
Sudoku
Ari An, Xinyao Peng

2022 Fall

Introduction
Sudoku is a game to fill a 9 × 9 grid with digits so that each column, each row, and each of the nine 3
× 3 subgrids(cells) that compose the grid contain all of the digits from 1 to 9. Our project will parallel
the backtracking algorithm and use it to solve the sudoku.

Goal
We will implement the backtracking algorithm using the minimum remaining value (MRV) heuristic
to solve the sudoku problem. The algorithm will pick one of the possible values for an unfilled value
in sudoku and do forward checking when a value is chosen in order to further reduce possible value
domains.

Set-up Functions
In order to solve the sudoku, we firstly need to define several set up functions.
To illustrate the set-up functions, let’s raise a sudoku example.

● The input is a string with 81 characters, where each character represents a square in the 9x9
grid. Note that the string is defined as a character list.

● lineToList function converts the example into a list of integers. Denote the result as “list”.

● showGrid function displays the list in the form of 9x9 grid and is used for testing purpose.

1

● getRowGrid, getColGrid, and getCellGrid convert the original list into a new list of 9 inner
lists where each of them represents a row, a column, or a cell.

Algorithm
1. Backtracking

We search every possible combination in an attempt to solve the sudoku. Also, we utilise a
“possibility grid” to store the potentially legal values for each square tile. The “possibility
grid” is generated by the possibleGrid function. A possibility grid is a list of 81 sets where
each set indicates all possible values for each square. We denote the result as possGrid.

Note that we are not supposed to traverse all possibility tiles, since it is time consuming.
Pruning methods will be applied later to eliminate possibilities.

2. Forward Checking
For each variable in the possibility grid, we apply forward checking to reduce variable
domains. To be more specific, we find the most constrained square and return a list of the
remaining potential values for each square. This procedure is implemented in hardPrune
functions.

Given a square with fixed value, the hardPrune function eliminates this value from all squares
that are located in the same row, column, and cell of the selected square tile. It repeats the
process until there is no way to further eliminate the possibilities in adjacent tiles.

3. Minimum remaining value heuristic

2

We apply this heuristic to choose the variable with the fewest legal remaining values in its
domain. Given a possibility grid, we use the softPrune method to find the square with least
number of possibilities. Then, we choose a possible value from the set and return a tuple of
chosen grid and unchosen grid. Chosen grid is the grid constructed by the selected possible
values, and unchosen grid eliminates the selected value from the current set.

Method
To begin with, we set up two condition checkers: ifSolved and ifValid.

● ifSolved function checks whether or not a sudoku is solved. That is, it returns true if all rows,
columns, and cells contain exactly nine increasing numbers (1,2,3,4,5,6,7,8,9); returns false if
any of the conditions does not meet.

● In contrast, the ifValid function checks whether or not values in a newly-generated grid are
consistent. That is, after the softPrune function is generated to produce a chosen grid, we
apply ifValid to check whether the chosen grid contains repeated values that are out of bound.

Finally, we combine all these functions to create the solveSudoku function. If a solution is found,
return the list of values in such a grid; if the value is not found, report the error. In our case, the result
is shown below.

The next step is to parallel the sudoku algorithms.

Parallel
By using the Static Partitioning, we speed up our model a lot. Before it took about 2s for each sudokus
in the test.txt, and now it only takes 11.8ms for all 1000 sudoku problem.

3

4

Comparison
After parallelling, we compare our final version of the algorithm with the sudoku1.hs shown in class,
which is taken from https://github.com/simonmar/parconc-examples/archive/master.tar.gz. The
performance of our algorithm took an advantage over the sample solution. Below are the running time
statistics for the sample solution with about 6 sudoku puzzles..

Coding
sudoku.hs
{-# OPTIONS_GHC -Wno-unrecognised-pragmas #-}

{-# HLINT ignore "Avoid lambda" #-}

{-# HLINT ignore "Eta reduce" #-}

module Sudoku where

import Data.Char (digitToInt)

import Data.List (transpose, elemIndex)

import Data.Set (Set, fromList, toList, member, size, difference, unions, lookupGT,

deleteAt)

import Data.Maybe (fromJust,isJust)

import Control.Applicative ((<|>))

splitList :: Int -> [a] -> [[a]]

splitList _ [] = []

5

https://github.com/simonmar/parconc-examples/archive/master.tar.gz

splitList n oriList = prev : splitList n next

where

(prev, next) = splitAt n oriList

example :: String

example =

"000000021430000000600000000201500000000006370000000000068000400000230000000070000"

lineToList :: [Char] -> [Int]

lineToList oriLine = map digitToInt oriLine

getCell :: Int -> [a] -> [a]

getCell n oriList = newList !! cellIndex ++ newList !! (cellIndex + 3) ++ newList !!

(cellIndex + 6)

where

cellIndex = div n 3 * 9 + mod n 3

newList = splitList 3 oriList

getRow :: Int -> [a] -> [a]

getRow n cellGrid = newList !! rowIndex ++ newList !! (rowIndex + 3) ++ newList !!

(rowIndex + 6)

where

rowIndex = mod n 3 + (div n 3) * 9

newList = splitList 3 cellGrid

getRowGrid :: [a] -> [[a]]

getRowGrid oriList = splitList 9 oriList

getColGrid :: [a] -> [[a]]

getColGrid oriList = transpose $ getRowGrid oriList

getCellGrid :: [a] -> [[a]]

getCellGrid oriList = [getCell i oriList | i <- [0..8]]

showGrid :: [Int] -> IO ()

showGrid oriList = mapM_ print (getRowGrid oriList)

possibleGrid :: (Ord a, Num a, Enum a) => [a] -> [Set a]

possibleGrid oriList = [if member val def then fromList [val] else def | val <- oriList]

where

def = fromList [1..9]

getFixedByRow :: Ord a => [Set a] -> [Set a]

getFixedByRow possGrid = [unions $ filter (\x -> size x == 1) row | row <- getRowGrid

possGrid]

getFixedByCell :: Ord a => [Set a] -> [Set a]

getFixedByCell possGrid = [unions $ filter (\x -> size x == 1) row | row <- getCellGrid

possGrid]

getFixedByCol :: Ord a => [Set a] -> [Set a]

6

getFixedByCol possGrid = [unions $ filter (\x -> size x == 1) row | row <- getColGrid

possGrid]

hardPruneHelper :: Ord a => [[Set a]] -> [Set a] -> [[Set a]]

hardPruneHelper allSet fixedRowSet = [map (\x -> if size x/=1 then x `difference` f else

x) r | (r,f) <- match]

where

match = zip allSet fixedRowSet

hardPruneEach :: Ord a => [Set a] -> [Set a]

hardPruneEach possGrid = concat [getRow i (concat thiPrune) | i <- [0..8]]

where

fstPrune = hardPruneHelper (getRowGrid possGrid) (getFixedByRow possGrid)

sndPrune = hardPruneHelper (getColGrid (concat fstPrune)) (getFixedByCol possGrid)

thiPrune = hardPruneHelper (getCellGrid (concat $ transpose sndPrune)) (getFixedByCell

possGrid)

hardPrune :: Ord a => [Set a] -> [Set a]

hardPrune possGrid | possGrid == hardPruneEach possGrid = possGrid

| otherwise = hardPruneEach possGrid

softPrune :: Ord a => [Set a] -> ([Set a], [Set a])

softPrune poss | minSize == Nothing = (poss, poss)

| otherwise = (chosenGrid, unchosenGrid)

where

(prev, mid : next) = splitAt index poss

sizeGrid = map size poss

minSize = lookupGT 1 (fromList sizeGrid)

index = fromJust $ elemIndex (fromJust minSize) sizeGrid

chosenGrid = prev ++ [fromList [head $ toList mid]] ++ next

unchosenGrid = prev ++ [deleteAt 0 mid] ++ next

ifSolved :: (Ord a, Num a, Enum a) => [Set a] -> Bool

ifSolved poss = and [unions row == fromList [1..9]| row <- getRowGrid poss]

&& and [unions col == fromList [1..9]| col <- getColGrid poss]

&& and [unions cell == fromList [1..9]| cell <- getCellGrid poss]

&& map (\x -> size x) poss == take 81 [1,1..]

ifValid :: (Ord a, Num a) => [Set a] -> Bool

ifValid poss = and [s /= 0 | s <- map (\x -> size x) poss] && and boolList

where possList = map (\x -> if size x > 1 then -1 else head $ toList x) poss

allList = getColGrid possList ++ getRowGrid possList ++ getCellGrid possList

boolList = [length l == size (fromList l) | list <- allList, let l = filter (/=

(-1)) list]

possToGrid :: [Set b] -> [b]

possToGrid poss = map (\x -> head $ toList x) poss

solveSudoku :: (Num a, Enum a, Ord a) => [Set a] -> Maybe [a]

solveSudoku poss | ifSolved poss = Just (possToGrid poss)

| not $ ifValid poss = Nothing

7

| otherwise = solveSudoku (hardPrune chosen) <|> solveSudoku (hardPrune

unchosen)

where

(chosen, unchosen) = softPrune poss

solve :: [Char] -> Maybe [Int]

solve text = solveSudoku grid

where

replace = map (\c -> if c=='.' then '0'; else c)

editedText = replace text

grid = possibleGrid $ lineToList editedText

Main.hs

import Sudoku

import Control.Parallel.Strategies (rpar, rseq, runEval)

import Control.DeepSeq

import Data.Maybe(isJust)

main :: IO ()

main =do sudos <- lines <$> readFile "test.txt"

let [as,bs,cs] = splitList 3 sudos

solutions = runEval $ do

as' <- rpar (force (map solve as))

bs' <- rpar (force (map solve bs))

cs' <- rpar (force (map solve cs))

_ <- rseq as'

_ <- rseq bs'

_ <- rseq cs'

return (as' ++ bs' ++ cs')

print (length (filter isJust solutions))

References
1. https://hackage.haskell.org/package/containers-0.6.6/docs/Data-Set.html
2. https://hackage.haskell.org/package/base-4.17.0.0/docs/Data-List.html
3. https://haskell-containers.readthedocs.io/en/latest/set.html
4. https://www.simplilearn.com/tutorials/data-structure-tutorial/backtracking-algo

rithm
5. https://ktiml.mff.cuni.cz/~bartak/constraints/propagation.html
6. https://www.7sudoku.com/very-difficult
7. https://github.com/simonmar/parconc-examples

8

https://hackage.haskell.org/package/containers-0.6.6/docs/Data-Set.html
https://hackage.haskell.org/package/base-4.17.0.0/docs/Data-List.html
https://haskell-containers.readthedocs.io/en/latest/set.html
https://www.simplilearn.com/tutorials/data-structure-tutorial/backtracking-algorithm
https://www.simplilearn.com/tutorials/data-structure-tutorial/backtracking-algorithm
https://ktiml.mff.cuni.cz/~bartak/constraints/propagation.html#:~:text=Forward%20checking%20detects%20the%20inconsistency,overall%20amount%20of%20work%20done
https://www.7sudoku.com/very-difficult
https://github.com/simonmar/parconc-examples

