Sudoku
Ari An, Xinyao Peng
2022 Fall

Introduction

Sudoku is a game to fill a 9 x 9 grid with digits so that each column, each row, and each of the nine 3
x 3 subgrids(cells) that compose the grid contain all of the digits from 1 to 9. Our project will parallel
the backtracking algorithm and use it to solve the sudoku.

Goal

We will implement the backtracking algorithm using the minimum remaining value (MRV) heuristic
to solve the sudoku problem. The algorithm will pick one of the possible values for an unfilled value
in sudoku and do forward checking when a value is chosen in order to further reduce possible value
domains.

Set-up Functions
In order to solve the sudoku, we firstly need to define several set up functions.
To illustrate the set-up functions, let’s raise a sudoku example.
e The input is a string with 81 characters, where each character represents a square in the 9x9
grid. Note that the string is defined as a character list.

example :: String

example = "000000021430000000600000000201500000000006370000000000068000400000230000000070000"

e lineToList function converts the example into a list of integers. Denote the result as “list”.

ghci> list = lineToList example
ghci> list
[0,0,0,0,0,0,0,2,1,4,
,0,0,@,0,0,0,0,0,@,6,

ghci> showGrid list
[0,0,0,0,0,0,0,2,1]
,0]

SN e

- 0w W W O wW W o w oW

cooce~Nee®

,0]
,0]
101
,0]
101
10]
01

00000
S0 ,L,rOoOWOEOE®

~NWwWeoeee e

e getRowGrid, getColGrid, and getCellGrid convert the original list into a new list of 9 inner

lists where each of them represents a row, a column, or a cell.

ghci> getRowGrid list
[[e,0,0,0,0,0,0,2,1],([4,3,0,0
6,3,7,0],[0,0,0,0,0,0,0,0,0],
ghci> getColGrid list
[[0,4,6,2,0,0,0,0,0],[0,3,0,0
010l3!7] [] [elalalelal@lele @]]
ghci> getCellGrid list
[[0,0,0,4,3,0,6,0,0],[0,0,
6,0,0, 0] [@ 9,0,3,7,0,0,0,

,0,0
[0,

Algorithm
1. Backtracking
We search every possible combination in an attempt to solve the sudoku. Also, we utilise a
“possibility grid” to store the potentially legal values for each square tile. The “possibility
grid” is generated by the possibleGrid function. A possibility grid is a list of 81 sets where

each set indicates all possible values for each square. We denote the result as possGrid.

ghci> possGrid = possibleGrid list

ghci> possGrid

[fromList [1,2,3,4,5,6,7,8,9]1,fromList [1,2,
,fromList [1,2,3,4,5,6,7,8,91,fromList [1,2,3,
omList [4],fromList [3],fromList [1,2,3,4,5,6,
ist [1,2,3,4,5,6,7,8,9], fromList [1,2,3,4,5,6,

7,8,91,fromList [1,2,3,4,5,6,
7,8,91,fromList [1,2,3,4,5,
r
r

4,5 8,91, fromList [1,2,3,4,5,6,7,8,9]

4,5
fromList [1,2,3,4,5,6,7,8

7,8

[’

7,
’
, ,7,8,91,fromList [2],fromList [1],fr
] i],frolest 1,2,3,4,5,6,7,8,91, fromL
1,fromList [1,2,3,4,5,6,7,8,91,fromList [1,2,3,4,5,6,7,8,9],froml|
ist [e],fromList [1,2,3,4,5,6,7,8,9],fromList 3,4,5,6,7,8, 9] frolest 2,3,4,5,6,7,8, 9] frolest [1 2 3,4,5,6
,7,8,91,fromList [1,2,3,4,5,6,7,8,9],fromList [1,2,3,4,5,6,7,8,9],fromList [1, 2,3,4,5,6,7,8,9],fromList [1,2,3,4,5,6
,7,8,91, fromList [2],fromList [1,2,3,4,5,6,7,8,9],fromList [1],fromList [5],fromList [1,2,3,4,5,6,7,8,9],fromList [1
,2,3,4,5,6,7,8,91, fromList [1,2,3,4,5,6,7,8,9], fromList [1,2,3,4,5,6,7,8,9],fromList [1,2,3,4,5,6,7,8,9],fromList [1
,2,3,4,5,6,7,8,91, fromList [1,2,3,4,5,6,7,8,9], fromList [1,2,3,4,5,6,7,8,9],fromList [1,2,3,4,5,6,7,8,9],fromList [1
,2,3,4,5,6,7 fromList [6],fromList [3],fromList [7],fromList [1,2,3,4,5,6,7,8,9],fromList [1,2,3,4,5,6,7,8,
romList [1,2 ,7,8,91,fromList [1,2,3,4,5,6,7,8,9], fromList [1,2,3,4,5,6,7,8,9],fromList [1,2,3,4,5,
1,2 3,4,5,6 1,2,3,4,5
1y

3,4,5,6 6
3,4,5,6 6
7,8,9 9
7,8,9 9
[ll ’
[

’ 1
’ »
romList [1,2,3, ,8,91, fromList [1,2,3,4,5,6,7,8,9],fromList [1,2,3,4,5,6,7,8,9],fromList [1,2,3,4,5,6,7,8,

romList [1,2,3, 9], fromList [6],fromList [81,fromList [1,2,3,4,5,6,7,8,91,fromList [1,2,3,4,5,6,7,8,9]1,from
List [1,2,3,4,5 fromList [4],fromList [1,2,3,4,5,6,7,8,9],fromList [1,2,3,4,5,6,7,8,9],fromList [1,2,3,4,5,
6,7,8,9],fromLi: 4,5,6,7,8,91,fromList [1,2,3,4,5,6,7,8,9],fromList [2],fromList [3],fromList [1,2,3,4,5,6,7
,6,7,8,91, fromList [1,2,3,4,5,6,7,8,9],fromList [1,2,3,4,5,6,7,8,9],fronList [1,2,3,4,5,6,7
,6,7,8,91, fromList [1,2,3,4,5,6,7,8,9], fromList [1,2,3,4,5,6,7,8,9],fromList [7],fromList [
st [1,2,3,4,5,6,7,8,9],fromList [1,2,3,4,5,6,7,8,9],fromList [1,2,3,4,5,6,7,8,9]1]

8
8,91,
3 4,5
E
3,4,5
15,6,

st
,8,91, fromList [1,
,8,91, fromList [1,
1,2,3,4,5,6,7,8,9],

r
’
7
[
2
2

6
6,7
6,7,8,
,8,91,
y2pEly
REAS)
»3,4,5
fromLi.

Note that we are not supposed to traverse all possibility tiles, since it is time consuming.
Pruning methods will be applied later to eliminate possibilities.

2. Forward Checking
For each variable in the possibility grid, we apply forward checking to reduce variable
domains. To be more specific, we find the most constrained square and return a list of the
remaining potential values for each square. This procedure is implemented in hardPrune
functions.

ghci> hardPrune possGrid

[fromList [5,7,8,9],fromList [5,7,8,9],fromList [5,7,91,fromList [3,4,6,7,8,91,fromList [4,5,6,8,9],fromList [3,4,5
7,8,91,fromList [5,6,7,8,9],fromList [2],fromList [1],fromList [4],fromList [3],fromList [2,5,7,9],fromList [1,6,
,91,fromList [1,2,5,6,8,9],fromList [1,2,5,7,8,9],fromList [5,6,7,8,9],fromList [5,6,8,9],fromList [5,6,7,8,9], fromL
ist [6],fromList [1,2,5,7,8,9], fromList [2,5,7,9], fromList [1,3,4,7,8,9],fromList [1,2,4,5,8,9],fromList [1,2,3,4,5,
7,8,91,fromList [5,7,8,9],fromList [3,4,5,8,9],fromList [3,4,5,7,8,9],fromList [2],fromList [4,7,8,9],fromList [1],f
romList [5],fromList [4,8,9],fromList [3,4,7,8,9],fromList [6,8,9],fromList [4,6,8,9],fromList [4,6,8,9],fromList [5
,8,91, fromList [4,5,8,9],fromList [4,5,9],fromList [1,4,8,9],fromList [1,2,4,8,9],fromList [6],fromList [3],fromList

[71, fromList [2,4,5,8,9],fromList [3,5,7,8,9]1,fromList [4,5,7,8,9],fromList [3,4,5,6,7,9],fromList [1,3,4,7,8,9],fr
omList [1,2,4,8,9],fromList [1,2,3,4,7,8,9],fromList [1,2,5,6,8,9],fromList [1,4,5,6,8,9],fromList [2,4,5,6,8,9],fro
mList [1,3,5,7,9],fromList [6],fromList [8],fromList [1,] frolest [1,5,91, frolest [1 5,91, fromList [4], fromList [
1,3,5,9], fromList [2,3,5,7,9],fromList [1,5,7,9],fromList [1,4 5,7,91,fromList [4,5,7,9],fromList [2],fromList [3],f
romList [1,4,5,8,9],fromList [1,5,6,7,8,9],fromList [1,5,6,8,9], frolest [5,6,7,8,91, fromList [1,3,5,9],fromList [1,
2,4,5,9], fromList [2,3,4,5,9],fromList [1,4,6,8,9],fromList [7],fromList [1,4,5,8,9],fromList [1,2,5,6,8,9], fromList

[1,3,5,6,8,9],fromList [2,3,5,6,8,91]

Given a square with fixed value, the hardPrune function eliminates this value from all squares
that are located in the same row, column, and cell of the selected square tile. It repeats the
process until there is no way to further eliminate the possibilities in adjacent tiles.

3. Minimum remaining value heuristic

We apply this heuristic to choose the variable with the fewest legal remaining values in its
domain. Given a possibility grid, we use the softPrune method to find the square with least
number of possibilities. Then, we choose a possible value from the set and return a tuple of
chosen grid and unchosen grid. Chosen grid is the grid constructed by the selected possible
values, and unchosen grid eliminates the selected value from the current set.

Method

To begin with, we set up two condition checkers: ifSolved and ifValid.

e ifSolved function checks whether or not a sudoku is solved. That is, it returns true if all rows,
columns, and cells contain exactly nine increasing numbers (1,2,3,4,5,6,7,8,9); returns false if
any of the conditions does not meet.

e In contrast, the ifValid function checks whether or not values in a newly-generated grid are
consistent. That is, after the softPrune function is generated to produce a chosen grid, we
apply ifValid to check whether the chosen grid contains repeated values that are out of bound.

Finally, we combine all these functions to create the solveSudoku function. If a solution is found,
return the list of values in such a grid; if the value is not found, report the error. In our case, the result

is shown below.

ghci> solveSudoku possGrid

Just I[8,5,7,3,4,9,6,2,1,4,3,2,8,6,1,5,9,7,6,1,9,7,5,2,8,4,3,2,7,1,5,8,3,9,6,4,9,4,5,1,2,6,3,7,8,3,8,6,4
080702 N B 7 0B B9y M By Bl 72y Ny 2, 53, TV B G Bn 2 8y B Ty 1y B £

ghci> showGrid $ fromJust result

(8,5,7,3,4,9,6,2,1]

D i
-~ 0w w ow o ow o ow o

6
5
8
2
9
1
3
7

BP~NANWWOWOWU

CUWER~NO PO

POUdOWNE
CONWUOO AW

-

The next step is to parallel the sudoku algorithms.

Parallel

By using the Static Partitioning, we speed up our model a lot. Before it took about 2s for each sudokus
in the test.txt, and now it only takes 11.8ms for all 1000 sudoku problem.

335,976 bytes allocated in the heap
26,712 bytes copied during GC
115,936 bytes maximum residency (1 sample(s))
39,712 bytes maximum slop
3 MiB total memory in use (@ MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen @ @ colls, @ par 0.000s 0.000s 0.0000s 0.0000s
Gen 1 1 colls, @ par 0.000s 0.000s 0.0003s 0.0003s
TASKS: 6 (1 bound, 5 peak workers (5 total), using -N2)

SPARKS: 3 (2 converted, @ overflowed, © dud, © GC'd, 1 fizzled)

INIT time 9.001s (©.011s elapsed)
MUT time 0.000s (©.001s elapsed)
GC time 0.000s (©.000s elapsed)
EXIT time 9.000s (©.002s elapsed)
Total time 9.002s (©.015s elapsed)

Alloc rate 735,177,242 bytes per MUT second

Productivity 21.7% of total user, 8.2% of total elapsed

6.55ms 6.6ms 6.65ms 6.7ms 6.75ms 6.8ms 6.85ms 6.9ms 6.95ms 7ms 7.05ms 7.1ms 7.15ms
||
Activity
HEC O
HEC 1
«
Tlme|Heap|GC|Sparks1ats Spark sizes | Process info | Raw events
Total time: 10.727ms
Mutator time: 10.431ms
GC time: 296.000us
Productivity: 97.2% of mutator vs total

Activity

|

K1l 1]

Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events |

Total time: 11.851ms

Mutator time: 11.851ms

GC time: 0.000ns

Productivity: 100.0% of mutator vs total

Comparison

After parallelling, we compare our final version of the algorithm with the sudokul.hs shown in class,
which is taken from https://github.com/simonmar/parconc-examples/archive/master.tar.gz. The
performance of our algorithm took an advantage over the sample solution. Below are the running time

statistics for the sample solution with about 6 sudoku puzzles..
123,503,549,360 bytes allocated in the heap
1,901,670,360 bytes copied during GC
192,472 bhytes maximum residency (247 sample(s))
45,824 bytes maximum slop
4 MiB total memory in use (@ MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen © 118792 colls, 118792 par 8.063s 4.391s 0.0000s 0.0107s
Gen 1 247 colls, 246 par 0.068s 0.036s 9.0001s ©.0006s
Parallel GC work balance: 1.95% (serial 0%, perfect 100%)
TASKS: 6 (1 bound, 5 peak workers (5 total), using -N2)

SPARKS: © (@ converted, © overflowed, © dud, @ GC'd, @ fizzled)

INIT time 0.001s (©.008s elapsed)
MUT time 27.584s (27.719s elapsed)
GC time 8.130s (4.426s elapsed)
EXIT time 9.000s (©.005s elapsed)
Total time 35.716s (32.158s elapsed)

Alloc rate 4,477,306,503 bytes per MUT second

Productivity 77.2% of total user, 86.2% of total elapsed

Coding
sudoku.hs

(digitTolInt)

(transpose, elemIndex)

, fromList, tolList, member, size, difference, unions, lookupGT,

https://github.com/simonmar/parconc-examples/archive/master.tar.gz

splitList n oriList = prev : splitList n next

next) = splitAt n orilist

ANNAA nnow

000000000680 0230000000070000

70000000000068
lineToList :: [

lineToList orilLine

getCell
getCell n orilist newList !! cellIndex ++ newList !! (cellIndex + 3) ++ newList !!

(cellIndex + 6)

cellIndex = divn 3 * 9 + mod n 3

newlList = splitList 3 orilList

getRow
getRow n cellGrid = newlList !! rowIndex ++ newList !! (rowIndex + 3) ++ newlList

(rowIndex + 6)

rowIndex = mod n 3 + (div n 3) * 9

newList = splitList 3 cellGrid

getRowGrid :: [a]l -> [[a]]
getRowGrid orilist splitList 9 orilist

getColGrid :: [a] - [[a]l]
getColGrid orilList transpose $ getRowGrid orilList

getCellGrid :: [a] -> [[al]
getCellGrid orilList = [getCell i orilist |

showGrid :: [] == ()

showGrid oriList = mapM print (getRowGrid oriList)

possibleGrid :: (a, [al

possibleGrid orilist if member val def then fromList [val] else def | val <- orilList]
def = fromList [1..9]

getFixedByRow :: a => [al > [al

getFixedByRow possGrid = [unions $ filter (\x -> size x == 1) row | row <- getRowGrid

possGrid]

getFixedByCell :: a => [al [al

getFixedByCell possGrid = [unions $ filter (\x -> size x == 1) row | row <- getCellGrid

possGrid]

getFixedByCol

getFixedByCol possGrid = [unions $ filter (\x -> size x == 1) row | row <- getColGrid

possGrid]

hardPruneHelper :: a
hardPruneHelper allSet fixedRowSet = [map (\x -> if size x/=1 then x ‘difference’ f

<) | (r,f) <- match]

match = zip allSet fixedRowSet

hardPruneEach :: a => [al] > [al
i <= [0..8]]

hardPruneEach possGrid = concat [getRow i (concat thiPrune)

fstPrune hardPruneHelper (getRowGrid possGrid) (getFixedByRow possGrid)
sndPrune hardPruneHelper (getColGrid (concat fstPrune)) (getFixedByCol possGrid)
thiPrune hardPruneHelper (getCellGrid (concat $ transpose sndPrune)) (getFixedByCell

[possGrid)

a => [al al
possGrid | possGrid hardPruneEach possGrid = possGrid

| otherwise = hardPruneEach possGrid

softPrune :: -> ([al, [al)
softPrune poss | minSize == Nothing = (poss, poss)

| otherwise = (chosenGrid, unchosenGrid)

(prev, mid : next) = splitAt index poss

sizeGrid = map size poss

minSize = lookupGT 1 (fromList sizeGrid)

index = fromJust $ elemIndex (fromJust minSize) sizeGrid
chosenGrid = prev ++ [fromList [head $ tolList mid]] ++ next

unchosenGrid = prev ++ [deleteAt 0 mid] ++ next

ifSolved :: (a, a, [al] -—>

ifSolved poss = and [unions row == fromList [1..9]| row <- getRowGrid poss]
&& and [unions col == fromList [1..9]| col <- getColGrid poss]
&& and [unions cell == fromList [1..9]] cell <- getCellGrid poss]

&& map (\x -> size x) poss == take 81 [1,1..]

(a, a) => [a] ->
ifvalid poss = and [s /= 0 | s <- map (\x -> size x) poss] && and boolList
possList = map (\x -> if size x > 1 then -1 else head $ tolList x) poss
alllList = getColGrid possList ++ getRowGrid possList ++ getCellGrid possList

boolList = [length 1 == size (fromList 1) | list <- alllist, 1 = filter (/=

(-1)) 1list]

possToGrid :: [b] -> [b]

possToGrid poss = map (\x -> head $ tolist x) poss

solveSudoku :: (a, a, a) => [al] ->
solveSudoku poss | ifSolved poss = Just (possToGrid poss)

| not $ ifvalid poss = Nothing

solveSudoku (hardPrune chosen) <|> solwv dok (hardPrune

unchosen)

(chosen, unchose

solve :: []

solve text = solveSudoku grid

s (rpar, rseq, runEval)

print

References

1. https://hackage.haskell.org/package/containers-0.6.6/docs/Data-Set.html
https://hackage.haskell.org/package/base-4.17.0.0/docs/Data-List.html
https://haskell-containers.readthedocs.io/en/latest/set.html

nalib e

https://www.simplilearn.com/tutorials/data-structure-tutorial/backtracking-algo
rithm

N

https://ktiml.mff.cuni.cz/~bartak/constraints/propagation.html

)

https://www.7sudoku.com/very-difficult
7. https://github.com/simonmar/parconc-examples

https://hackage.haskell.org/package/containers-0.6.6/docs/Data-Set.html
https://hackage.haskell.org/package/base-4.17.0.0/docs/Data-List.html
https://haskell-containers.readthedocs.io/en/latest/set.html
https://www.simplilearn.com/tutorials/data-structure-tutorial/backtracking-algorithm
https://www.simplilearn.com/tutorials/data-structure-tutorial/backtracking-algorithm
https://ktiml.mff.cuni.cz/~bartak/constraints/propagation.html#:~:text=Forward%20checking%20detects%20the%20inconsistency,overall%20amount%20of%20work%20done
https://www.7sudoku.com/very-difficult
https://github.com/simonmar/parconc-examples

