Parallel Functional Programing
Parallel Apriori Algorithm

Yihan Yin (yy3114)

1.Introduction

This report mainly focuses on the Haskell implementation of Apriori Algorithm and some
attempts to parallelize the sequential implementation, which managed to help improve
the efficiency of the program. Some comparisons of the speedup between different cores
are benchmarked for a better illustration.

2.Apriori Algorithm

Apriori Algorithm is designed for frequent itemset mining and association rules learning
over relational databases that contain transactions. This report mainly focuses on
frequent itemsets mining. Itemset, as the name indicates, is a set of items. Transaction,
can be seen as one itemset while itemset is not necessarily a transaction. Given a
threshold, Apriori Algorithm is to identify frequent itemsets that are subsets of the
transactions above the threshold. And the basic idea is as below:

Get frequent

( ) Generate ,
candidate k-itemsets by
Transactions | » k-itemsets by | » _ Scanning
W Transactions
join" and :
" " and checking
+ J prune _
\ T ) support
No
r ' y
¢ Set of Gather a set
-« requent of the
End ' Yo k-1-itemsets ™ frequent
empty? itemsets

1. Scan the transactions to get first itemsets whose support is larger than the threshold.



2. Based on the theory that if k-level itemset is a frequent itemset, all subsets of k-level
itemset should also be a frequent itemset, we use “self join” to generate (k+1)-level
itemset from k-level frequent itemset and then use “prune” to discard those non-frequent
itemsets. Then we get (k+1)-level candidate itemsets.

3. From the (k+1)-level candidate itemsets, we check their support and only leave those
larger than the support threshold. Then we get (k+1)-level frequent itemsets.

4. We then go back to 2, calculate the (k+2)-level candidate itemsets from (k+1)-level
frequent itemsets. Then get (k+2)-level frequent itemsets from (k+2)-level candidate
itemsets until our (k+n)-level frequent itemsets turn out empty.

As a result, the implementation should be clear. The 3 important functions are
firstFregltemsets, nextCandltemsets and nextFreqltemsets where firstFreqltemsets
is step 1, nextCandltemsets is about step 2 and nextFreqltemsets represents step 3.
Then the whole process makes up the Apriori Algorithm, which is exactly step 4.

The figure below shows the eventlog of the sequential Apriori Algorithm Haskell
implementation, with 10,000 transactions and 0.5% as the minimal support threshold.

Timeline

0s 10s 20s 30s 40s 50s 60s T0s 80s =

Acsuity

[l 2]

Time \ Heap | GC | Spark stats | Spark sizes | Pracess info | Raw events

Totaltime:  99.424s

Mutator time: 98.567s

GC time: 856.928ms

Productivity: 99.1% of mutator vs total

3.Parallel Implementation

As discussed in Section 2, the implementation has 3 important functions. With closer
look, it can be found that every itemset in its k-level itemsets, collection of itemset, is
independent of each other. To be specific, calculating the support of each 1-level itemset
in firstFreqltemsets won't be affected by other 1-level itemset; generating the next level
candidate itemset is also independent as the every k-level frequent itemset can possibly
generate a (k+1)-level candidate itemset; Same reasons apply to generating (k+1)-level
frequent itemsets.



parList

Turning to Control.Parallel.Strategies, since each element in the collection is
independent, we can calculate each element in the collection in parallel. As a result, my
first attempt was to apply parList to each 3 functions. And the eventlog is as below, still
tested on 10,000 transactions with 0.5% minimal support threshold:

Timeline

0s 10s 205 305 40s 50s 60s 70s B80s =

Ackivity

KT

Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events

Total time:  98.475s

Mutator ime: 96.912s

GC time: 1.564s

Productivity: 98.4% of mutator vs total

It can be found that it is not even optimized as the overhead is slowing things down,
chunks of 1 lead to a fairly great amount of time for a spark to spawn, and thus give too
much overhead. In the end, the time consumed is pretty much the same as the
sequential one.

parListChunk

Reflecting on the overhead resulting from small size chunks, | made my second attempt
to apply parListChunk so that the strategy is creating a spark for each chunk of a
certain size in the collection, other than every element of them. And the eventlog is



shown below, with 500 as the chunk size:

Timeline

]

0s 5s 108 158 205 255 30s 355 405 455

KN

[ ]
Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events

Total time:  48.368s

Mutator time: 47.405s

GC time: 863.061ms
Productivity: 98.0% of mutator vs total

And the speed turns out almost doubled compared to the sequential implementation. To
further analyze the performance, | also tested the same program with different numbers
of cores. The following two charts show the runtime comparison and the speedup
respectively:

150
o 100
IS
=
€
50
0
2 4 6 8
Number of cores
Runtime Speedup
1 117.109 1.00
2 48.368 242
3 29903 i
4 22015 532
5 19.781 582
6 17.582 6.65
T 1613 7.26
8 15.636 7.49

Before 4 cores, the performance improvement is quite great while when it's running on
more than 4 cores, the improvement is not that impressive.



parMap

This attempt introduces Control.Monad.Par. parMap function applies the given function
to each element of a data structure in parallel. That is, fully evaluating the results, and
returning a new data structure containing the results. It seems pretty similar with parList
in Control.Parallel.Strategies, as they both handle every element of a collection.
However, the efficiency turns out to be much different on the same 10,000 transactions
and 0.5% minimal support threshold:

Timeline

0s 55 108 1568 20s 258 30s 358 40s 458

Ackivity
= I 0 OO
=]

[ 2]

Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events

Total time:  50.862s

Mutator time: 50.080s

GC time: B881.844ms

Productivity: 98.3% of mutator vs total

It might be because Par Monad avoids the laziness issues and helps productive parallel
programming. And the following eventlog shows implementation applying parMap
running on 8 cores, with 50,000 transactions and 0.5% minimal support threshold, and
average runtime is around 90 seconds:

Timeline

Time | Heap | GC | Spark stats | Spark sizes | Process info | Raw events

Total time: 819565

Mutator ime: 80.045s

GC time: 1811s

Productivity: 87.9% of mutator vs total




And it performs pretty well when it comes to a larger dataset while parListChunk of 500
chunk size performs better than this one, with average runtime around 75 seconds:

Timeline
os 58 108 158 208 268 308 ass 408 458 508 555 60s 655 708 7=
innnfnnanllnnnnfononllannnflnnnallnnnaiannallananinnnnllnnnniannnllannainanallonnan

Actity

= T

= G

= A OO+ 1

= L A AT AT

= L T T

= L O AT AT

= e AR~ 1

= LT

[ 5

| I2]

Time | Heap | GG | Spark stats | Sparc sizes | Process nfo | Raw events |

Total time: 76.058s
Mutator time: 74.298s
GC time: 1.760s
Productivity: 97.7% of mutator vs total

4.Conclusion

This report includes both sequential and parallel versions of the Apriori Algorithm in
Haskell and analyzes different attempts about the parallelism, and the performance
comparison on different numbers of cores. parListChunk with different strategies does
give impressive performance improvement but the chunk size has to be experimented to
figure out. With parMap in Control.Monad.Par, one doesn’t need to try out the chunk size
but has to take the risk of fully evaluating results, for example, parMap over records from
a huge file.

References

https://dwgeek.com/mining-frequent-itemsets-apriori-algorithm.html/

https://qist.github.com/cs/2909095
ttg //lwww.cs.columbia. edu/~sedwards/c|asses/2021/4995 -fall/reports/Apriori.pdf

with- deegseg


https://dwgeek.com/mining-frequent-itemsets-apriori-algorithm.html/
https://gist.github.com/cs/2909095
http://www.cs.columbia.edu/~sedwards/classes/2021/4995-fall/reports/Apriori.pdf
https://stackoverflow.com/questions/23326920/difference-between-par-monad-and-eval-monad-with-deepseq
https://stackoverflow.com/questions/23326920/difference-between-par-monad-and-eval-monad-with-deepseq

module Main (main) where

import Apriori (Itemset(..), Support, nextFreqItemsets, firstFreqIltemsets,
parNextFreqItemsets, parFirstFreqIltemsets, monadParNextFreqIltemsets,
monadParFirstFreqltemsets)

import System.Exit (die)

import System.Environment (getArgs)
import qualified Data.List as List
import qualified Data.Set as Set

wordsiWhen :: (Char -> Bool) -> String -> [String]
wordsWhen p s =
case dropWhile p s of

|

s' -> w : wordsWhen p s"'
where (w, s'') = break p s'

getTransactions :: String -> [Itemset]
getTransactions content =
map getItemset (lines content)
where
getItemset line = Itemset $ Set.fromList (wordsWhen (==',') line)

main :: IO()
main = do
args <- getArgs
case args of
[file, supp] -> do
let minSupp = read supp :: Support
content <- readFile file
let transactions getTransactions content
let freqltemsets = concat $ List.unfoldr (nextFreqltemsets minSupp
transactions) (firstFreqIltemsets minSupp transactions)
print $ freqItemsets
[file, supp, "parallel", n] -> do
let minSupp = read supp :: Support




let chunk = read n :: Int
content <- readFile file
let transactions = getTransactions content
let freqltemsets = concat $ List.unfoldr (parNextFreqItemsets chunk
minSupp transactions) (parFirstFreqItemsets chunk minSupp transactions)
print $ freqItemsets
[file, supp, "monad-par"] -> do
let minSupp = read supp :: Support
content <- readFile file
let transactions = getTransactions content
let freqItemsets = concat $ List.unfoldr (monadParNextFreqItemsets
minSupp transactions) (monadParFirstFreqItemsets minSupp transactions)
print $ freqItemsets
_ -> do
die "IllegalArgumentException: should be {filename, minSupport,
['parallel', listChunkSize] | ['monad-par']}"

Apriori.hs

module Apriori where

import qualified Data.Set as Set

import Control.Monad.Par (parMap, runPar)

import Control.DeepSeq

import Control.Parallel.Strategies (using, parListChunk, rdeepseq)

type Support Double

data Itemset = Itemset (Set.Set String) deriving (Eq, Ord)
instance Show Itemset where

show (Itemset i) = show $ Set.toList i

instance NFData Itemset where

rnf (Itemset i) = rnf i

supportCount :: [Itemset] -> Itemset -> Int
supportCount transactions (Itemset i) =
length $ filter (Set.isSubsetOf i) $ map (\(Itemset x) -> x) transactions

support :: [Itemset] -> Itemset -> Support
support transactions is =
fromIntegral (supportCount transactions is) / fromIntegral (length transactions)




deduplicate :: Ord a => [a] -> [a]
deduplicate 1 = Set.tolList $ Set.fromList 1

allSubsets :: Set.Set a -> [Set.Set a]
allSubsets s = Set.tolList $ Set.powerSet s

allMaximalProperSubsets :: Set.Set a -> [Set.Set a]
allMaximalProperSubsets s = filter (\x -> (Set.size x) == (Set.size s) - 1) $
allSubsets s

firstCandItemsets :: [Itemset] -> [Itemset]

firstCandItemsets transactions =

deduplicate $ concatMap (\(Itemset is) -> map (Itemset . Set.singleton) $
Set.toList is) transactions

firstFreqltemsets :: Support -> [Itemset] -> [Itemset]

firstFreqltemsets minSupp transactions =

filter (\candIs -> support transactions candIs > minSupp) (firstCandItemsets
transactions)

nextCandItemsets :: [Itemset] -> [Itemset]
nextCandItemsets itemsets =

let validate a b = (Set.size $ a “Set.difference’ b) == 1 in

let nextIss = [Itemset (a “Set.union™ b) | (Itemset a) <- itemsets, (Itemset b) <-
itemsets, validate a b] in

let subsetsFrequent (Itemset is) = all (\s -> (Itemset s) “elem  itemsets)
(allMaximalProperSubsets is) in
deduplicate $ filter subsetsFrequent nextIss

nextFreqItemsets :: Support -> [Itemset] -> [Itemset] -> Maybe ([Itemset],
[ITtemset])
nextFreqItemsets _ _ [] = Nothing
nextFreqIltemsets minSupp transactions curr =
Just (curr, next)

where

next = filter (\candIs -> support transactions candIs > minSupp)

(nextCandItemsets curr)

parFirstFreqItemsets :: Int -> Support -> [Itemset] -> [Itemset]
parFirstFreqltemsets n minSupp transactions =




let fullFirstIss = map (\candIs -> (candIs, support transactions candIs >
minSupp)) (firstCandItemsets transactions) “using’ parListChunk n rdeepseq in
concat $ [[candIs] | (candIs, isGood) <- fullFirstIss, isGood]

parNextCandItemsets :: Int -> [Itemset] -> [Itemset]
parNextCandItemsets n itemsets =

let validate a b = (Set.size $ a "Set.difference’ b) == in

let nextIss = [Itemset (a “Set.union™ b) | (Itemset a) <- itemsets, (Itemset b) <-
itemsets, validate a b] in

let subsetsFrequent (Itemset is) = all (\s -> (Itemset s) “elem” itemsets)
(allMaximalProperSubsets is) in

let fullNextIss = map (\nextIs -> (nextIs, subsetsFrequent nextIs)) nextIss
“using® parlListChunk n rdeepseq in
deduplicate $ concat $ [[nextIs] | (nextIs, isGood) <- fullNextIss, isGood]

parNextFreqIltemsets :: Int -> Support -> [Itemset] -> [Itemset] -> Maybe
([Itemset], [Itemset])
parNextFreqItemsets _ _ _ [] = Nothing
parNextFregItemsets n minSupp transactions curr =
let fullNextCandIss = map (\candIs -> (candIs, support transactions candIs >
minSupp)) (parNextCandItemsets n curr) “using® parListChunk n rdeepseq in
let next = concat $ [[candIs] | (candIs, isGood) <- fullNextCandIss, isGood] in
Just (curr, next)

monadParFirstFreqltemsets :: Support -> [Itemset] -> [Itemset]
monadParFirstFreqltemsets minSupp transactions =

let fullFirstIss = runPar $ parMap (\candIs -> (candIs, support transactions
candIs > minSupp)) (firstCandItemsets transactions) in

concat $ [[candIs] | (candIs, isGood) <- fullFirstIss, isGood]

monadParNextCandItemsets :: [Itemset] -> [Itemset]
monadParNextCandItemsets itemsets =

let validate a b = (Set.size $ a “Set.difference’ b) == 1 in

let nextIss = [Itemset (a “Set.union™ b) | (Itemset a) <- itemsets, (Itemset b) <-
itemsets, validate a b] in

let subsetsFrequent (Itemset is) = all (\s -> (Itemset s) “elem  itemsets)
(allMaximalProperSubsets is) in

let fullNextIss = runPar $ parMap (\nextIs -> (nextIs, subsetsFrequent nextIs))




nextIss in
deduplicate $ concat $ [[nextIs] | (nextIs, isGood) <- fullNextIss, isGood]

monadParNextFreqItemsets :: Support -> [Itemset] -> [Itemset] -> Maybe ([Itemset],
[Itemset])
monadParNextFreqItemsets _ _ [] = Nothing
monadParNextFreqItemsets minSupp transactions curr =

let fullNextCandIss = runPar $ parMap (\candIs -> (candIs, support transactions
candIs > minSupp)) (monadParNextCandItemsets curr) in

let next = concat $ [[candIs] | (candIs, isGood) <- fullNextCandIss, isGood] in
Just (curr, next)




