
BananaSolve: a Parallel Haskell Bananagrams Solver

Shai Goldman (stg2126), Aaron Priven (ahp2154)

1 Overview

Context Bananagrams is an entertaining scabble-like game in which the players are all
given a set number of letter tiles and asked to construct a totally connected scrabble-like
board using all of their tiles. Whoever finishes their board fastest wins. (In the real game,
after a player completes a board, all players draw a new tile and have to incorporate it into
their boards, until all tiles are gone, but for our project we will be focusing on the initial
board creation stage of the game.) See Figure 1.

Project Goal Our goal is to write a Haskell algorithm that, given a set number of tiles,
will construct a valid Bananagrams board using those tiles. We will then speed up the
program using parallel strategies.

Challenges Banagrams is a relatively new game. It has been around since 2006. For this
reason it lacks well-known sequential solving algorithms. An algorithm written by college
students in python has been of some help to us, but we have veered significantly from their
specific implementation (linked here).

Figure 1: A Bananagrams Ad

1

https://github.com/pyrobluestar/bananagrams

2 Algorithm

A Sequential Algorithm Our sequential algorithm plays one word onto the board at a
time until all tiles have been used. The best word to play is assessed using a heuristic based
on letter frequencies and word length. In general, longer words that use more uncommon
letters are given priority. A pseudo-code algorithm for our technique can be described as
follows:

1. Given a dictionary D and a hand of letters h:

2. Group D into sub-dictionaries (d : ds) each containing all words of a particular word-
size. Let s be the wordsize of d, the sub-dictionary with the longest words.

3. Start BFS, using the empty board as a first BFS-node.

4. For each BFS-node, take a BFS step:

(a) Find each available space on the board that can be used to add a new word.

(b) For each available space, add the highest scoring word in d that can be played
with letters in h at that space that does not invalidate the board in a new BFS-
strand. Subtract the letters of that word from h and reset s to the length of the
longest word in d. If no words could be placed on the board, decrement s and go
back to (a) with the head of ds.

5. If any new BFS-nodes contain a completed board (i.e., h is empty), return that and
halt.

6. Sort all the new BFS nodes by score. Score is calculated based on total tiles played and
letter frequency values of tiles played, with more tiles and less frequently used letters
scoring more. Pick the highest n scoring BFS nodes to run a new BFS step on, where
n can be determined by the user.

7. Return to step 4. with the new BFS-nodes chosen in 6., and repeat until some limit is
reached or a solution is found.

3 Some Implementation Details

3.1 Important Custom Types

BWord BWord is made up of the word’s string, starting coordinates, and direction (i.e.
horizontal or vertical).

data BWord = BWord String Location Direction

OMatrix OMatrix is made up of the matrix’s origin and a CharMatrix. Keeping track of
the ’virtual’ origin’s location abstracts the underlying matrix and allows for easier manage-
ment of the matrix.

data OMatrix = OMatrix Location CharMatrix

2

Figure 2: Our algorithm’s solution for input "howareyousounbelievablyquickatbananagrams"

Board Board stores an OMatrix with the list of BWords it uses.

data Board = Board [BWord] OMatrix

State State stores a Board with a Hand of letters yet to be played where Hand is a
Hashmap of letters with their respective counts in the player’s hand.

type State = (Hand , Board)

3.2 Choosing Next Word

Choosing the next word uses the algorithms in src/WordChooser.hs to pick the highest
scoring word that can be played with Hand h at a specific tile on the board. The scoring is
done based on wordlength and letter frequency. We created a Map.Map Char Int letterPoints

to assign points to each letter based on that letter’s frequency in the English language, where
the least frequent letter scores the most points. In our letterPoints, based on autogenerated
values from chatGPT,‘z’ scores 14926, while ‘e’ scores 2298.

The scoring algorithm is as follows:

scoreWord :: String -> Int

scoreWord w = 15000 * length w

+ sum (map scoreChar w)

scoreChar :: Char -> Int

scoreChar ‘ ’ = 0

scoreChar c = fromJust $ Map.lookup c letterPoints

3.3 Other Details

The code as a whole can be found in the appendix, as well as on github.

3

https://github.com/shaigoldman/BanagramsSolver

Figure 3: Threadscope output for parallel step calculations.

4 Parallel

4.1 A Test Case For Parallelization.

For our parallelization journey, we began testing with the test input “howareyousounbeliev-
ablyquickatbananagrams”. This input produced a board under the sequential algorithm in
around 7.2s.1 The board produced is pictured in Figure 2

4.2 Parallel BFS-Step Computation

Our first idea for parallelization was to calculate each BFS-node’s children in parallel. For
example, at BFS step x with 100 nodes, create a spark to calculate each node’s children.

At first we tried this with the strategy parPar, but this did not effect speedup. The reason
was that parPar only goes to WHN form, and for each BFS-node, we wanted to calculate a
list of its children, and WHN form for this would only actually evaluate the first child, and
leave the rest as a thunk.

Therefore we switched to using the rdeepseq strategy, and added implementations for
instance NFData for all our custom datatypes. This was successful. The new implementation
for going from one bfs step to the next required minimal changes. We implemented it in
src/Bfs.hs by modifying bfsNext to bfsNextPar, which ran as such:

bfsNextPar :: DictPair -> [State] -> [State]

bfsNextPar dictpair states = concat

$ parMap rdeepseq (playTurn dictpair) states

The new runtime was around 2.2s, around a 3.3x speedup from the sequential algorithm
on this input. Threadscope logs are shown in Figure 3

1When run the first time, it can take up to 13s, but if run again its much faster, averaging around 7.2s.
I assume this is because some of the dictionary is kept in the cache after the first run.

4

Figure 4: Threadscope output for parallel within-step calculations.

There was still room for improvement. Looking at the threadscope logs, we could see
serious gaps of inactivity on each core. This could be caused by uneven load balancing. For
example, if some of the BFS-nodes were much harder than others (for example, boards with
more tiles already played require more possible new plays and more computations), one core
could be given all of the harder nodes to complete.

4.3 Parallel Within-Step Computation

We decided to try to optimize our parallel speedup further by introducing parallelism to
within BFS-node computations. Each BFS-node begins with a State containing a Hand h
and a Board b, and needs to find all open tiles on the b, and calculate the best possible word
play with h at each spot. So we can parallelize this by calculating the best possible play for
each open tile in parallel.

To implement this, we changed our playTurn function in src/Bfs.hs to playTurnPar,
where:

playTurnPar :: DictPair -> State -> [State]

playTurnPar dictpair state@(_, board) =

catMaybes $ parMap rdeepseq (playBestWordAt dictpair state)

$ getOpenTiles board

The runtime for this improved algorithm was between 2.0 and 2.1s on average, which
calculates to around a 3.5x speedup from the sequential algorithm. Threadscope logs, shown
in Figure 4, show how core inactivities were significantly reduced in this algorithm.

One caveat is that we noticed our new algorithm resulted in a lot of fizzled sparks. Fizzled
sparks are supposed to happen with a spark finds that the thunk it was supposed to evaluate
was already evaluated by another part of the program. As of the due date for this project
we have not been able to discover the reason for this problem in our code, as we do not think
we have multiple sparks running on the same thunks.

5

4.4 Speed Up Results For Other Test-Cases

Input Sequential Time Parallel Time Speed-up

icandothisonequickly 1.7s 0.8s 2.26x
howareyousogoodatpuzzlesitstrulyaston
ishing

11.65s 3.52s 3.31x

whydoesntanyonewanttoplaybananagram
swithmeiguessbeingthisgoodisntsofu
nafterall

59.69s 19.90s 2.99x

acomputerwoulddeservetobecalledintelli
gentifitcoulddeceiveahumanintobelieving
thatitwashuman

76.99s 27.62s 2.79x

5 Appendix - Code

5.1 Main.hs

module Main (main) where

import Bfs (bfsPar , bfsSeq)

import Data.Set (fromList)

import Types (splitDict)

import System.Environment (getArgs , getProgName)

import System.Exit(die)

import Data.Maybe (isNothing , fromJust)

import Data.Char (isAlpha , toLower)

usage :: IO ()

usage = do

pn <- getProgName

die $ "Usage: stack exec " ++ pn ++ " -- +RTS -ls -N4 -- <algo > <tiles

>\n" ++

"<algo > must be ’s’ for sequential or ’p’ for parallel. Tiles

must be letters only."

main :: IO ()

main = do

args <- getArgs

case args of

[_, algo , tiles] -> do

let algoType = case algo of "s" -> Just bfsSeq

"p" -> Just bfsPar

_ -> Nothing

if isNothing algoType then usage

else do

if any (not . isAlpha) tiles then usage

else do

let formattedTiles = map toLower tiles

fcontents <- readFile "words.txt"

let ws = lines fcontents

6

dictlist = splitDict ws

dictset = Data.Set.fromList ws

putStrLn $ "Prompt: " ++ formattedTiles

let lim = 20

stepsize = 20

res = fromJust algoType formattedTiles lim

stepsize (dictset , dictlist)

case res of

Nothing -> putStrLn $ "no solution in " ++

show lim

Just state -> print state

_ -> usage

5.2 Types.hs

module Types (

StringSet ,

StringLists ,

splitDict ,

CharMatrix ,

Hand ,

Direction (H, V),

flipD ,

Location (..),

BWord (..),

OMatrix (..),

setElemOMatrix ,

Board (..),

boardID ,

State ,

stateID ,

DictPair

) where

import Data.Set (Set)

import Data.HashMap.Strict (HashMap)

import Data.Matrix (Matrix , toList , setElem)

import Control.DeepSeq (NFData (..))

import Data.List (groupBy , sortBy)

type StringSet = Set String

type StringLists = [[String]]

splitDict :: [String] -> StringLists

splitDict dict = groupBy lengthEq $ sortBy lengthCmp dict

where lengthCmp x y = length y ‘compare ‘ length x

lengthEq x y = length x == length y

type Hand = HashMap Char Int

data Direction = H|V deriving (Eq , Show) -- horizontal or vertical

flipD :: Direction -> Direction

7

flipD H = V

flipD V = H

instance NFData Direction where

rnf d = d ‘seq ‘ ()

data Location = Location Int Int deriving (Eq)

instance Show Location where

show (Location y x) = show (y,x)

instance NFData Location where

rnf (Location y x) = rnf y ‘seq ‘ rnf x

type CharMatrix = Matrix Char

-- OMatrix stores the ’virtual ’ origin with a CharMatrix to allow

-- for easier usage of the CharMatrix.

data OMatrix = OMatrix Location CharMatrix

setElemOMatrix :: Char -> Location -> OMatrix -> OMatrix

setElemOMatrix c (Location y x) (OMatrix p m) = OMatrix p new_m

where new_m = setElem c (y,x) m

instance Show OMatrix where

show (OMatrix p m) = show m ++ "\n" ++ show p

instance NFData OMatrix where

rnf om = om ‘seq ‘ ()

data BWord = BWord String Location Direction

deriving (Eq, Show)

instance NFData BWord where

rnf (BWord word p d) = rnf word ‘seq ‘ rnf p ‘seq ‘ rnf d

data Board = Board [BWord] OMatrix

instance Show Board where

show (Board bwords om) =

"bwords: " ++ show bwords ++ "\n"

++ show om

boardID :: Board -> String

boardID (Board _ (OMatrix _ m)) = toList m

instance NFData Board where

rnf (Board bwords om) = rnf bwords ‘seq ‘ rnf om

type State = (Hand , Board)

stateID :: State -> String

stateID (_, board) = boardID board

type DictPair = (StringSet , StringLists)

5.3 BananaBoard.hs

module BananaBoard (

singleton ,

getSpaceAt ,

joinWordAt ,

isValidBoard

8

) where

import Types (

Direction (..),

flipD ,

Location (..),

OMatrix (..),

setElemOMatrix ,

BWord (..),

Board (..),

StringSet)

import Data.Set (member)

import Data.Maybe (fromMaybe)

import Data.Matrix

((<->), (<|>), fromLists , matrix ,

safeGet , Matrix (..), toLists , transpose)

empty :: Int -> Int -> Matrix Char

empty y x = matrix y x (\(_, _) -> ’ ’)

singleton :: String -> Board

singleton word = Board [BWord word (Location 1 1) H] (OMatrix (Location 1

1) (fromLists [word]))

-- add origin offset to coords

addO1 :: Num a => a -> a -> a

addO1 c c0 = c+c0 -1

addO :: Location -> Location -> Location

addO (Location y x) (Location y0 x0) = Location (addO1 y y0) (addO1 x x0)

placeWord :: String -> Location -> Direction -> OMatrix -> OMatrix

placeWord word p@(Location y x) d om

| d == H = placeWordH word (Location y x) sizedOM

| otherwise = placeWordV word (Location y x) sizedOM

where

endP = if d == H then Location y (x+length word -1)

else Location (y+length word -1) x

sizedOM = resizeTo endP (resizeTo p om)

placeWordH :: String -> Location -> OMatrix -> OMatrix

placeWordH [] _ m = m

placeWordH (w:ws) _p@(Location _y _x) _om@(OMatrix og _) =

placeWordH ws (Location _y (_x+1)) $ setElemOMatrix w (addO

_p og) _om

placeWordV :: String -> Location -> OMatrix -> OMatrix

placeWordV [] _ m = m

placeWordV (w:ws) _p@(Location _y _x) _om@(OMatrix og _) =

placeWordV ws (Location (_y+1) _x) $ setElemOMatrix w (addO _p

og) _om

resizeTo :: Location -> OMatrix -> OMatrix

resizeTo _p@(Location _y _x) _om@(OMatrix og@(Location y0 x0) m)

| yo < 1 = let yoff = 1 + abs yo in

9

resizeTo (Location 1 _x) $ OMatrix (Location (y0 + yoff)

x0)

$ empty yoff (ncols m) <-> m

| xo < 1 = let xoff = 1 + abs xo in

resizeTo (Location _y 1) $ OMatrix (Location y0 (x0 + xoff

))

$ empty (nrows m) xoff <|> m

| yo > nrows m = resizeTo _p

$ OMatrix og $ m <-> empty (yo - nrows m) (ncols m)

| xo > ncols m = resizeTo _p

$ OMatrix og $ m <|> empty (nrows m) (xo-ncols m)

| otherwise = _om

where (Location yo xo) = addO _p og

getSpaceAt :: Location -> Int -> Direction -> OMatrix -> String

getSpaceAt p len d (OMatrix og m)

| d == H = map getElemX $ take len [xo..]

| otherwise = map getElemY $ take len [yo..]

where

(Location yo xo) = addO p og

getElemX :: Int -> Char

getElemX x = fromMaybe ’ ’ $ safeGet yo x m

getElemY :: Int -> Char

getElemY y = fromMaybe ’ ’ $ safeGet y xo m

-- on top of a wordspace on a board , can we play this word?

validPlay :: String -> String -> Bool

validPlay [] _ = True

validPlay _ [] = False

validPlay (space:ss) (word:ws)

| space == ’ ’ = validPlay ss ws

| otherwise = space == word && validPlay ss ws

-- is this play both valid and also meaningful?

goodPlay :: String -> String -> Bool

goodPlay wordspace word =

’ ’ ‘elem ‘ wordspace && validPlay wordspace word

isValidBoard :: StringSet -> Board -> Bool

isValidBoard dict (Board _ (OMatrix _ m)) =

areValidRows (toLists m)

&& areValidRows (toLists $ transpose m)

where

isValidRow :: String -> Bool

isValidRow row = all (‘member ‘ dict) $
filter (\w -> length w /= 1) (words row)

areValidRows :: [String] -> Bool

areValidRows = all isValidRow

joinWordAt :: StringSet -> String -> Int -> BWord -> Int -> Board -> Maybe

(Board , String)

10

joinWordAt dictset s s_ind (BWord _ (Location y x) d) bw_ind (Board bwords

om)

| goodPlay boardspace s && isValidBoard dictset newboard =

Just (newboard , boardspace)

| otherwise = Nothing

where

new_d = flipD d

boardspace = getSpaceAt p (length s) new_d om

om_new = placeWord s p new_d om

newboard = Board (BWord s p new_d:bwords) om_new

p

| d == V = Location (y + bw_ind) (x - s_ind)

| otherwise = Location (y - s_ind) (x + bw_ind)

5.4 Hand.hs

module Hand (

toHand ,

joinHands ,

playTile ,

addTile

) where

import Types (Hand)

import Data.HashMap.Strict (fromList , unionWith , update , alter)

import Data.List (group , sort)

toHand :: String -> Hand

toHand hand = fromList $ map (\s -> (head s, length s))

$ (group . sort) hand

joinHands :: Hand -> Hand -> Hand

joinHands = unionWith (+)

playTile :: Char -> Hand -> Hand

playTile = update dec

where dec :: Int -> Maybe Int

dec 1 = Nothing

dec n = Just (n-1)

addTile :: Char -> Hand -> Hand

addTile = alter inc

where inc :: Maybe Int -> Maybe Int

inc Nothing = Just 1

inc (Just n) = Just (n+1)

5.5 WordChooser.hs

module WordChooser (

Hand ,

buildWords ,

11

scoreCmp ,

sortWHPairs ,

wordsWithChar ,

scoreWord

) where

import Data.List (sortBy)

import Data.Maybe (fromJust , mapMaybe)

import Data.HashMap.Strict (member)

import qualified Data.Map as Map

import Types (Hand)

import Hand (playTile)

-- Define a map between letters and their inverted usage frequencies

generated by ChatGPT.

letterPoints :: Map.Map Char Int

letterPoints = Map.fromList

[(’a’ ,6833) ,(’b’ ,13508) ,(’c’ ,12218) ,(’d’ ,10747) ,(’e’ ,2298) ,(’f’ ,12772)

,

(’g’ ,12985) ,(’h’ ,8906) ,(’i’ ,8034) ,(’j’ ,14847) ,(’k’ ,14228) ,(’l’ ,10975)

,

(’m’ ,12594) ,(’n’ ,8251) ,(’o’ ,7493) ,(’p’ ,13071) ,(’q’ ,14905) ,(’r’ ,9013),

(’s’ ,8673) ,(’t’ ,5944) ,(’u’ ,12242) ,(’v’ ,14022) ,(’w’ ,12640) ,(’x’ ,14850)

,

(’y’ ,13026) ,(’z’ ,14926)]

buildWord :: String -> Hand -> Maybe Hand

buildWord [] hand = Just hand

buildWord (w:ws) hand

| null hand || not (member w hand) = Nothing

| otherwise = buildWord ws $ playTile w hand

buildWords :: Hand -> [String] -> [(String , Hand)]

buildWords hand = mapMaybe bw_pair

where

bw_pair [_] = Nothing

bw_pair word = case buildWord word hand of

Nothing -> Nothing

Just _hand -> Just (word , _hand)

scoreCmp :: String -> String -> Ordering

-- flip x and y so sort puts highest scorers first

scoreCmp x y = scoreWord y ‘compare ‘ scoreWord x

scoreWord :: String -> Int

scoreWord w = 15000 * length w

+ sum (map scoreChar w)

scoreChar :: Char -> Int

scoreChar ’ ’ = 0

scoreChar c = fromJust $ Map.lookup c letterPoints

sortWHPairs :: [(String , Hand)] -> [(String , Hand)]

sortWHPairs = sortBy (\x y -> scoreCmp (fst x) (fst y))

12

wordsWithChar :: Char -> [String] -> [String]

wordsWithChar c = filter (elem c)

5.6 Bfs.hs

module Bfs (

playFirstTurn ,

bfsSeq ,

bfsPar

) where

import Data.Char (isAlpha)

import Data.Maybe (fromJust , isJust , catMaybes , mapMaybe)

import Data.List (elemIndex , nubBy , sortBy)

import Control.Parallel.Strategies (parMap , rdeepseq)

import BananaBoard

(singleton ,

joinWordAt)

import Hand (

joinHands ,

playTile ,

addTile ,

toHand)

import WordChooser(

buildWords ,

scoreCmp ,

sortWHPairs ,

wordsWithChar)

import Types (

Hand ,

StringLists ,

DictPair ,

Board (..),

BWord (..),

State ,

stateID)

playFirstTurn :: Hand -> StringLists -> [State]

playFirstTurn _ [] = []

playFirstTurn hand (d:ds)

| null bests = playFirstTurn hand ds

| otherwise =

map (\(w, h) -> (h, singleton w)) bests

where

bests = sortWHPairs $ buildWords hand d

playBestWordAt :: DictPair -> State -> (BWord , Int) -> Maybe State

playBestWordAt (_, []) _ _ = Nothing

playBestWordAt (dictset , d:ds) s@(hand , board) (bword@(BWord word _ _), i)

| isJust best = best

13

| otherwise = playBestWordAt (dictset , ds) s (bword , i)

where

c = word !! i

bests = sortWHPairs $ buildWords (addTile c hand) $ wordsWithChar

c d

best = joinBestWord bests

joinBestWord :: [(String , Hand)] -> Maybe State

joinBestWord [] = Nothing

joinBestWord ((w, h): xs)

| isJust res = res

| otherwise = joinBestWord xs

where

w_ind = fromJust (elemIndex c w)

joinRes = joinWordAt dictset w w_ind bword i board

res = do

(newboard , playedOverSpace) <- joinRes

let newhand = playTile c $ joinHands h $
(toHand . filter isAlpha) playedOverSpace

return (newhand , newboard)

getOpenTiles :: Board -> [(BWord , Int)]

getOpenTiles (Board bwords _) =

[(word , i) | word@(BWord s _ _) <- bwords , i <- [0.. length s - 1]]

playTurnSeq :: DictPair -> State -> [State]

playTurnSeq dictpair state@(_, board) =

mapMaybe (playBestWordAt dictpair state) openTiles

where openTiles = getOpenTiles board

playTurnPar :: DictPair -> State -> [State]

playTurnPar dictpair state@(_, board) =

catMaybes $ parMap rdeepseq (playBestWordAt dictpair state)

$ getOpenTiles board

uniqueStates :: [State] -> [State]

uniqueStates = nubBy (\x y -> stateID x == stateID y)

bestStates :: Int -> [State] -> [State]

bestStates stepsize states = take stepsize $
sortBy scoreCmpState states

where scoreCmpState :: State -> State -> Ordering

scoreCmpState x y = scoreCmp (lettersOf x) (lettersOf y)

lettersOf :: State -> String

lettersOf state = filter isAlpha $ stateID state

bfsNextSeq :: DictPair -> [State] -> [State]

bfsNextSeq dictpair states = do

state <- states

playTurnSeq dictpair state

bfsNextPar :: DictPair -> [State] -> [State]

14

bfsNextPar dictpair states = concat $ parMap rdeepseq (playTurnPar

dictpair) states

bfsLoop :: (DictPair -> [State] -> [State]) -> Int -> Int -> DictPair -> [

State] -> Maybe State

bfsLoop _ 0 _ _ _ = Nothing

bfsLoop _ _ _ _ [] = Nothing

bfsLoop bfsNexter lim stepsize dictpair beginStates

| isJust solved = solved

| otherwise = next

where

solved = completeFrom beginStates

completeFrom :: [State] -> Maybe State

completeFrom [] = Nothing

completeFrom (s@(hand , _):ss)

| null hand = Just s

| otherwise = completeFrom ss

next = bfsLoop bfsNexter (lim -1) stepsize dictpair

$ (bestStates stepsize . uniqueStates . bfsNexter dictpair)

beginStates

runBfs :: (DictPair -> [State] -> [State]) -> String -> Int -> Int ->

DictPair -> Maybe State

runBfs f handstring lim stepsize d@(_, dictlist) =

bfsLoop f lim stepsize d $ playFirstTurn (toHand handstring) dictlist

bfsSeq :: String -> Int -> Int -> DictPair -> Maybe State

bfsSeq = runBfs bfsNextSeq

bfsPar :: String -> Int -> Int -> DictPair -> Maybe State

bfsPar = runBfs bfsNextPar

15

	Overview
	Algorithm
	Some Implementation Details
	Important Custom Types
	Choosing Next Word
	Other Details

	Parallel
	A Test Case For Parallelization.
	Parallel BFS-Step Computation
	Parallel Within-Step Computation
	Speed Up Results For Other Test-Cases

	Appendix - Code
	Main.hs
	Types.hs
	BananaBoard.hs
	Hand.hs
	WordChooser.hs
	Bfs.hs

