
Parallel Cryptanalysis of Vigenere Cipher
Alex Nicita an2582@columbia.edu

Goal
The goal of this project is to implement in Haskell a parallelized algorithm for finding the encryption keys
of Vigenere ciphers 1. Unlike the trivial task of parallelizing encryption and decryption algorithms, there
is a significant challenge in decrypting a message provided only with a ciphertext 2. In fact, these
cryptanalytic algorithms often behave much more like graph search algorithms than they do traditional
cryptographic algorithms, providing some intuition that parallelization may be a strong technique for
performance improvements over sequential alternatives.

Background
The Vigenere cipher was invented in the 16th century and remained unbreakable for over 300 years after
its original publication. Unique from the earliest known ciphers that simply mapped one letter to another,
such as the Caesar cipher 3, the Vigenere cipher cannot be easily cracked with frequency analysis, which
is the technique of counting letter frequencies in a message and then mapping those frequencies to letter
occurrences in the alphabet being studied. Instead, the Vigenere cipher uses a repeating keyword to
encode messages. This ensures that the same letter can map to different letters depending on the current
index of the encoding keyword, a foundational evolution in cryptography at the time.

Vigenere Cipher Solver Algorithm
Provided with some reasonable assumptions, cracking the keys underlying Vigenere encryption is a well
solved problem. For the sake of this project, we will assume that the encryption key is a word of less than
30 characters. From there, the underlying algorithm will compute the best possible fit of keys with lengths
less than the maximum possible, where fit is a measure of the amount of information that is captured by
checking the changes of every n-th letter. Since the ciphertext was encrypted under a repeating word
which has fixed length, this procedure will consistently output a result with the encryption key.

Next Steps
The next steps for completing this project are as follows:

1. Implement a sequential algorithm for solving Vigenere ciphers
2. Generate ciphers of various length and key size for benchmarking
3. Implement parallelization techniques (parList, chunking, and more as time permits)
4. Conclude with findings, including program time completion as a function of cores

Conclusion
Over the next month, this project will seek to parallelize an algorithm for computing encryption keys
provided only with a ciphertext encrypted under the Vigenere encryption algorithm. Unlike parallelizing
cryptography, the haskell code written for this project will seek to parallelize cryptanalysis, which
fundamentally can experience significant performance improvements through parallelization.

3 Caesar Cipher
2 COA Security
1 Vigenere Cipher

mailto:an2582@columbia.edu
https://en.wikipedia.org/wiki/Caesar_cipher
https://en.wikipedia.org/wiki/Ciphertext-only_attack
https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher

