
Parallel Functional Programing
Parallel Apriori Algorithm

Yihan Yin (yy3114)

1.Introduction
This report mainly focuses on the Haskell implementation of Apriori Algorithm and some
attempts to parallelize the sequential implementation, which managed to help improve
the efficiency of the program. Some comparisons of the speedup between different cores
are benchmarked for a better illustration.

2.Apriori Algorithm
Apriori Algorithm is designed for frequent itemset mining and association rules learning
over relational databases that contain transactions. This report mainly focuses on
frequent itemsets mining. Itemset, as the name indicates, is a set of items. Transaction,
can be seen as one itemset while itemset is not necessarily a transaction. Given a
threshold, Apriori Algorithm is to identify frequent itemsets that are subsets of the
transactions above the threshold. And the basic idea is as below:

1. Scan the transactions to get first itemsets whose support is larger than the threshold.



2. Based on the theory that if k-level itemset is a frequent itemset, all subsets of k-level
itemset should also be a frequent itemset, we use “self join” to generate (k+1)-level
itemset from k-level frequent itemset and then use “prune” to discard those non-frequent
itemsets. Then we get (k+1)-level candidate itemsets.

3. From the (k+1)-level candidate itemsets, we check their support and only leave those
larger than the support threshold. Then we get (k+1)-level frequent itemsets.

4. We then go back to 2, calculate the (k+2)-level candidate itemsets from (k+1)-level
frequent itemsets. Then get (k+2)-level frequent itemsets from (k+2)-level candidate
itemsets until our (k+n)-level frequent itemsets turn out empty.

As a result, the implementation should be clear. The 3 important functions are
firstFreqItemsets, nextCandItemsets and nextFreqItemsets where firstFreqItemsets
is step 1, nextCandItemsets is about step 2 and nextFreqItemsets represents step 3.
Then the whole process makes up the Apriori Algorithm, which is exactly step 4.
The figure below shows the eventlog of the sequential Apriori Algorithm Haskell
implementation, with 10,000 transactions and 0.5% as the minimal support threshold.

3.Parallel Implementation
As discussed in Section 2, the implementation has 3 important functions. With closer
look, it can be found that every itemset in its k-level itemsets, collection of itemset, is
independent of each other. To be specific, calculating the support of each 1-level itemset
in firstFreqItemsets won’t be affected by other 1-level itemset; generating the next level
candidate itemset is also independent as the every k-level frequent itemset can possibly
generate a (k+1)-level candidate itemset; Same reasons apply to generating (k+1)-level
frequent itemsets.



parList
Turning to Control.Parallel.Strategies, since each element in the collection is
independent, we can calculate each element in the collection in parallel. As a result, my
first attempt was to apply parList to each 3 functions. And the eventlog is as below, still
tested on 10,000 transactions with 0.5% minimal support threshold:

It can be found that it is not even optimized as the overhead is slowing things down,
chunks of 1 lead to a fairly great amount of time for a spark to spawn, and thus give too
much overhead. In the end, the time consumed is pretty much the same as the
sequential one.

parListChunk
Reflecting on the overhead resulting from small size chunks, I made my second attempt
to apply parListChunk so that the strategy is creating a spark for each chunk of a
certain size in the collection, other than every element of them. And the eventlog is



shown below, with 500 as the chunk size:

And the speed turns out almost doubled compared to the sequential implementation. To
further analyze the performance, I also tested the same program with different numbers
of cores. The following two charts show the runtime comparison and the speedup
respectively:

Before 4 cores, the performance improvement is quite great while when it’s running on
more than 4 cores, the improvement is not that impressive.



parMap
This attempt introduces Control.Monad.Par. parMap function applies the given function
to each element of a data structure in parallel. That is, fully evaluating the results, and
returning a new data structure containing the results. It seems pretty similar with parList
in Control.Parallel.Strategies, as they both handle every element of a collection.
However, the efficiency turns out to be much different on the same 10,000 transactions
and 0.5% minimal support threshold:

It might be because Par Monad avoids the laziness issues and helps productive parallel
programming. And the following eventlog shows implementation applying parMap
running on 8 cores, with 50,000 transactions and 0.5% minimal support threshold, and
average runtime is around 90 seconds:



And it performs pretty well when it comes to a larger dataset while parListChunk of 500
chunk size performs better than this one, with average runtime around 75 seconds:

4.Conclusion
This report includes both sequential and parallel versions of the Apriori Algorithm in
Haskell and analyzes different attempts about the parallelism, and the performance
comparison on different numbers of cores. parListChunk with different strategies does
give impressive performance improvement but the chunk size has to be experimented to
figure out. With parMap in Control.Monad.Par, one doesn’t need to try out the chunk size
but has to take the risk of fully evaluating results, for example, parMap over records from
a huge file.

References
https://dwgeek.com/mining-frequent-itemsets-apriori-algorithm.html/
https://gist.github.com/cs/2909095
http://www.cs.columbia.edu/~sedwards/classes/2021/4995-fall/reports/Apriori.pdf
https://stackoverflow.com/questions/23326920/difference-between-par-monad-and-eval-monad-
with-deepseq

https://dwgeek.com/mining-frequent-itemsets-apriori-algorithm.html/
https://gist.github.com/cs/2909095
http://www.cs.columbia.edu/~sedwards/classes/2021/4995-fall/reports/Apriori.pdf
https://stackoverflow.com/questions/23326920/difference-between-par-monad-and-eval-monad-with-deepseq
https://stackoverflow.com/questions/23326920/difference-between-par-monad-and-eval-monad-with-deepseq


Code

Main.hs

module Main (main) where

import Apriori (Itemset(..), Support, nextFreqItemsets, firstFreqItemsets,

parNextFreqItemsets, parFirstFreqItemsets, monadParNextFreqItemsets,

monadParFirstFreqItemsets)

import System.Exit (die)

import System.Environment (getArgs)

import qualified Data.List as List

import qualified Data.Set as Set

wordsWhen :: (Char -> Bool) -> String -> [String]

wordsWhen p s =

case dropWhile p s of

"" -> []

s' -> w : wordsWhen p s''

where (w, s'') = break p s'

getTransactions :: String -> [Itemset]

getTransactions content =

map getItemset (lines content)

where

getItemset line = Itemset $ Set.fromList (wordsWhen (==',') line)

main :: IO()

main = do

args <- getArgs

case args of

[file, supp] -> do

let minSupp = read supp :: Support

content <- readFile file

let transactions = getTransactions content

let freqItemsets = concat $ List.unfoldr (nextFreqItemsets minSupp

transactions) (firstFreqItemsets minSupp transactions)

print $ freqItemsets

[file, supp, "parallel", n] -> do

let minSupp = read supp :: Support



let chunk = read n :: Int

content <- readFile file

let transactions = getTransactions content

let freqItemsets = concat $ List.unfoldr (parNextFreqItemsets chunk

minSupp transactions) (parFirstFreqItemsets chunk minSupp transactions)

print $ freqItemsets

[file, supp, "monad-par"] -> do

let minSupp = read supp :: Support

content <- readFile file

let transactions = getTransactions content

let freqItemsets = concat $ List.unfoldr (monadParNextFreqItemsets

minSupp transactions) (monadParFirstFreqItemsets minSupp transactions)

print $ freqItemsets

_ -> do

die "IllegalArgumentException: should be {filename, minSupport,

['parallel', listChunkSize] | ['monad-par']}"

Apriori.hs
module Apriori where

import qualified Data.Set as Set

import Control.Monad.Par (parMap, runPar)

import Control.DeepSeq

import Control.Parallel.Strategies (using, parListChunk, rdeepseq)

-- definitions

type Support = Double

data Itemset = Itemset (Set.Set String) deriving (Eq, Ord)

instance Show Itemset where

show (Itemset i) = show $ Set.toList i

instance NFData Itemset where

rnf (Itemset i) = rnf i

-- calculate support

supportCount :: [Itemset] -> Itemset -> Int

supportCount transactions (Itemset i) =

length $ filter (Set.isSubsetOf i) $ map (\(Itemset x) -> x) transactions

support :: [Itemset] -> Itemset -> Support

support transactions is =

fromIntegral (supportCount transactions is) / fromIntegral (length transactions)



-- util

deduplicate :: Ord a => [a] -> [a]

deduplicate l = Set.toList $ Set.fromList l

allSubsets :: Set.Set a -> [Set.Set a]

allSubsets s = Set.toList $ Set.powerSet s

allMaximalProperSubsets :: Set.Set a -> [Set.Set a]

allMaximalProperSubsets s = filter (\x -> (Set.size x) == (Set.size s) - 1) $

allSubsets s

-- apriori

firstCandItemsets :: [Itemset] -> [Itemset]

firstCandItemsets transactions =

deduplicate $ concatMap (\(Itemset is) -> map (Itemset . Set.singleton) $

Set.toList is) transactions

firstFreqItemsets :: Support -> [Itemset] -> [Itemset]

firstFreqItemsets minSupp transactions =

filter (\candIs -> support transactions candIs > minSupp) (firstCandItemsets

transactions)

nextCandItemsets :: [Itemset] -> [Itemset]

nextCandItemsets itemsets =

-- two k-1 sets should differ in exactly 1 element before joining

let validate a b = (Set.size $ a `Set.difference` b) == 1 in

-- self join

let nextIss = [Itemset (a `Set.union` b) | (Itemset a) <- itemsets, (Itemset b) <-

itemsets, validate a b] in

-- prune

let subsetsFrequent (Itemset is) = all (\s -> (Itemset s) `elem` itemsets)

(allMaximalProperSubsets is) in

deduplicate $ filter subsetsFrequent nextIss

nextFreqItemsets :: Support -> [Itemset] -> [Itemset] -> Maybe ([Itemset],

[Itemset])

nextFreqItemsets _ _ [] = Nothing

nextFreqItemsets minSupp transactions curr =

Just (curr, next)

where

next = filter (\candIs -> support transactions candIs > minSupp)

(nextCandItemsets curr)

-- parallel pkg

parFirstFreqItemsets :: Int -> Support -> [Itemset] -> [Itemset]

parFirstFreqItemsets n minSupp transactions =



let fullFirstIss = map (\candIs -> (candIs, support transactions candIs >

minSupp)) (firstCandItemsets transactions) `using` parListChunk n rdeepseq in

concat $ [[candIs] | (candIs, isGood) <- fullFirstIss, isGood]

parNextCandItemsets :: Int -> [Itemset] -> [Itemset]

parNextCandItemsets n itemsets =

-- two k-1 sets should differ in exactly 1 element before joining

let validate a b = (Set.size $ a `Set.difference` b) == 1 in

-- self join

let nextIss = [Itemset (a `Set.union` b) | (Itemset a) <- itemsets, (Itemset b) <-

itemsets, validate a b] in

-- prune

let subsetsFrequent (Itemset is) = all (\s -> (Itemset s) `elem` itemsets)

(allMaximalProperSubsets is) in

-- get full next itemsets [(is, good)] in parallel

let fullNextIss = map (\nextIs -> (nextIs, subsetsFrequent nextIs)) nextIss

`using` parListChunk n rdeepseq in

deduplicate $ concat $ [[nextIs] | (nextIs, isGood) <- fullNextIss, isGood]

parNextFreqItemsets :: Int -> Support -> [Itemset] -> [Itemset] -> Maybe

([Itemset], [Itemset])

parNextFreqItemsets _ _ _ [] = Nothing

parNextFreqItemsets n minSupp transactions curr =

let fullNextCandIss = map (\candIs -> (candIs, support transactions candIs >

minSupp)) (parNextCandItemsets n curr) `using` parListChunk n rdeepseq in

let next = concat $ [[candIs] | (candIs, isGood) <- fullNextCandIss, isGood] in

Just (curr, next)

-- monad-parallel

monadParFirstFreqItemsets :: Support -> [Itemset] -> [Itemset]

monadParFirstFreqItemsets minSupp transactions =

let fullFirstIss = runPar $ parMap (\candIs -> (candIs, support transactions

candIs > minSupp)) (firstCandItemsets transactions) in

concat $ [[candIs] | (candIs, isGood) <- fullFirstIss, isGood]

monadParNextCandItemsets :: [Itemset] -> [Itemset]

monadParNextCandItemsets itemsets =

-- two k-1 sets should differ in exactly 1 element before joining

let validate a b = (Set.size $ a `Set.difference` b) == 1 in

-- self join

let nextIss = [Itemset (a `Set.union` b) | (Itemset a) <- itemsets, (Itemset b) <-

itemsets, validate a b] in

-- prune

let subsetsFrequent (Itemset is) = all (\s -> (Itemset s) `elem` itemsets)

(allMaximalProperSubsets is) in

-- get full next itemsets [(is, good)] in parallel

let fullNextIss = runPar $ parMap (\nextIs -> (nextIs, subsetsFrequent nextIs))



nextIss in

deduplicate $ concat $ [[nextIs] | (nextIs, isGood) <- fullNextIss, isGood]

monadParNextFreqItemsets :: Support -> [Itemset] -> [Itemset] -> Maybe ([Itemset],

[Itemset])

monadParNextFreqItemsets _ _ [] = Nothing

monadParNextFreqItemsets minSupp transactions curr =

let fullNextCandIss = runPar $ parMap (\candIs -> (candIs, support transactions

candIs > minSupp)) (monadParNextCandItemsets curr) in

let next = concat $ [[candIs] | (candIs, isGood) <- fullNextCandIss, isGood] in

Just (curr, next)


