
Michael Lee
UNI: mhl2156

Chess Engine Report

This project was made to parallelize a mini-max algorithm for chess, a turn-based game.

Mini-max is a turn-based algorithm, where one player (maximizer) must find the best move

given an opposing player’s (minimizer) optimal counter-play.

Mini-max works by traversing all potential game-states reachable from some original

state, either maximizing or minimizing the values of these states, and returning this value to the

parent so that they can then make a decision on how they would like to proceed.

My mini-max algorithm takes 3-5 parameters:

● Board - a representation of the current position being evaluated

● Depth - Depth to which we would like to recurse

● Player - which player is trying to maximize or minimize

● Alpha, Beta - parameter only used in alpha-beta pruning

Given that there is a high level of recursion occurring to traverse these trees,

parallelization seems a good way to optimize this problem.

Firstly, there needed to be a simulation of chess so that the compiler could logically play

it, and so that there was some logical representation of a board passable to the minimax

algorithm. The board is set up as a list of lists of pieces, where pieces are denominated by their

color and point value. Pieces must be differentiated so that the mini-max algorithm is able to tell

which player is playing with which pieces.

A chess move is represented as a data type “Move” that is a tuple of two tuples: (Starting

Position, Ending Position).

Each piece in chess has a unique set of move rules, and there are moves that are legal as

well as moves that are not legal. As such, each different piece needed to have a separate move

generation function that parsed their move rules for all legal rules. Along with this, there are

separate edge cases for movement, such as capturing rules. Pieces cannot move onto a square

that is occupied by their own color, but they can move to capture an enemy piece. Along with

this, once a piece comes into contact with another piece, it can no longer move further in the

same direction.

This required a separate algorithm for finding legal moves.

Taking a rook, for example:

A rook can move, at maximum, seven squares either forwards, backwards, left, or right.

However, once a rook comes into contact with a piece or the edge of the board, this metric

becomes smaller.

The `takeWhileInclusive` method addresses this, where it traverses seven moves away

from the rook’s original position, stopping if the rook attempts to move onto a square that

contains another piece. Then, using the `checkLastElemCap’ function, it checks if this last piece

is capturable, so as to determine if this move was also legal or not and includable in the final

legalMoves list. This logic was repeated for the bishop, queen, knight, and king.

Pawns, on the other hand, were a bit more tricky. Because pawns have a different set of

rules for capturing (diagonal) versus movement (forward), two separate lists needed to be parsed:

a capture move list, and a movement move list, due to the fact that a pawn cannot capture a piece

directly in front of it. After checking them for separate legality rules, they are concatenated,

generating all legal moves for the pawn.

After this, I needed some type of evaluation heuristic to determine the value of a board

state, so that there was a basis of comparison between two different board states. The

implementation of evalBoard was straightforward: I parsed the entire [[Piece]] representation of

the board, and added up all point values determined by the getPoints function for both white and

black. The value was then calculated by subtracting black’s total piece valuation by white’s,

meaning that a positive number was advantageous for white while a negative number was

advantageous for black.

The function makeMove takes in a board and a move, and outputs an updated board.

Using the coordinates from the move data type, The piece is removed from the starting index,

replaced with Empty, and then replaces the target coordinate with the original piece. Afterwards,

the new board is returned.

The function minimax accepts a given board state, and immediately checks if the depth is

equal to 0. If it is equal to 0, it can just return the given board state without looking for more

potential moves.

There are 5 separate implementations for minimax in the provided code:

● miniMaxSeq

○ A non-parallel, recursive DFS solution to mini-max

● miniMaxParMap

○ A parallel solution that just calls `parMap` on all nodes of the mini-max

tree

● miniMaxParGran

○ A parallel solution that calls miniMaxSeq on each node of the original tree

in parallel

● miniMaxSeqPrune

○ A sequential algorithm that implements alpha-beta pruning

● miniMaxParPrune

○ A parallel algorithm that calls miniMaxSeqPrune on each node of the

original tree in parallel

Each was designed as an attempt to increase the efficiency of the previous.

miniMaxSeq outPut at depth == 4:

Here, the runtime of the sequential miniMax algorithm is 51.829 seconds.

miniMaxParMap output at depth == 4 with 6 cores:

A strong increase, with completion in 8.698 seconds. However, the spark count for the current

board state being evaluated is 5,486,678. With better granularity, this could likely be optimized.

miniMaxParGran output at depth == 4 with 6 cores:

Slight slowdown to 10.238 seconds, but much better on spark count.

From these, we can see that the introduction of parallelizing the algorithm clearly increases the

efficiency of the algorithm. With over 5.48 million board states to evaluate, the algorithm is able

to complete traversal using this algorithm in ~10 seconds.

Another way to further improve this algorithm would be with the inclusion of alpha-beta

pruning.

The implementation of alpha-beta pruning is incomplete, as the expected return value does not

match the actual return value.

Using miniMaxParPrune at depth == 4 with 8 cores, the output is:

While there is a speedup, the evaluation heuristic is wrong, meaning the the implementation

itself is incorrect.

Alpha beta pruning, in this project, would be a definite way to improve the efficiency of

the algorithm. Alpha beta pruning works by comparing each child node for a given game state to

a maximum or minimum value, and then using this value to decide whether or not the child is

worth traversing.

Pruning branches by saving a maximum value to compare the evaluation metric cuts

down the trees in the node by a significant degree. However, implementing this feature is

difficult in the frame of parallel haskell, as separate threads may need to communicate a

maximum value so that another thread knows to prune a game tree.

There are a multitude of ways in which this program can be optimized further:

● There is lots of tedious code designed to implement the rules of moves, board

evaluation, and move-making. Many of these can be implemented with a similar

parallel algorithm, where lists can be traversed in parallel in order to parse and

sort data quicker.

● The granularity can be increased to optimize sparks. If parallelism is implemented

until depth == 2, and then the rest of the algorithm was performed sequentially,

this may be able to increase speed and spark count by a favorable amount.

● The chess implementation is bare; there are no castling, checkmates, or

double-square pawn moves.

Thank you for taking the time to read this and view my project.

Here is the implementation for my code:

mini-max.hs:

import System.Exit
import System.Environment

import Control.Parallel.Strategies

import Data.List

import Control.Monad

data Piece = WKing | WQueen | WBishop | WKnight | WRook | WPawn

| BKing | BQueen | BBishop | BKnight | BRook | BPawn

| Empty deriving (Eq, Show)

-- Define the type for a chess board, represented as a list of lists of pieces

type Board = [[Piece]]

-- Define the type for a move, represented as the starting and ending positions on the

board

type Move = ((Int, Int), (Int, Int))

outPutBoard :: Board -> IO ()

outPutBoard board = do

mapM_ print (reverse board)

getPoints :: Piece -> Int

getPoints piece

| piece == WKing || piece == BKing = 9999

| piece == WQueen || piece == BQueen = 9

| piece == WBishop || piece == BBishop = 3

| piece == WKnight || piece == BKnight = 3

| piece == WRook || piece == BRook = 5

| piece == WPawn || piece == BPawn = 1

| otherwise = 0

sumPieceList :: [Piece] -> Int

sumPieceList [] = 0

sumPieceList (x:xs) = (getPoints x) + (sumPieceList xs)

-- Function to evaluate the value of a given board

-- Higher values indicate a better position for the player

-- Negative (better for -1 black)

-- positive (better for +1 white)

--Possible algorithm, how much total material is there on the board for each player?

King is negligible

-- pawn is 1

-- knight and bishop are 3

-- Rook is 5

-- Queen is 9

--Basically just counts the piece count.

evalBoard :: Board -> Int

evalBoard board = whiteCount - blackCount

where

whiteList = [board !! x !! y | x <- [0..7], y <- [0..7], snd (isOccupied board

(x, y)) == 1]

blackList = [board !! x !! y | x <- [0..7], y <- [0..7], snd (isOccupied board

(x, y)) == (-1)]

whiteCount = sumPieceList whiteList

blackCount = sumPieceList blackList

--Checks if an index on the board is occupied and if its within bounds.

-- IF its not in bounds, a tuple will be returned with the int as code 999, which

signifies an out-of bounds

-- call without stopping the board evaluation.

isOccupied :: Board -> (Int, Int) -> (Bool, Int)

isOccupied board (x, y)

| x < 0 || x > 7 || y < 0 || y > 7 = (True, 999)

| (board !! x) !! y == Empty = (False, 0)

| head (show piece) == 'W' = (True, 1)

| otherwise = (True, -1)

where

piece = board !! x !! y

--Custom function that traverses a list, and returns a tuple of the list and the index

at which it had to stop.

takeWhileInclusive :: (a -> Bool) -> [a] -> [a]

takeWhileInclusive _ [] = []

takeWhileInclusive p (x:xs) = x : if p x then takeWhileInclusive p xs

else []

checkLastElemCap :: Board -> Int -> [Move] -> [Move]

checkLastElemCap _ _ [] = []

checkLastElemCap board player list

| snd (isOccupied board (snd (last list))) == (-player) = list

| otherwise = fst (splitAt (length list - 1) list)

--Wrote this while working on rook moves, is applicable to any list of moves for any

piece (including knight). Takes board, int for player designation,

getListOfMoves :: Board -> Int -> [Move] -> [Move]

getListOfMoves board player moves = checkLastElemCap board player ((takeWhileInclusive

(\((r, c), (r', c')) -> (fst (isOccupied board (r', c')) == False)) moves))

--Generates legal moves for Pawns, regardless of whether or not the pawn is white or

black.

--This is essentially a filter function that takes a position and returns the legal

moves for the piece at a set of coordinates.

-- Either a WPawn or a BPawn will be passed in.

pawnLegalMoves :: Board -> Int -> Piece -> (Int, Int) -> [Move]

pawnLegalMoves board player piece (row, col)

| piece == WPawn = [x | x <- wMoveList, let check = snd (isOccupied board (snd x)),

check == 0 && check /= 999] ++

[y | y <- wCapList, let check = snd (isOccupied board (snd y)),

check == (-player) && check /= 999]

| piece == BPawn = [x | x <- bMoveList, let check = snd (isOccupied board (snd x)),

check == 0 && check /= 999] ++

[y | y <- bCapList, let check = snd (isOccupied board (snd y)),

check == (-player) && check /= 999]

| otherwise = []

where

wMoveList = [((row, col),(row + 1, col))]

wCapList = [((row, col),(row + 1, col + 1)), ((row, col),(row + 1, col - 1))]

bMoveList = [((row, col),(row - 1, col))]

bCapList = [((row, col),(row - 1, col - 1)), ((row, col),(row - 1, col + 1))]

rookLegalMoves :: Board -> Int -> Piece -> (Int, Int) -> [Move]

rookLegalMoves board player piece (row, col)

| piece == WRook || piece == WQueen = (getListOfMoves board player vertNegMoveList) ++

(getListOfMoves board player vertPosMoveList) ++ (getListOfMoves board player

horiNegMoveList) ++ (getListOfMoves board player horiPosMoveList)

| piece == BRook || piece == BQueen = (getListOfMoves board player vertNegMoveList) ++

(getListOfMoves board player vertPosMoveList) ++ (getListOfMoves board player

horiNegMoveList) ++ (getListOfMoves board player horiPosMoveList)

| otherwise = []

where

vertNegMoveList = [((row, col),(row - 1, col)), ((row, col),(row - 2, col)),

((row, col),(row - 3, col)), ((row, col),(row - 4, col)), ((row, col),(row - 5, col)),

((row, col),(row - 6, col)), ((row, col),(row - 7, col))]

vertPosMoveList = [((row, col),(row + 1, col)), ((row, col),(row + 2, col)),

((row, col),(row + 3, col)), ((row, col),(row + 4, col)), ((row, col),(row + 5, col)),

((row, col),(row + 6, col)), ((row, col),(row + 7, col))]

horiNegMoveList = [((row, col),(row, col - 1)), ((row, col),(row, col - 2)),

((row, col),(row, col - 3)), ((row, col),(row, col - 4)), ((row, col),(row, col - 5)),

((row, col),(row, col - 6)), ((row, col),(row, col - 7))]

horiPosMoveList = [((row, col),(row, col + 1)), ((row, col),(row, col + 2)),

((row, col),(row, col + 3)), ((row, col),(row, col + 4)), ((row, col),(row, col + 5)),

((row, col),(row, col + 6)), ((row, col),(row, col + 7))]

--This move list can just use a simple list comprehension: If the move is on a square

that is empty or the opposite color or inbounds, it counts.

knightLegalMoves :: Board -> Int -> Piece -> (Int, Int) -> [Move]

knightLegalMoves board player piece (row, col)

| piece == WKnight || piece == BKnight = [x | x <- moveList, let check = snd

(isOccupied board (snd x)), check == 0 || check == (-player)]

| otherwise = []

where

moveList = [((row, col),(row + 2, col + 1)), ((row, col),(row + 2, col - 1)),

((row, col),(row - 2, col + 1)), ((row, col),(row - 2, col + 1)),

((row, col),(row + 1, col + 2)), ((row, col),(row - 1, col + 2)),

((row, col),(row + 1, col - 2)), ((row, col),(row - 1, col - 2))]

bishopLegalMoves :: Board -> Int -> Piece -> (Int, Int) -> [Move]

bishopLegalMoves board player piece (row, col)

| piece == WBishop || piece == WQueen = (getListOfMoves board player ppMoveList) ++

(getListOfMoves board player pnMoveList) ++ (getListOfMoves board player npMpveList)

++(getListOfMoves board player nnMoveList)

| piece == BBishop || piece == BQueen = (getListOfMoves board player ppMoveList) ++

(getListOfMoves board player pnMoveList) ++ (getListOfMoves board player npMpveList)

++(getListOfMoves board player nnMoveList)

| otherwise = []

where

ppMoveList = [((row, col),(row + 1, col + 1)), ((row, col),(row + 2, col + 2)),

((row, col),(row + 3, col + 3)), ((row, col),(row + 4, col + 4)), ((row, col),(row +

5, col + 5)), ((row, col),(row + 6, col + 6)), ((row, col),(row + 7, col + 7))]

pnMoveList = [((row, col),(row + 1, col - 1)), ((row, col),(row + 2, col - 2)),

((row, col),(row + 3, col - 3)), ((row, col),(row + 4, col - 4)), ((row, col),(row +

5, col - 5)), ((row, col),(row + 6, col - 6)), ((row, col),(row + 7, col - 7))]

npMpveList = [((row, col),(row - 1, col + 1)), ((row, col),(row - 2, col + 2)),

((row, col),(row - 3, col + 3)), ((row, col),(row - 4, col + 4)), ((row, col),(row -

5, col + 5)), ((row, col),(row - 6, col + 6)), ((row, col),(row - 7, col + 7))]

nnMoveList = [((row, col),(row - 1, col - 1)), ((row, col),(row - 2, col - 2)),

((row, col),(row - 3, col - 3)), ((row, col),(row - 4, col - 4)), ((row, col),(row -

5, col - 5)), ((row, col),(row - 6, col - 6)), ((row, col),(row - 7, col - 7))]

queenLegalMoves :: Board -> Int -> Piece -> (Int, Int) -> [Move]

queenLegalMoves board player piece (row, col)

| piece == WQueen = (rookLegalMoves board player piece (row, col)) ++

(bishopLegalMoves board player piece (row, col))

| piece == BQueen = (rookLegalMoves board player piece (row, col)) ++

(bishopLegalMoves board player piece (row, col))

| otherwise = []

kingLegalMoves :: Board -> Int -> Piece -> (Int, Int) -> [Move]

kingLegalMoves board player piece (row, col)

| piece == WKing || piece == BKing = [x | x <- moveList, let check = snd (isOccupied

board (snd x)), check == 0 || check == (-player)]

| otherwise = []

where

moveList = [((row, col), (row + 1, col)), ((row, col), (row - 1, col)), ((row,

col), (row, col + 1)),

((row, col), (row, col - 1)), ((row, col), (row + 1, col + 1)),

((row, col), (row - 1, col - 1))]

--This one is tricky, because the king cannot move into a square that is being

attacked.

--you may have to generate the list of all acceptable legal moves makeable by the

enemy,

-- and then check if the list of king moves is in that list. --Or, just don't move the

king at all.

-- that's the easiest way hahaha

-- maybe make the king the last piece you'd ever want to move. like, the engine would

never think about `

--Just don't move the king. It's so much easier if you just don't touch it.

-- Modifies the board to make a new board, with a move being made.

makeMove :: Board -> Move -> Board

makeMove board ((r, c), (dr, dc)) =

let piece = board !! r !! c

(r', c') = splitAt c (board !! r)

(moda, modb) = splitAt r board

modPreRow = r' ++ [Empty] ++ (snd (splitAt 1 c'))

modPreBoard = moda ++ [modPreRow] ++ (snd (splitAt 1 modb))

(dr', dc') = splitAt dc (modPreBoard !! dr)

(modc, modd) = splitAt dr modPreBoard

modPostRow = dr' ++ [piece] ++ (snd (splitAt 1 dc'))

modPostBoard = modc ++ [modPostRow] ++ (snd (splitAt 1 modd))

in

modPostBoard

generateMovesHelper :: Board -> Int -> [(Piece , (Int, Int))] -> [Move]

generateMovesHelper _ _ [] = []

generateMovesHelper board player (x:xs) =

(pawnLegalMoves board player (fst x) (snd x)) ++

(knightLegalMoves board player (fst x) (snd x)) ++

(bishopLegalMoves board player (fst x) (snd x)) ++

(rookLegalMoves board player (fst x) (snd x)) ++

(queenLegalMoves board player (fst x) (snd x)) ++

(kingLegalMoves board player (fst x) (snd x)) ++

(generateMovesHelper board player xs)

--Generates all possible moves for a player (white or black) on a given board.

--Try to make it all one continuous list.

generateMoves :: Board -> Int -> [Move]

generateMoves board player = generateMovesHelper board player pieceList

where

pieceList = [((board !! x !! y), (x, y)) | x <- [0..7], y <- [0..7], snd

(isOccupied board (x, y)) == player]

-- Minimax function, which takes the current board, the depth of the search,

-- and the player who is currently making a move (1 for player, -1 for opponent)

-- Structure is that for each move, the minimax algorithm is called. you don't

actually have to change the minimax algo

-- For each move that is created by generate Moves, run minimax. This is where

parallelization occurs.

--Struggles heavily past a depth of 3.

--for correct usage, depth must be an odd number. This way, the function evaluates the

correct player, and returns

--the evaluation for the result of the corresponding player's move as opposed to the

opposite player.

minimaxSeq :: Board -> Int -> Int -> Int

minimaxSeq board depth player =

if depth == 0

then evalBoard board

else

let moves = generateMoves board player

-- Recursively evaluate each possible move, using the opposite player.

-- this applies minimax to every move.

values = map (\move -> minimaxSeq (makeMove board move) (depth-1) (-player))

moves

in

-- If the current player is maximizing, return the maximum value

if player == 1

then maximum values

else minimum values

--Minimax SEQ with ALPHA-BETA pruning

minimaxSeqPrune :: Board -> Int -> Int -> Int -> Int -> Int

minimaxSeqPrune board depth player alpha beta =

if depth == 0

then evalBoard board

else

let moves = generateMoves board player

maxBestVal = minBound :: Int

minBestVal = maxBound :: Int

values = map (\move -> minimaxSeqPrune (makeMove board move) (depth-1)

(-player) alpha beta) moves

value = maximum values

--minBest = min minBestVal value

in

if player == 1

then

let alphBest = (max alpha (max maxBestVal value))

in

if alphBest >= beta

then beta

else

max maxBestVal value

else

let minBest = min minBestVal value

betaBest = min beta minBest

in

if betaBest >= alpha

then alpha

else

minBest

--Parallel Function

--SPARKS for every single node (move) generated.

-- Granularity is incredibly high, too costly to be so much less efficient.

minimaxParMap :: Board -> Int -> Int -> Int

minimaxParMap board depth player =

if depth == 0

then evalBoard board

else

let moves = generateMoves board player

-- Recursively evaluate each possible move, using the opposite player.

-- this applies minimax to every move.

values = parMap rpar (\move -> minimaxParMap (makeMove board move) (depth-1)

(-player)) moves

in

-- If the current player is maximizing, return the maximum value

if player == 1

then maximum values

else minimum values

minimaxParGran :: Board -> Int -> Int -> Int

minimaxParGran board depth player=

let

moves = generateMoves board player

values = parMap rpar (\move -> minimaxSeq (makeMove board move) (depth-1)

(-player)) moves

in

if player == 1

then maximum values

else minimum values

minimaxParPrune :: Board -> Int -> Int -> Int -> Int -> Int

minimaxParPrune board depth player alpha beta =

let

moves = generateMoves board player

values = parMap rpar (\move -> minimaxSeqPrune (makeMove board move) (depth-1)

(-player) alpha beta) moves

in

if player == 1

then maximum values

else minimum values

main :: IO ()

main = do

--print("Usage: minimax type (1 - minimaxSeq, 2-minimaxSeqPrune, 3-minimaxParMap,

4-minimaxParGran) boardname depth player alpha beta")

argNames <- getArgs

let minimax = read (argNames !! 0) :: Integer

board = [[WRook, WKnight, WBishop, WQueen, WKing, WBishop, WKnight, WRook],

[WPawn, WPawn, WPawn, WPawn, WPawn, WPawn, Empty, WPawn],

[Empty, Empty, Empty, Empty, Empty, Empty, WPawn, Empty],

[Empty, Empty, Empty, Empty, BKnight, Empty, Empty, Empty],

[Empty, Empty, WQueen, WBishop, Empty, Empty, Empty, Empty],

[BKnight, Empty, Empty, BQueen, BBishop, Empty, Empty, Empty],

[BPawn, BPawn, BPawn, Empty, BPawn, BPawn, BPawn, BPawn],

[BRook, Empty, Empty, Empty, BKing, BBishop, Empty, BRook]]

depth = read (argNames !! 1) :: Int

player = read (argNames !! 2) :: Int

alpha = read (argNames !! 3) :: Int

beta = read (argNames !! 4) :: Int

when(minimax == 1) $ print (minimaxSeq board depth player)

when(minimax == 2) $ print (minimaxSeqPrune board depth player alpha beta)

when(minimax == 3) $ print (minimaxParMap board depth player)

when(minimax == 4) $ print (minimaxParGran board depth player)

when(minimax == 5) $ print (minimaxParPrune board depth player alpha beta)

outPutBoard board

