
AStar: Parallel Functional Programming Final Project 2022
Donghan Kim (dk3245)

Introduction:
Finding the shortest path between two points on a graph is a popular computer science problem
even researched today. While there are many complete shortest-path algorithms, people often
look for one that is not only complete but also fast. Improved upon the work of Dijkstra's
algorithm, the A* search algorithm incorporates a heuristic function to the existing cost function
to allow the search to occur in a more targeted manner. My objective was to create a sequential
and parallel version of the A* search, and explore what functional programming methods can be
used to decrease the time of A* search.

Open Street Maps:
To properly test my A* search algorithm, I used real-world data from OpenStreetMaps (OSM).
OSM is a popular and well-respected open-source dataset that can convert road-like
infrastructure into any graph configuration, whether weighted/unweighted directed or undirected.
To properly utilize the OSM dataset, I used a Python package called OSMnx that allowed me to
extract graphical information pertaining to certain areas in New York City. The three graphs I
used to test my algorithm were: Columbia University (210 nodes), Central Park (1397 nodes),
and Manhattan (43404 nodes).

Graph Representation:
All three graphs are represented in the same
way. They are weighted, bi-directional graphs
where each edge represents a walkable path in
the location that the graph is representing. To
run A* search on this graph, I decided to export
the graph data into a .txt file that can be loaded
into my Haskell program. Each line in the .txt file
contains information about a single node in the
graph. The line is separated by delimiters that I
chose to make it easier to load the .txt file into
my Haskell program. All nodes have an index
(idx) number that is used to reference the node
it belongs to in the OSM dataset, longitude and
latitude coordinates (7-point precision), and a
list of tuples representing its adjacent nodes
with its respective edge weights (similar to
adjacency list). The edge weights are provided
by OSM, and denote how long (in seconds) it
would take to reach one node to another,
assuming a speed of 5.1km/h. In Haskell, I

created a datatype called Node to contain this information and an Data.IntMap stores the node
information in an efficient data structure for efficient look-up.

A* Search:
As mentioned above, A* search differs from Dijkstra’s algorithm in that exploration (search) is
targeted. More specifically, in A* search, we use a heuristic function that decides which nodes
should be explored first. Of course, nodes with a high heuristic cost will most likely be explored
last. Because of this distinction, while A* is a complete algorithm, it does not find the shortest
path between all nodes in the graph (like Djikstra’s algorithm). Instead, it only finds the shortest
path between the source (starting) and target (destination) node.

How we select our heuristic function is extremely important, as it will determine how fast A*
search can find its target. In addition to the heuristic function, we use the edge weights to
represent the path cost, meaning the cost from the source node to the current node, g(n).
Combining the path cost with the heuristic, we can calculate the total cost for a given node,
commonly denoted as f(n).

In the Haskell implementation, the total cost can be obtained using the calcFn function, which
calculates the path cost and heuristic separately.

Haversine Formula:
While the path cost is given, the heuristic is not. The better the heuristic, the better A* can be. In
my implementation, I decided to utilize the longitude and latitude coordinates of the nodes, and
estimate the physical distance between them as it is directly correlated to the amount of time it
would take to reach the node. Many well-known formulas can calculate the distance between
two lat/lon pairs. The Haversine formula is very popular due to its low computation to accuracy
ratio.

Although I my A* search does not use the Haversine formula, it is available to use in the
src/Lib.hs file.
Vincenty Formula:
From my research, the Vincenty formula is the most accurate method for calculating the
distance between two lat/long coordinates. There are several ways we can utilize Vincencty’s
formula to calculate the distance, but I decided to implement the inverse method to estimate
distance the distance.

Here we iterate and evaluate lambda, until either a max iteration is met, or lambda converges.
Once the iterations are complete, we can utilize the values to estimate our distance:

S here represents the distance in meters. If the convergence tolerance is set to 1e-12,
Vincenty’s formula guarantees margin error to be less than 0.06mm. The current iteration I have
uploaded with this report uses the Vincecy formula to assign the heuristic (called from calcHn).

Sequential Implementation:
In addition to the graph data, node map, and cost function, we need several more data
structures to complete A* search. In particular, we need a priority queue that can sort the nodes
to explore based on their total cost. This priority queue is referred to as the openList and uses
the Data.MinPQueue data structure in Haskell. To minimize the memory burden, I decided to
store a tuple where the first element is the total cost (Double) and the second element is the
index of the node (Int). This is reasonable since the node map grants constant look-up
performance.

The openList is constantly updated to reflect newly calculated costs, and to add additional
nodes to explore. Furthermore, we also need to store where nodes “came from”. This is
extremely important since the total cost of a given node can change. This is similar to Dijkstra’s
algorithm where the “better” or cheaper path should result in updating the cost of the node.

Lastly, we also maintain a closed list, which contains all the nodes that have been explored,
preventing an infinite loop. In Haskell, I used the Data.IntSet data structure to represent the
closed list, and therefore named it “closedSet”.

Parallel Implementation:
The two largest bottlenecks of the A* search algorithm are the I/O (reading the graph data) and
in my case, the heuristic calculation. Fortunately, the heuristic calculation is mutually exclusive,
meaning they can be calculated in parallel. However, to truly see the advantage of parallelism,
the average out-degree (average number of adjacent nodes) has to be fairly high; otherwise, the
cost of creating parallel computations will outweigh the advantage. I created two separate
parallel functions using the to decrease the running time of my algorithm.

Similar to the sequential implementation, the parCalcFn calculates the path cost and heuristic
cost in parallel. Of course, the heuristic calculation is much more expensive, however, with more
large enough graphs, there can be some added benefits. In addition, I used parMap to calculate
the total cost, f(n) of all nodes in the openList in parallel. As mentioned above, there only seem
to be any benefits when run on graphs that are magnitudes larger than the one I tested,
however, for large enough graphs this can make a huge difference. Unfortunately, I could not
figure out how to parallelize reading the graph data, finding the right “chunk” size to seek into
different parts of the file was more challenging than I initially thought.

Project Structure:
.
├── LICENSE
├── README.md
├── astar
│ ├── CHANGELOG.md
│ ├── Setup.hs
│ ├── astar.cabal
│ ├── data (not included)
│ │ ├── CentralPark.graphml
│ │ ├── CentralPark.pickle
│ │ ├── CentralPark.png
│ │ ├── CentralPark.txt
│ │ ├── ColumbiaUniversity.graphml
│ │ ├── ColumbiaUniversity.pickle
│ │ ├── ColumbiaUniversity.png
│ │ ├── ColumbiaUniversity.txt
│ │ ├── Manhattan.graphml
│ │ ├── Manhattan.pickle
│ │ ├── Manhattan.png
│ │ └── Manhattan.txt
│ ├── package.yaml
│ ├── parApp
│ │ └── Main.hs
│ ├── seqApp
│ │ └── Main.hs
│ ├── src
│ │ └── Lib.hs
│ ├── stack.yaml
│ ├── stack.yaml.lock
│ └── test
│ └── Spec.hs
├── demo_seq.sh
├── graph.py
└── requirements.txt

The atar/ folder contains the Haskell project created using Stack. Furthermore, the graph.py
Python script contains all the code needed to generate, and run a plot of the shortest path
calculated in Haskell. Both .hs executables (seq for sequential and par for parallel) create a .txt
file called res.txt at the location when you run the Haskell application. You can load the res.txt
file and plot the path using the python script.

Please refer to the installation details, and graph data generation details on my Github
repository: https://github.com/donghankim/ParAStar

