Michael Lee
UNI: mhi2156

Chess Engine Report

This project was made to parallelize a mini-max algorithm for chess, a turn-based game.
Mini-max is a turn-based algorithm, where one player (maximizer) must find the best move
given an opposing player’s (minimizer) optimal counter-play.

Mini-max works by traversing all potential game-states reachable from some original
state, either maximizing or minimizing the values of these states, and returning this value to the
parent so that they can then make a decision on how they would like to proceed.

My mini-max algorithm takes 3-5 parameters:

e Board - a representation of the current position being evaluated
e Depth - Depth to which we would like to recurse
e Player - which player is trying to maximize or minimize

e Alpha, Beta - parameter only used in alpha-beta pruning

Given that there is a high level of recursion occurring to traverse these trees,

parallelization seems a good way to optimize this problem.

Firstly, there needed to be a simulation of chess so that the compiler could logically play
it, and so that there was some logical representation of a board passable to the minimax
algorithm. The board is set up as a list of lists of pieces, where pieces are denominated by their
color and point value. Pieces must be differentiated so that the mini-max algorithm is able to tell

which player is playing with which pieces.

A chess move is represented as a data type “Move” that is a tuple of two tuples: (Starting
Position, Ending Position).

Each piece in chess has a unique set of move rules, and there are moves that are legal as
well as moves that are not legal. As such, each different piece needed to have a separate move
generation function that parsed their move rules for all legal rules. Along with this, there are
separate edge cases for movement, such as capturing rules. Pieces cannot move onto a square
that is occupied by their own color, but they can move to capture an enemy piece. Along with
this, once a piece comes into contact with another piece, it can no longer move further in the
same direction.

This required a separate algorithm for finding legal moves.

Taking a rook, for example:

A rook can move, at maximum, seven squares either forwards, backwards, left, or right.
However, once a rook comes into contact with a piece or the edge of the board, this metric
becomes smaller.

The “takeWhilelnclusive® method addresses this, where it traverses seven moves away
from the rook’s original position, stopping if the rook attempts to move onto a square that
contains another piece. Then, using the “checkLastElemCap’ function, it checks if this last piece
is capturable, so as to determine if this move was also legal or not and includable in the final
legalMoves list. This logic was repeated for the bishop, queen, knight, and king.

Pawns, on the other hand, were a bit more tricky. Because pawns have a different set of
rules for capturing (diagonal) versus movement (forward), two separate lists needed to be parsed:

a capture move list, and a movement move list, due to the fact that a pawn cannot capture a piece

directly in front of it. After checking them for separate legality rules, they are concatenated,
generating all legal moves for the pawn.

After this, I needed some type of evaluation heuristic to determine the value of a board
state, so that there was a basis of comparison between two different board states. The
implementation of evalBoard was straightforward: I parsed the entire [[Piece]] representation of
the board, and added up all point values determined by the getPoints function for both white and
black. The value was then calculated by subtracting black’s total piece valuation by white’s,
meaning that a positive number was advantageous for white while a negative number was
advantageous for black.

The function makeMove takes in a board and a move, and outputs an updated board.
Using the coordinates from the move data type, The piece is removed from the starting index,
replaced with Empty, and then replaces the target coordinate with the original piece. Afterwards,
the new board is returned.

The function minimax accepts a given board state, and immediately checks if the depth is
equal to 0. If it is equal to 0, it can just return the given board state without looking for more
potential moves.

There are 5 separate implementations for minimax in the provided code:

e miniMaxSeq
o A non-parallel, recursive DFS solution to mini-max
e miniMaxParMap
o A parallel solution that just calls “parMap’ on all nodes of the mini-max
tree

e miniMaxParGran

o A parallel solution that calls miniMaxSeq on each node of the original tree
in parallel
e miniMaxSeqPrune
o A sequential algorithm that implements alpha-beta pruning
e miniMaxParPrune
o A parallel algorithm that calls miniMaxSeqPrune on each node of the
original tree in parallel
Each was designed as an attempt to increase the efficiency of the previous.
miniMaxSeq outPut at depth == 4:

[michaellee@dyn-160-39-249-30 COMS4995 Project % ./mini-max 1 4 1 -999 999 +RTS -s -N1
13
[BRook, Empty, Empty, Empty,BKing, BBishop, Empty, BRook]
[BPawn,BPawn,BPawn, Empty, BPawn, BPawn, BPawn, BPawn]
[BKnight, Empty,Empty, BQueen,BBishop, Empty, Empty, Empty]
[Empty, Empty,WQueen,WBishop, Empty, Empty, Empty, Empty]
[Empty,Empty, Empty, Empty, BKnight, Empty, Empty, Empty]
[Empty,Empty, Empty, Empty, Empty, Empty,WPawn, Empty]
[WPawn,WPawn,WPawn,WPawn, WPawn, WPawn, Empty, WPawn]
[WRook,WKnight,WBishop,WQueen,WKing, WBishop,WKnight, WRook]
79,504,113,048 bytes allocated in the heap
65,579,200 bytes copied during GC
79,872 bytes maximum residency (6 sample(s))
29,952 bytes maximum slop
7 MiB total memory in use (@ MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen 0@ 19868 colls, @ par 0.200s 9.237s 0.0000s 0.0004s
Gen 1 6 colls, @ par 0.002s 0.002s 0.0003s 0.0003s
TASKS: 4 (1 bound, 3 peak workers (3 total), using -N1)

SPARKS: @ (@ converted, @ overflowed, @ dud, @ GC'd, @ fizzled)

INIT time .001s .006s elapsed)
time .627s .979s elapsed)
time .201s .239s elapsed)
time .000s .008s elapsed)
time .829s .232s5 elapsed)

Alloc rate 1,539,968, 483 bytes per MUT second

Productivity 99.6% of total user, 99.5% of total elapsed

Here, the runtime of the sequential miniMax algorithm is 51.829 seconds.

miniMaxParMap output at depth == 4 with 6 cores:

[michaellee@dyn-160-39-249-3@0 COMS4995 Project % ./mini-max 3 4 1 —-999 999 +RTS -s -Né
13
[BRook,Empty, Empty, Empty,BKing, BBishop, Empty, BRook]
[BPawn,BPawn, BPawn, Empty,BPawn, BPawn, BPawn, BPawn]
[BKnight, Empty, Empty, BQueen, BBishop, Empty, Empty, Empty]
[Empty,Empty,WQueen,WBishop, Empty, Empty, Empty, Empty]
[Empty,Empty, Empty, Empty,BKnight, Empty, Empty, Empty]
[Empty,Empty, Empty, Empty, Empty, Empty,WPawn, Empty]
[WPawn ,WPawn, WPawn, WPawn ,WPawn, WPawn, Empty, WPawn]
[WRook,WKnight,WBishop,WQueen,WKing, WBishop,WKnight,WRook]
86,504,701,016 bytes allocated in the heap
143,435,320 bytes copied during GC
507,080 bytes maximum residency (63 sample(s))
86,240 bytes maximum slop
32 MiB total memory in use (@ MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause

Gen © 3674 colls, 3674 par 0.490s 9.288s 0.0001s 0.0006s
Gen 1 63 colls, 62 par 0.028s 0.012s 0.0002s 0.0004s
Parallel GC work balance: 65.17% (serial 8%, perfect 100%)
TASKS: 14 (1 bound, 13 peak workers (13 total), using -N6)
SPARKS: 5486678 (183282 converted, @ overflowed, @ dud, 4519979 GC'd, 783417 fizzled)
INIT time 0.001s 0.015s elapsed)

time 48.862s 8.379s elapsed)

time 9.518s 0.300s elapsed)

time 0.000s 0.004s elapsed)

time 49.381s 8.698s elapsed)
Alloc rate 1,770,378,885 bytes per MUT second

Productivity 98.9% of total user, 96.3% of total elapsed

michaellee@dyn-160-39-249-30 COMS4995 Project % [

A strong increase, with completion in 8.698 seconds. However, the spark count for the current

board state being evaluated is 5,486,678. With better granularity, this could likely be optimized.

miniMaxParGran output at depth == 4 with 6 cores:

[michaellee@dyn-160-39-249-3@0 COMS4995 Project % ./mini-max 4 4 1 -999 999 +RTS -s -Né6
13
[BRook, Empty, Empty, Empty, BKing, BBishop, Empty, BRook]
[BPawn, BPawn, BPawn, Empty, BPawn,BPawn, BPawn, BPawn]
[BKnight,Empty, Empty, BQueen,BBishop, Empty, Empty, Empty]
[Empty, Empty,WQueen,WBishop, Empty, Empty, Empty, Empty]
[Empty, Empty, Empty, Empty, BKnight, Empty, Empty, Empty]
[Empty, Empty, Empty, Empty, Empty, Empty,WPawn, Empty]
[wWPawn, WPawn, WPawn,WPawn, WPawn, WPawn, Empty,WPawn]
[WRook,WKnight,WBishop, WQueen,WKing, WBishop,WKnight, WRook]
79,504,549,432 bytes allocated in the heap
71,260,944 bytes copied during GC
361,536 bytes maximum residency (9 sample(s))
82,960 bytes maximum slop
32 MiB total memory in use (@ MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen @ 3591 colls, 3591 par 0.369s 0.2656s 0.0001s 0.0003s
Gen 1 9 colls, 8 par 0.004s 0.002s 0.0003s 0.0003s

Parallel GC work balance: 74.79% (serial 8%, perfect 100%)

TASKS: 14 (1 bound, 13 peak workers (13 total), using -Né)

SPARKS: 92 (92 converted, @ overflowed, © dud, @ GC'd, @ fizzled)
INIT time 0.001s .015s elapsed)

MUT time 55.638s .947s elapsed)

GC time 0.373s .267s elapsed)

EXIT time 0.000s .009s elapsed)

Total time 56.012s 10.238s elapsed)

Alloc rate 1,428,968,142 bytes per MUT second

Productivity 99.3% of total user, 97.2% of total elapsed

michaellee®dyn-160-39-249-3@ COMS4995 Project %

Slight slowdown to 10.238 seconds, but much better on spark count.

From these, we can see that the introduction of parallelizing the algorithm clearly increases the
efficiency of the algorithm. With over 5.48 million board states to evaluate, the algorithm is able

to complete traversal using this algorithm in ~10 seconds.

Another way to further improve this algorithm would be with the inclusion of alpha-beta

pruning.

The implementation of alpha-beta pruning is incomplete, as the expected return value does not
match the actual return value.
Using miniMaxParPrune at depth == 4 with 8 cores, the output is:

(michaellee@dyn-160-39-249-30 COMS4995 Project % ./mini-max 5 4 1 -999 999 +RTS -s -N8
-999
[BRook, Empty, Empty, Empty, BKing, BBishop, Empty, BRook]
[BPawn, BPawn, BPawn, Empty, BPawn, BPawn, BPawn, BPawn]
[BKnight, Empty, Empty,BQueen, BBishop,Empty, Empty, Empty]
[Empty, Empty,WQueen,WBishop, Empty, Empty, Empty, Empty]
[Empty, Empty, Empty, Empty, BKnight, Empty, Empty, Empty]
[Empty, Empty, Empty, Empty, Empty, Empty, WPawn, Empty]
[WPawn,WPawn, WPawn, WPawn, WPawn, WPawn, Empty,WPawn]
[WRook,WKnight,WBishop, WQueen,WKing,WBishop, WKnight, WRook]
79,508,362,584 bytes allocated in the heap
72,331,296 bytes copied during GC
470,904 bytes maximum residency (10 sample(s))
114,504 bytes maximum slop
43 MiB total memory in use (@ MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen @ 2868 colls, 2868 par 0.377s 0.224s 0.0001s 0.0004s
Gen 1 16 colls, 9 par 0.006s 0.003s 0.0003s 0.0006s
Parallel GC work balance: 68.908% (serial 0%, perfect 100%)
TASKS: 18 (1 bound, 17 peak workers (17 total), using -N8)
SPARKS: 92 (92 converted, @ overflowed, @ dud, @ GC'd, @ fizzled)
INIT time 0.001s .008s elapsed)
MUT time 54.944s .897s elapsed)
GC time 9.383s .227s elapsed)
EXIT time 0.000s .003s elapsed)
Total time 55.328s .135s elapsed)
Alloc rate 1,447,077,164 bytes per MUT second

Productivity 99.3% of total user, 97.1% of total elapsed

michaellee@dyn-160-39-249-30 COMS4995 Project % I

While there is a speedup, the evaluation heuristic is wrong, meaning the the implementation

itself is incorrect.

Alpha beta pruning, in this project, would be a definite way to improve the efficiency of
the algorithm. Alpha beta pruning works by comparing each child node for a given game state to
a maximum or minimum value, and then using this value to decide whether or not the child is
worth traversing.

Pruning branches by saving a maximum value to compare the evaluation metric cuts
down the trees in the node by a significant degree. However, implementing this feature is
difficult in the frame of parallel haskell, as separate threads may need to communicate a
maximum value so that another thread knows to prune a game tree.

There are a multitude of ways in which this program can be optimized further:

e There is lots of tedious code designed to implement the rules of moves, board
evaluation, and move-making. Many of these can be implemented with a similar
parallel algorithm, where lists can be traversed in parallel in order to parse and
sort data quicker.

e The granularity can be increased to optimize sparks. If parallelism is implemented
until depth == 2, and then the rest of the algorithm was performed sequentially,
this may be able to increase speed and spark count by a favorable amount.

e The chess implementation is bare; there are no castling, checkmates, or

double-square pawn moves.

Thank you for taking the time to read this and view my project.

Here is the implementation for my code:

mini-max.hs:

System.Exit

System.Environment
Control.Parallel.Strategies
Data.List

Control.Monad

WKing | WQueen |

BKing | BQueen | BBishop

Empty (Eq,)

outPutBoard
board

= do

outPutBoard

mapM print (reverse board)

getPoints
getPoints piece

piece WKing BKing

piece WQueen BQueen

piece WBishop BBishop

piece WKnight BKnight

piece WRook BRook

WPawn BPawn

0

piece

otherwise

sumPiecelist

sumPiecelist

sumPiecelist (getPoints x) +

WBishop

| WKnight |

| BKnight | BRook

(sumPiecelList xs)

WRook

evalBoard :: ->

evalBoard board = whiteCount - blackCount

whiteList [board !! x !l yv | x <-
== 1]

blackList [board !! x !l v | x <-
= (=1)1]

whiteCount sumPiecelList whitelist

blackCount sumPiecelList blackList

isOccupied :: ->

isOccupied board (x, y)

x < 0

||l x>7 || y<O0 || y>7-= (True,

(board !'! x) !! y == Empty = (False, 0)

head

1y

(show piece) == 'W' = (True, 1)

otherwise = (True, -1)

piece = board !! x !! vy

takeWhileInclusive

[0 <

[0, .

999)

271,

711,

snd

snd

(isOccupied board

(isOccupied board

takeWhileInclusive =

takeWhileInclusive p (x:xs) : takeWhileInclusive p xs

checkLastElemCap

checkLastElemCap =

checklLastElemCap board player list

| snd (isOccupied board (snd (last list))) == (-player) = list
| otherwise = fst (splitAt (length list - 1) list)

> -> [I > 1]
player moves = checklLastElemCap board player ((takeWhileInclusive

-> (fst (isOccupied board (r', c')) == False)) moves))

pawnLegalMoves :: => ->
pawnlLegalMoves board player piece (row,
| piece == WPawn = [x | x <- wMovelist, check = snd (isOccupied board (snd x)),
check == 0 && check /= 999] ++

[y | y <- wCapList, check = snd (isOccupied board (snd y)),
check == (-player) && check /= 999]
| piece == BPawn = [x | x <- bMovelist, check = snd (isOccupied board (snd x)),
check == 0 && check /= 999] ++

[v | y <- bCapList, check = snd (isOccupied board (snd y)),
chec (-player) && check /= 999]

| otherwise =

wMovelList [((row, col))]
wCapList = [((row, col + 1)), ((row, col), (row + 1, col - 1))]
bMovelList [((row, col))]

bCapList = [((row, col - 1)), ((row, col), (row - 1, col + 1))]

rookLegalMoves

rookLegalMoves board player piece (row, col)

| piece == WRook || piece == WQueen = (getListOfMoves board player vertNegMoveList) ++
(getListOfMoves board player vertPosMovelist) ++ (getListOfMoves board player
horiNegMoveList) ++ (getListOfMoves board player horiPosMovelist)

| piece == BRook || piece == BQueen = (getListOfMoves board player vertNegMoveList) ++
(getListOfMoves board player vertPosMovelList) ++ (getListOfMoves board player
horiNegMovelList) ++ (getListOfMoves board player horiPosMovelist)

| otherwise =

vertNegMovelList = [((row, col), (row - 1, col)), ((row, col), (row - 2, col)),
col), (row - 3, col)), ((row, col), (row - 4, col)), ((row, col), (row - 5, col)),
col), (row - 6, col)), ((row, col), (row - 7, col))]

vertPosMovelList = [((row, col), (row + 1, col)), ((row, col), (row + 2, col)),
col), (row + 3, col)), ((row, col), (row + 4, col)), ((row, col), (row + 5, col)),
col), (row + 6, col)), ((row, col), (row + 7, col))]

horiNegMovelList = [((row, col), (row, col - 1)), ((row, col), (row, col - 2)),
col), (row, col - 3)), ((row, col), (row, col - 4)), ((row, col), (row, col - 5)),
col), (row, col - 6)), ((row, col), (row, col - 7))]

horiPosMovelist = [((row, col), (row, col + 1)), ((row, col), (row, col + 2)),
col), (row, col + 3)), ((row, col), (row, col + 4)), ((row, col), (row, col + 5)),

col), (row, col + 6)), ((row, col), (row, col + 7))]

knightLegalMoves :: => -> ->
knightLegalMoves board player piece (row, col)
| piece == WKnight || piece == BKnight = [x | x <- movelist,
(isOccupied board (snd x)), check == || check == (-player)]

| otherwise =

movelList = [((row, col), (row + 2, col + 1)), ((row,
((row, col), (row - 2, col + 1)), ((row, col), (row - 2, col
((row, col), (row + 1, col + 2)), ((row,

((row, col), (row + 1, col - 2)), ((row, col), (row - 1, col

bishoplLegalMoves :: -> > ->
bishoplegalMoves board player piece (row, col)

| piece == WBishop || piece == WQueen = (getListOfMoves board player ppMoveList) ++

(getListOfMoves board player pnMovelList) ++ (getListOfMoves board player npMpvelList)

++ (getListOfMoves board player nnMovelList)

| piece == BBishop || piece == BQueen = (getListOfMoves board player ppMovelList) ++
(getListOfMoves board player pnMovelList) ++ (getListOfMoves board player npMpvelList)
++ (getListOfMoves board player nnMovelList)

| otherwise =

ppMovelist = [((row, col), (row + 1, col + 1)), ((row, col), (row +
col), (row + 3, col + 3)), ((row, col), (row + 4, col + 4)), ((row,
+ 5)), ((row, col), (row + 6, col + 6)), ((row, col), (row + 7, col
pnMovelist = [((row, col), (row + 1, col - 1)), ((row, col), (row +
col), (row + 3, col - 3)), ((row, col), (row + 4, col - 4)), ((row,
- 5)), ((row, col), (row + 6, col 6)), ((row, col), (row + 7, col
npMpvelList = [((row, col), (row - 1, col + 1)), ((row, col), (row -
col), (row - 3, col + 3)), ((row, col), (row - 4, col + 4)), ((row,
+ 5)), ((row, col), (row - 6, col + 6)), ((row, col), (row - 7, col
nnMovelList = [((row, col), (row - 1, col - 1)), ((row, col), (row -
col), (row - 3, col - 3)), ((row, col), (row - 4, col - 4)), ((row,

- 5)), ((row, col), (row - 6, col 6)), ((row, col), (row - 7, col

queenlegalMoves :: -> -> ->

queenlegalMoves board player piece (row, col)

| piece == WQueen = (rookLegalMoves board player piece (row, col)) ++
(bishopLegalMoves board player piece (row, col))

| piece == BQueen = (rookLegalMoves board player piece (row, col)) ++

(bishoplLegalMoves board player piece (row, col))

| otherwise =

kingLegalMoves :: => -> ->

kingLegalMoves board player piece (row, col)

| piece == WKing || piece == BKing = [x | x <- movelist, snd (isOccupied

board (snd x)), check == || check == (-player)]

| otherwise =

movelList = [((row, col), (row + 1, col)), ((row, col), (row
col), (row, col + 1)),
((row, col), (row, col - 1)), ((row, col), (row

((row, col), (row - 1, col - 1))]

makeMove :: => —>
makeMove board ((r, c¢), (dr, dc)) =
piece = board !! r !! ¢
(r', c¢') = splitAt ¢ (board !! r)
(moda, modb) = splitAt r board
modPreRow = r' ++ [Empty] ++ (snd (splitAt 1 c'))

modPreBoard = moda ++ [modPreRow] ++ (snd (splitAt 1 modb))

(dr', dc') = splitAt dc (modPreBoard !! dr)
(modc, modd) = splitAt dr modPreBoard
modPostRow = dr' ++ [piece] ++ (snd (splitAt 1 dc'))

modPostBoard = modc ++ [modPostRow] ++ (snd (splitAt 1 modd))

modPostBoard

generateMovesHelper

generateMovesHelper =

generateMovesHelper board player (x:xs) =

(pawnLegalMoves board player (fst x) (snd x)) ++
(knightLegalMoves board player (fst x) (snd x)) ++
(bishopLegalMoves board player (fst x) (snd x)) ++
(rookLegalMoves board player (fst x) (snd x)) ++
(queenlLegalMoves board player (fst x) (snd x)) ++
(kingLegalMoves board player (fst x) (snd x)) ++

(generateMovesHelper board player xs)

generateMoves :: -> -> []

generateMoves board player = generateMovesHelper board player piecelist

piecelist

[((board !! x !'! v),
(isOccupied board (x, y)) == player]

minimaxSeq :: => ==
minimaxSeq board depth player =
if depth == 0
then evalBoard board
else

moves = generateMoves board player

values = map (\move -> minimaxSeq (makeMove board move) (depth-1) (-player))

if player == 1
then maximum values

else minimum values

minimaxSegPrune :: => => => =>
minimaxSegPrune board depth player alpha beta =
if depth == 0
then evalBoard board
else
moves = generateMoves board player

maxBestVal = minBound

= maxBound
(depth-1)

minBestVal
(makeMove board move)

values = map (\move -> minimaxSegPrune

(-player) alpha beta) moves

value = maximum values

if player == 1

then
(max maxBestVal value))

alphBest = (max alpha

if alphBest >= beta

then beta

1se
max maxBestVal value

minBest = min minBestVal value

beta minBest

betaBest = min

if betaBest >= alpha
then alpha
else

minBest

minimaxParMap => ->

minimaxParMap board depth player

if depth == 0
then evalBoard board

else

moves =

generateMoves board player

(\move -> minimaxParMap (makeMove board move) (depth-1)

values = parMap rpar

(-player)) moves

if player == 1

then maximum values
else minimum values
==

minimaxParGran ->

minimaxParGran board depth player=
moves = generateMoves board

values = parMap rpar (\move

(-player)) moves
if player == 1
then maximum values

else minimum values

minimaxParPrune -> ->

minimaxParPrune board depth player

moves = generateMoves board

values = parMap rpar (\move

(-player) alpha beta) moves
if player == 1
then maximum values

else minimum values

argNames <- getArgs

minimax = read (argNames !!

board = [[WRook, WKnight,
[WPawn, WPawn,
[Empty, Empty,
[Empty, Empty,
[Empty, Empty,
[BKnight, Empty,

[BPawn, BPawn,

WBishop,
WPawn,
Empty,
Empty,
WQueen,
Empty,

BPawn,

player

-> minimaxSeq (makeMove board move)

->

alpha beta

player

-> minimaxSegPrune (makeMove board move) (depth-1)

0)

WQueen, WKing, WBishop, WKnight, WRook],

WPawn, WPawn, WPawn, Empty, WPawn],

Empty, Empty, Empty, WPawn, Empty],

Empty, BKnight, Empty, Empty, Empty],

WBishop, Empty, Empty, Empty, Empty],

BQueen, BBishop, Empty, Empty, Empty],

Empty, BPawn, BPawn, BPawn, BPawn],

[BRook, Empty,

depth = read
player = read
alpha = read

beta = read

when (minimax
when (minimax
when (minimax
when (minimax

when (minimax

outPutBoard board

(argNames
(argNames
(argNames

(argNames

$ print

print
print
print
print

Empty,
11)

Empty, BKing, BBishop, Empty, BRook]]

14)

(minimaxSeq board depth player)

(minimaxSegPrune board depth player alpha beta)

(minimaxParMap board depth player)

(minimaxParGran board depth player)

(minimaxParPrune board depth player alpha beta)

