
6 Degrees
Parallel Functional Programming Fall 2022

Jorge Raad - jar2356
Casey Olsen - ceo2132

1. Introduction
Inspired by the popular game, “Six Degrees of Kevin Bacon,” our team implemented an
algorithm that finds the minimum number of degrees (i.e. the shortest path) separating two
actors, where actors who have appeared in the same movie are one degree apart from each other.
The game claims that there is a maximum of six degrees of separation between any actor and
Kevin Bacon, who has appeared in over 60 movies and co-starred with over 3,000 actors. We
implemented an algorithm that finds the minimum degrees of separation between any two actors,
which would be a generalization of this game.

We used a dataset from IMDb consisting of movies and actors that appear in them, but made our
code general so that we can substitute the dataset in the case that we run into issues. In this case,
we could substitute the individuals (in this case actors) and the groups to which they belong (in
this case movies), or we could be even more general and have no distinction between these two
entities (e.g. for movies vs. actors, you can imagine the sets of movies and actors as bipartite
subgraphs of the same graph). This would allow us to model “degrees of separations” through
other relationships like friendships.

2. Data Sets

2.1 IMDb data

We used free, public, IMDb datasets with over 12 million actors, movies and television shows. In
particular we used the files:

https://datasets.imdbws.com/

Name.basics.tsv.gz - Associates actors, directors and cinematographers with the IDs of the titles
they are most famous for

nconst primaryName birthYear deathYear primaryProfession knownForTitles

nm0000002,Lauren Bacall,1924,2014,actress,soundtrack,tt0071877,tt0037382,tt0038355,tt0117057

nm0000003,Brigitte Bardot,1934,\N,actress,soundtrack,tt0054452,tt0049189,tt0057345,tt0056404

nm0000004,John Belushi,1949,1982,actor,writer,tt0077975,tt0078723,tt0080455,tt0072562

nm0000005,Ingmar Bergman,1918,2007,writer,director,actor,tt0083922,tt0060827,tt0050986

Title.basics.tsv.gz - Associates IDs of titles with the actual name of the title

tconst,titleType,primaryTitleoriginalTitle,isAdult,startYear,endYear,runtimeMinutes,genres

tt0003362,movie,The Sea Wolf,The Sea Wolf,0,1913,\N,70,Drama

tt0003363,movie,The Seed of the Fathers,The Seed of the Fathers,0 1913,\N\N,Drama,War

tt0003364,short,The Shadow,The Shadow,0,1914,\N,\N,Drama,Short

tt0003365,movie,Shadows of the Moulin Rouge,Shadows of the Moulin Rouge,0,1913,\N,60,Drama

tt0003366,movie,The Shame of the Empire State,The Shame of the Empire State,0,1913,\N,Drama

2.2 Preprocessing

In order to make our program’s job earlier, and based on the feedback from the teaching staff, we
decided to preprocess our data into a more readable format. Because we only care about the
actors and the titles they appear in, we filtered out the rest of the columns. Additionally, we
translated the titles the actors starred in from IDs to names.

We wrote a python script that read the title data set and created an in-memory dictionary
mapping title IDs to title names. We then processed the names file line-by-line dropping the
unnecessary columns and translating the movie ids into movie titles and then writing the new
output to a new file.

create an in memory title id to name mapping

title_dict = {}

title_file = open('title_subset_notv.csv', 'r')

title_lines = title_file.readlines()

for line in title_lines:

line = line.rstrip()

data = line.split('\t')

title_dict[data[0]] = data[1]

new_file = open('movie_data_processed.csv', 'w')

read the name file and translate the movie titles

with open('name.basics.tsv', 'r') as file:

for line in file:

data = line.rstrip().split('\t')

https://datasets.imdbws.com/name.basics.tsv.gz
https://datasets.imdbws.com/title.basics.tsv.gz

new_titles = []

for t in data[-1].split(','):

if t in title_dict:

new_titles.append(title_dict[t])

if (len(new_titles) > 0):

new_file.write(data[1] + '\t' + ','.join(new_titles) + '\n')

As a result, our movie data to feed into our program looks like the data snippet below. We used a
dataset of 1 million actors, who each star in a number of movies. So when we combine the actors
and titles, our adjacency list will have a few million entries.

Joan Fontaine The Constant Nymph,Suspicion,Letter from an Unknown Woman,Rebecca

Clark Gable Mutiny on the Bounty,Gone with the Wind,Red Dust,It Happened One Night

Judy Garland Meet Me in St. Louis,The Wizard of Oz,Judgment at Nuremberg,A Star Is Born

John Gielgud Murder on the Orient Express,Julius Caesar,Shine,Arthur

Jerry Goldsmith Congo,The Boys from Brazil,L.A. Confidential,Star Trek: First Contact

Cary Grant North by Northwest,Suspicion,Charade,Operation Petticoat

2.3 Generated Data

In order to explore the performance of our algorithm with various kinds of graphs, we created a
Python script that randomly generates graphs with a given number of nodes and a given
probability that an edge between two nodes exists. This allowed us to begin testing our BFS code
on smaller datasets early on.

3. Graph Construction

3.1 Data Structure

We used an adjacency list to represent our graph. We used the Haskell Map class to store
relationships between movies and actors. The key is a string type, which is either the name of an
actor, or the name of a movie or tv series. The value is a set of strings. If the key is an actor, the

value will be a set of movies, and likewise if the key is a movie, the value will be a set of actors.
We use a set for fast lookup when we traverse the graph.

Haskell type of our graph data structure.
Map.Map String (Set String)

3.2 Sequential Construction

We first created our graph sequentially. We read in our movie data and recursively add entries to
the map. For each row, we added a key for the actor and a set of all the movies they are
associated with. Additionally, we added that actor to the set of the movie. This way we have
association lists in both directions, and can do much faster lookups when we traverse the graph.

parseData :: String -> IO (Map.Map String (Set String))

parseData filename = do

contents <- readFile filename

return (buildGraph (lines contents) Map.empty)

buildGraph :: [String] -> Map.Map String (Set String) -> Map.Map String (Set String)

buildGraph [] graph = graph

buildGraph (x:xs) graph = buildGraph xs graphWMovies

where graphWMovies = foldr (\movie g -> Map.insertWith (Set.union) movie (Set.singleton

name) g) graphWActor movies

graphWActor = Map.insert name (Set.fromList movies) graph -- insert actor keys

movies = splitOn "," movieStr

[name, movieStr] = splitOn "\t" x

When we ran threadscope to analyze our program with this graph construction, we can clearly
see only one thread is active in the construction process. The whole process took about 40
seconds as we can see by the red line marking the transition from graph construction to graph
traversal.

3.3 Parallel Construction

3.3.1 Control.Parallel.Strategies Library

To speed up our graph construction, we tried to leverage the Control.Parallel.Strategies library to
parallelize the I/O. We split our dataset into four files of approximately equal length and did our
graph construction algorithm on each of them in parallel. We then merged pairs of resulting maps
together in parallel, and finally returned one map that is the union of each of the individual files.

import Control.Parallel.Strategies(runEval, rpar, rseq)

readDataParallel :: String -> IO (Map.Map String (Set String))

readDataParallel filenamePrefix = runEval $ do

d1 <- rpar (parseData $ filenamePrefix ++ "1.csv")

d2 <- rpar (parseData $ filenamePrefix ++ "2.csv")

d3 <- rpar (parseData $ filenamePrefix ++ "3.csv")

d4 <- rpar (parseData $ filenamePrefix ++ "4.csv")

_ <- rseq d1

_ <- rseq d2

_ <- rseq d3

_ <- rseq d4

m1 <- rpar (Map.unionWith Set.union <$> d1 <*> d2)

m2 <- rpar (Map.unionWith Set.union <$> d3 <*> d4)

_ <- rseq m1

_ <- rseq m2

return (Map.unionWith Set.union <$> m1 <*> m2)

Our threadscope graph showed that our parallelization attempts did not have an effect on the
runtime of our program. We can see all of the I/O was done by the first thread and took
approximately the same amount of time as the sequential read of a single file. If we zoom in at

the very start, we can see each thread was initialized, but the work was not shared. We see three
small segments of work on the second thread, which logically, must be where we switched
between each of the four files.

3.3.2 Control.Concurrent.Async Library
We made an additional attempt at parallel I/O using the Control.Concurrent.Async library in
hopes it could actually split our file reading across threads.

import Control.Concurrent.Async(concurrently)

readDataParallel filenamePrefix = do

(d1, d2) <- concurrently (parseData $ filenamePrefix ++ "1.csv") (parseData $

filenamePrefix ++ "2.csv")

(Map.unionWith Set.union d1 d2)

However, we found the same results as the strategies library and this did not help the execution
time of our program. We concluded that I/O is hard to perform in parallel and decided to focus
on the parallelization of our BFS algorithm.

4. BFS Traversal

4.1 Sequential

Because our project is concerned with finding the number of actors between two specified actors,
our data can be represented as a graph of edges without weights. Since the edges of our graph are
unweighted, the fastest algorithm to find the shortest path between two actors would be Breadth
First Search (BFS). However, a standard BFS implementation leaves us with a problem: it entails
repeatedly removing the next vertex from a FIFO queue, checking its neighbors, and then adding
its neighbors that have yet to be visited to the queue. This presents us with a problem as adding

and popping vertices to and from the queue in parallel would result in a traversal through the
nodes of the graph in an order that may not be in order of increasing distance. This is a problem
as the BFS implementation relies on the fact that when a vertex has been removed from the
queue, there are no previous vertices that could be farther away from the source and there are no
unexplored vertices that can be closer than it to the source. However, if vertices that are at
different distances from the source were to be removed and processed simultaneously by
multiple threads, one can imagine a situation where, a common neighbor node A is first added to
the shared queue by the farther node, resulting in the distance of vertex A (and any subsequent
neighbors of A) being set to an incorrect value.

Because of this, we started off by implementing our sequential algorithm for BFS by having our
algorithm explore nodes level by level.

Pseudo Code:
runBFS(V, E, s):

distances = emptyArray()

distance[s] = 0

currentLevel = [s]

levelNum = 0

while currentLevel is not empty:

nextLevel = []

for u in nextLevel:

for (u, v) in E:

if v not in visited:

dist[v] = levelNum + 1

nextLevel.insert(v)

levelNum++

currentLevel = nextLevel

Where this level-by-level approach differs from the standard BFS implementation is that, instead
of picking the next vertex to process by always popping it from the same FIFO queue, which can
result in the concurrency issue discussed above if we attempt to parallelize it, the algorithm only
deals with vertices at the same level (i.e., the same distance away from the source). When this
code is parallelized, the previously mentioned problem is no longer an issue as, even if there is a
common neighbor between two nodes being processed simultaneously, it does not matter which
one sets the distance of the common node A; the distance would be the same in either case since
the two vertices are the same distance d away from the source and the common node is just one
edge away from both, so regardless of which vertex the path to A goes through, its distance
would still be d + 1.

These are the results from running this algorithm sequentially on the data:

4.2 Parallelization Approach

As discussed in the previous section, implementing our BFS algorithm so that it processes
vertices level by level allows us to more easily parallelize the exploration of our graph. Our first
goal was to parallelize the retrieval of the neighbors for each of the vertices in the current level.
This involved taking the set of the vertices to be explored in the current level, and then
generating a set of each vertex’s unvisited neighbors in parallel using different strategies. After
this is completed for all of the vertices in the current level, we are left with a list of sets of
neighbors for each of the vertices. Following this, we need to combine these results from the
previous part in order to create the next set of vertices to be visited in the next level. We aimed to
parallelize this combination by breaking it up. We split up the resulting list of sets of neighbors
into smaller chunks, finding the union of these smaller chunks and then finding the union of the
resulting unions. After this, the distances for each of the processed nodes are updated
sequentially, and we move onto exploring the next level.

4.3 Using parList

The first strategy we tried using when generating the sets of each vertex’s unvisited neighbors in
parallel was converting the Set of vertices to process into a List and then using parList,
passing in rdeepseq as the Strategy.

While this did somewhat speed up the program, it unsurprisingly resulted in the majority of
sparks going unconverted because of overflow as a result of creating two many sparks at once.

These are the results from running the algorithm on 4 cores:

These are the results from running the algorithm on 8 cores:

4.4 Using parBuffer

We tried to address this overflow issue by using parBuffer instead of parList. After
experimenting with the size of the buffer, we arrived at 7500, which resulted in the creation of a
large number of sparks to do parallel work without creating so many sparks simultaneously that
they overflow. We are able to set such a large number of sparks because the amount of work

done by each (i.e., looking up the neighbors of a vertex in a map and removing the previously
visited nodes from it) is very small.
This is the performance on 4 cores:

This is the performance on 8 cores:

4.5 Parallelizing Union of Neighbor Lists

After the previous step of finding the sets of neighbors of each vertex at the current level, we
have to find the union of these vertices. Our next goal was to break this up into parts that can be

done in parallel. We did this by using List.chunksOf to split up the list of sets into smaller lists of
sets. We then mapped the Set.unions function onto each of the lists of sets in parallel using
parList. Finally, we take the union of these resulting sets sequentially and return the final set of
vertices. This resulted in a lot of sparks overflowing.

Here is the performance on 4 cores:

So, as we did in the previous part, we tried using parBuffer. We experimented with the size of the
chunks and the parBuffer size, ultimately arriving at 64 and 8, respectively, which maximized
parallelization while eliminating overflow. However, this did not have any noticeable speedup
over the version with the fully sequential combination of the sets of neighbors.

Here is the performance on 4 cores:

Here is the performance on 8 cores:

4.6 Reducing Sequential Work

At first we were not satisfied with the amount of work that has to be done sequentially between
the parallel parts. When testing this algorithm on large datasets using multiple cores, we saw a
distinct pattern in the parallelization of our program. The parallel parts of the code saw great
utilization of the multiple cores and thus a speedup. However, there is some sequential code that
must run between the parallel parts in order to combine the results and determine the vertices to
be visited in the next level. As we studied the parallelization and realized that the sequential
work that happens between each parallel part is actually relatively large. This was a concern
because, as we know from Amdahl’s Law, the more sequential code there is, the less we can
speed up the program using parallelization.

We explored further reducing the amount of time the sequential part takes but realized we could
not improve this much. For example, we currently use sets when keeping track of groups of
vertices (e.g., to store visited nodes, each vertex’s neighbors, and the next level of vertices to
visit). This allows us to efficiently take unions and differences between sets, which is necessary
when determining which vertices to explore next and removing vertices that have already been
visited. However, our use of sets means that we currently have to transform our set of vertices at
the current level into a list before using parBuffer on it, which is O(n). This is because functions
like parList, parBuffer, and parTraversable only function on Traversables, which Lists are, but
Sets are not. We also could not implement a similar “parSet” function since there is no way to
pop random elements from a set. Additionally, the part in the rest of the code used to process the
current level is at least O(n) anyways as we must sequentially update the distances of all visited
nodes in each iteration. Additionally, replacing our implementation using sets with a list-based
implementation dramatically increases the run time (we had to terminate the process) due to
much less inefficient runtime for finding set unions and differences.

4.7 Sparse vs. Dense

We also explored the performance of our code on different kinds of graphs. For example, here
are the results for a randomly generated graph with 40,000 nodes and a 0.05% chance that an
edge between any two vertices exists.

100,000 vertices, 0.05% any two edges are connected

1 core: 43.382s elapsed

4 cores: 32.161s elapsed (1.35x speedup)

20,000 vertices, 5% any two edges are connected

1 core: 87.722s

4 cores: 59.525s elapsed (1.47x speedup)

4.8 Number of Cores

We ran the final product on the actor data using different numbers of cores and we arrived at the
following numbers. Because the time it takes to read in the file does not vary and takes about 20
seconds each run, we have introduced two columns to attempt to better visualize the speedup
achieved for just the BFS part of the code. The “approximate BFS time” was taken by
subtracting 20 seconds from the total time.

As expected, adding additional cores did reduce the amount of time it took for the program to
finish. The most dramatic jump in performance came between the 2 and 4-core runs. Using 4
cores, the program sped up by 1.58 times, with the BFS graph exploration being sped up about
1.90 times. However, after that, the run time plateaus. We would think this is the case as the
overhead for managing the .

Cores Total
Time

Total
Speedup

Approximate
BFS time

Approximate
BFS Speedup

1 90.61 1.00 70.61 1.00

2 82.76 1.09 62.76 1.13

4 57.25 1.58 37.25 1.90

6 57.68 1.57 37.68 1.87

8 58.65 1.54 38.65 1.83

5. Conclusion
Overall we were able to speed up our program using parallelization, but not as much as we had
originally hoped for. We achieved the highest speedup of 1.58x (~1.90x on BFS part) on four
cores and found that speedup decreased with additional cores. A significant portion of our
execution time went to reading our massive data file which we were not able to parallelize and
which ultimately became a huge bottleneck. However, we are proud we were able to implement
the game we originally set out to accomplish and both feel that we learned about parallelization
in the process.

6. Code
Main.hs
module Main (main) where

import Lib
import GraphConstruction
import System.Exit (die)
import System.Environment (getArgs)

main :: IO ()
main = do
[filenamePrefix, start, end] <- getArgsOrDie
graph <- readDataParallel filenamePrefix
runBFS graph start end

getArgsOrDie :: IO [String]
getArgsOrDie = do
args <- getArgs
if length args == 3 then return args
else die "Usage: stack run <graph-filename-prefix> <from-vertex> <to-vertex>"

Lib.hs
module Lib

(runBFS
) where

import Data.List as List (map)
import Data.Map as Map (Map, insert, findWithDefault, singleton, toList)
import Data.Set as Set (Set, null, toList, empty, difference, unions, union,
singleton)
import Control.Parallel.Strategies(using, rdeepseq, parBuffer, parList)
import Control.DeepSeq (force)
import Data.List.Split (chunksOf)

runBFS :: Map String (Set String) -> String -> String -> IO ()
runBFS neighborMap startWord endWord = do
distances <- explore 0 (Set.singleton startWord) neighborMap (Map.singleton startWord
0) Set.empty
let maxDegree = maximum $ List.map snd (Map.toList (force distances))
-- Divide results by two since we should not count movie vertices
putStrLn ("Distance from " ++ startWord ++ " to " ++ endWord ++ ": " ++ show
(toInteger (Map.findWithDefault (-1) endWord distances `div` 2)))
putStrLn ("Max distance: " ++ show (toInteger (maxDegree `div` 2)))

explore :: Int -> Set String -> Map String (Set String) -> Map String Int-> Set String
-> IO (Map String Int)
explore level vertices neighborMap distances visited

| Set.null vertices = return distances
| otherwise = do

let newVisited = Set.union visited vertices
next <- getNeighborsForSet vertices neighborMap visited
let newDistances = foldl (\d vertex -> insert vertex (level + 1) d) distances

next
explore (level + 1) next neighborMap newDistances newVisited

getNeighborsForSet :: Set String -> Map String (Set String) -> Set String -> IO (Set
String)
getNeighborsForSet vertices neighborMap visited = do

let vertexList = Set.toList vertices

let neighborSets = List.map (getNeighbors neighborMap visited) vertexList `using`
parBuffer 7500 rdeepseq

let chunkList = chunksOf 64 neighborSets
let unionList = List.map Set.unions chunkList `using` parBuffer 8 rdeepseq
return (Set.unions unionList)

getNeighbors :: Map String (Set String) -> Set String -> String -> Set String
getNeighbors neighborMap visited vertex = Set.difference (Map.findWithDefault
Set.empty vertex neighborMap) visited

graphConstruction.hs
module GraphConstruction (parseData, buildGraph, readDataParallel) where

import Data.Set as Set (Set, fromList, singleton, union)
import Data.Map as Map (Map, empty, insert, insertWith, unionWith)
import Data.List.Split (splitOn)
import Control.Parallel.Strategies(runEval, rpar, rseq)

parseData :: String -> IO (Map.Map String (Set String))
parseData filename = do

contents <- readFile filename
return (buildGraph (lines contents) Map.empty)

buildGraph :: [String] -> Map.Map String (Set String) -> Map.Map String (Set String)
buildGraph [] graph = graph
buildGraph (x:xs) graph = buildGraph xs graphWMovies

where graphWMovies = foldr (\movie g -> Map.insertWith Set.union movie
(Set.singleton name) g) graphWActor movies

graphWActor = Map.insert name (Set.fromList movies) graph -- insert actor
keys

movies = splitOn "," movieStr
[name, movieStr] = splitOn "\t" x

readDataParallel :: String -> IO (Map.Map String (Set String))
readDataParallel filenamePrefix = runEval $ do

d1 <- rpar (parseData $ filenamePrefix ++ "1.csv")
d2 <- rpar (parseData $ filenamePrefix ++ "2.csv")
d3 <- rpar (parseData $ filenamePrefix ++ "3.csv")
d4 <- rpar (parseData $ filenamePrefix ++ "4.csv")
_ <- rseq d1
_ <- rseq d2
_ <- rseq d3
_ <- rseq d4
m1 <- rpar (Map.unionWith Set.union <$> d1 <*> d2)
m2 <- rpar (Map.unionWith Set.union <$> d3 <*> d4)
_ <- rseq m1
_ <- rseq m2
return (Map.unionWith Set.union <$> m1 <*> m2)

