
ParVarys
Etesam Ansari (ea2905), Yunlan Li (yl4387)

We plan to parallelize Varys [2] - a novel coflow scheduling algorithm for optimizing average coflow
completion time1 (CCT) in a datacenter environment. A task for datacenter applications could rarely be
completed by sending a single request to another datacenter server. For example, web search workloads
typically use a partition/aggregator model where a user query will trigger multiple subtasks to search for
results in each shard stored on different servers, the results from each shard are then aggregated to
compute the final answer to be sent back to the user. Because such tasks involve a collection of TCP
flows, optimizing flow completion time (FCT) doesn’t necessarily reduce task completion time, which is
the latency of user requests and what determines the quality of user experience. This mismatch between
the network optimization objective (FCT) and application-level objective (Task Completion Time) has
motivated a new abstraction called coflow: a collection of flows that share a common performance goal.
In the web search example, all flows created for answering the user query would belong to the same
coflow. This coflow abstraction aligns the network-level and application-level objective and thus by
optimizing CCT, we could observe better application and end-user experience. Therefore, there has been a
large body of work in the network community to come up with a near-optimal coflow scheduling
algorithm to minimize the average CCT.

The offline coflow scheduling problem is defined as follows:

● the datacenter network fabric is abstracted into
a single big switch consisting of m ingress ports (NICs)
and n egress ports (ToR switches)

● assume all coflows arrive simultaneously at
time , and the information about each coflow𝑡 = 0
(number of flows, size, source and destination port of
each flow) is all known

[1]

The goal is to find a schedule for the coflows (order, rate) to minimize the average CCT.

1 CCT: the time it takes for the slowest flow of the coflows to complete. Average CCT is the average CTT
of a collection of coflows.

This problem is NP-hard (via reduction from concurrent open-shop scheduling problem). Varys uses a
Smallest-Effective-Bottleneck-First (SEBF) heuristic to produce an ordering of coflows, and then perform
rate allocations to optimize average CCT. The entire algorithm is pasted below:

2

Line 14 calculates an ordering of the coflows by sorting them in order of their Γ value calculated using
equation (1). This can be parallelized greatly and the computation of ΓC of each coflow could be
parallelized using chunking similar to Marlow’s parallel KMeans example. However, it’s not entirely
obvious what data structure to represent the input data (coflows, ports, etc) as to allow for easy parallel
computation of Γ, requiring some thought. We also think that there's an opportunity to use REPA to speed
up ΓC calculations. The second part of the algorithm (Line 15) is iterative and would be hard to parallelize
since each iteration of the loop depends on the state Rem(.) updated by the previous iteration.

In datacenter environments, it's common to have thousands of coflows arrive per second, with hundreds
of thousands of servers. It’s common for NIC to support 8 virtual output queues. Thus, we plan to
generate problems with 1000s of coflows of different sizes, 100,000s ingress ports and 8 egress ports for
Varys to solve. The hope is that the algorithm will run long enough to allow parallelizing it to observe
some speed up.

2 for a coflow, dij represents the size of data that goes from ingress port i to egress port j. Rem(.) represents the
remaining bandwidth of an ingress port or egress port. Pi

in represents ingress port i, Pj
out represents egress port j.

References
[1]: https://dl.acm.org/doi/10.1145/3230543.3230569
[2]: https://dl.acm.org/doi/10.1145/2619239.2626315

