5. Functions for predicting the ratings:

(a) predictRating: Takes the user’s id and the id of the item that we are trying to predict
and returns the predicted rating.

1 predictRating :: Matrix Rating

2 -> Map.Map ItemId (Heap.MaxPrioHeap Similarity ItemId)

3 -> UserId

4 -> Int

5 -> ItemId

6 -> Rating

7 predictRating ratingMatrix simMap userId k itemId =

8 case Map.lookup itemId simMap of

9 Just itemSimHeap ->

10 predictRatingHelper ratingMatrix itemSimList userId k (0::

Double) (0:: Double)

11 where itemSimList = Heap.toAscList itemSimHeap

12 Nothing ->

13 error "Item does not exist"

14
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(b) predictRatingHelper: Iterate through the list of items and compute the weighted aver-
age of the rating of the item.

1 predictRatingHelper :: Matrix Rating

2 -> [(Similarity , ItemId)] -- Similarity List of the item that we are

trying to predict

3 -> UserId

4 -> Int -- k

5 -> Double -- numerator

6 -> Double -- denominator

7 -> Rating -- predicted rating

8 predictRatingHelper _ _ _ 0 numer deno

9 | deno == 0 = 0

10 | otherwise = numer / deno

11 predictRatingHelper ratingMatrix [] userId k numer deno

12 | deno == 0 = 0

13 | otherwise = numer / deno

14 predictRatingHelper ratingMatrix ((sim , itemJ):xs) userId k numer deno

15 | rUJ == 0 = predictRatingHelper ratingMatrix xs userId k numer deno

16 | otherwise = predictRatingHelper ratingMatrix xs userId (k - 1) (numer

+ rUJ * sim) (deno + sim)

17 where rUJ = getElem itemJ userId ratingMatrix

18

6. Different flavors of getPredictedRatings. The function getPredictedRatings computes the
predicted ratings for all 1682 items. There are different flavors of getPredictedRatings:

(a) getPredictedRatings0: The sequential version

1 getPredictedRatings0 :: Matrix Rating -- seq

2 -> Map.Map ItemId (Heap.MaxPrioHeap Similarity ItemId)

3 -> UserId

4 -> UserRating

5 -> [ItemId] -- [1..1682]

6 -> Int -- k

7 -> [Rating]

8 getPredictedRatings0 _ _ _ _ [] _ = []

9 getPredictedRatings0 ratingMatrix itemSimMap userId userRating itemIds k

10 = force (map (predictRating ratingMatrix itemSimMap userId k) itemIds)

11

(b) getPredictedRatings1: A version that uses parList rdeepseq

1 getPredictedRatings1 :: Matrix Rating -- seq

2 -> Map.Map ItemId (Heap.MaxPrioHeap Similarity ItemId)

3 -> UserId

4 -> UserRating

5 -> [ItemId] -- [1..1682]

6 -> Int -- k

7 -> [Rating]

8 getPredictedRatings1 _ _ _ _ [] _ = []

9 getPredictedRatings1 ratingMatrix itemSimMap userId userRating itemIds k

10 = force(map (predictRating ratingMatrix itemSimMap userId k) itemIds ‘

using ‘ parList rdeepseq)

11

(c) getPredictedRatings2: A version that uses parListChunk chunkSize rdeepseq

1 getPredictedRatings2 :: Matrix Rating -- seq

2 -> Map.Map ItemId (Heap.MaxPrioHeap Similarity ItemId)

3 -> UserId

4 -> UserRating

5 -> [ItemId] -- [1..1682]

6 -> Int -- k

7 -> Int -- chunkSize

8 -> [Rating]

9 getPredictedRatings2 _ _ _ _ [] _ _ = []

10 getPredictedRatings2 ratingMatrix itemSimMap userId userRating itemIds k

chunkSize

11 = force(map (predictRating ratingMatrix itemSimMap userId k) itemIds ‘

using ‘ parListChunk chunkSize rdeepseq)

12
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7. filterRatingItemPairs: After all the ratings are computed, this function takes a list of
(Rating, ItemId) and filters out the items that are not rated by the user with the user’s
column in the original utility matrix.

1 filterRatingItemPairs :: [(Rating , ItemId)] -> UserRating -> [ItemId]

2 filterRatingItemPairs [] _ = []

3 filterRatingItemPairs ((_, id):xs) userRating

4 | userRating Vector .! (id - 1) == 0 = id : filterRatingItemPairs xs

userRating

5 | otherwise = filterRatingItemPairs xs userRating

6

8. getTopK: Takes the filtered list of item ids and return the top k items for the user.

1 getTopK :: [ItemId] -> Int -> [ItemId]

2 getTopK itemList k

3 | length itemList < k = error "Not enough unrated items"

4 | otherwise = take k itemList

5

6 Correctness

To verify that the algorithm is correctly implemented, I also implemented a function that computes
the RMSE with the split datasets provided by the MovieLens dataset. In the MovieLens datasets,
the original dataset u.data is 80%/20% split into u.base and u.test. There are five sets of split
data (u1.base, u1.test, u2.base, u2.test, u3.base, u3.test, u4.base, u4.test, u5.base, u5.test). I made
predictions with the data in u.base and computed the RMSE of the predicted ratings with u.test.
Based on the statistics on the leaderboard of the MovieLens dataset [6], the resulting RMSE is in
a reasonalbe range. (k is the number of items that are used to predict the rating of the item in
consideration):

k u1 u2 u3 u4 u5
3 1.13358 1.11366 1.09643 1.09571 1.10966

7 Experiments

As mentioned in implementation section, there are 3 versions of getSimTuples and 3 versions
(ignoring the static partitioning one) of getPredictedRatings. The same version of getSimTuples
and getPredictedRatings are tested together. Versions of functions:

Version Implementation getSimTuples getPredictedRatings
0 Sequential getSimTuples0 getPredictedRatings0
1 parList getSimTuples1 getPredictedRatings1
2 parListChunk getSimTuples2 getPredictedRatings2

7.1 Observations

Before implementing the program, I considered that the computation of item similarity between
each pair of items will be the most time-consuming part. The time complexity of computing the
similarity between each item is O(|I|2|U |2), where |I| is the number of items, and the |U | is the
number of users.

However, after observing the threadscope images and printing out the time consumed by each
steps, I found out that predicting the ratings of the 1682 items is the most computationally heavy
part of the entire procedure.

7.1.1 Amdahl’s law

For the sequential version, the elapsed time is 40.419, and the time spent on computing the item
similarity map and the ratings is 37.514143. Therefore, the ideal speedup that we can get with 8
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Figure 1: Threadscope image for sequential version, 1 core

cores is:
1

(1− P ) + P
S

=
1

(1− 37.514143
40.419 ) + 37.514143

8

= 5.322 (4)

7.2 No Parallelism vs parList

For the first two version (label 0 and label 1), the query is run on 3 different user for the same
number of cores (1-8) . The ratings are all predicted with the top 3 items that are similar to the
item in consideration. The number of sparks and elapsed time shown in the plots are averaged over
the three samples.

7.2.1 Elapsed Time and Speedup

It is visible that the performance of the version using parList rdeepseq is significantly improved.
Also, from the plot for spark, we can see that as the number of cores increases, the number of
converted sparks increases too. However, the best speedup is not even close to the ideal speedup
computed.
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7.3 parListChunk

In addition to the parameters that are used for the first two versions, the parListChunk version
uses an additional variable - chunkSize. The program is tested with chunk sizes - 1, 10, 100, 1000,
10000, 100000.

A very interesting observation is that this version only does the best when the chunk size is at
10 or 100. After looking at the output of threadscope, I think the explanation to this is that when
the chunk size is too large, the load is becomes unbalanced among cores. As shwon in Figure 4, the
second core is barely used when the chunk size is 100000.
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Figure 2: Threadscope image of the parListChunk version, 2 cores, 10 chunks

Figure 3: Threadscope image of the parListChunk version, 2 cores, 100 chunks

8 Conclusion and Future Work

In this project, I implemented a movie recommendation system based on item-based collaborative
filtering. Three versions of the program is introduced and analyzed.
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Figure 4: Threadscope image for parListChunk version, 2 cores, 100000 chunks

Besides speeding up the process of computing item similarities and predicting ratings, the speedup
of IO and initializing data structures is also very worth exploring. For example, is there any way to
solve the issue of initializing the Data.Matrix? Is it possible to read the raw data from the MovieLens
dataset and initialize the Data.Matrix entry by entry quickly?
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