
Amery Chang

ac2925

PFP COMS-4995-02, Fall ‘22

Project Proposal: Parallel Database Joins

Abstract

I’m interested in implementing the textbook database join algorithms in Haskell, namely 

nested-loop join, sort-merge join, and hash join, and finding opportunities to perform parallelism. 

While the task of “join some data together on some column(s)” may seem fairly simple, it involves 

searching, filtering, and sorting as intermediary steps, and becomes more challenging when joins occur 

on multiple attributes. Moreover, I intend for the bulk of the complexity to come from structuring code 

into functions and combinators that can take advantage of Haskell’s parallelism constructs. My 

objective is to observe noticeable performance improvement when running the joins in parallel 

compared to in serial. 

Implementation and Testing

My program will read input data (most likely several files representing normalized relational 

database tables) into Haskell data structures and perform the join algorithms. My data will be entirely 

in memory. While query optimization typically takes access paths (i.e. indexes) into account, I will not 

be considering the existence of indexed columns, since none of my data is on disk. 

By “join” in this project, I am referring to the relational algebra operations for conditional 

(theta) join and equijoin. Formally, 

R ⋈θ S = σ(θ)(R x S) 



for relations R and S, and condition θ. The condition may be some predicate (theta join), or the 

condition can simply be an equal sign (equijoin). In SQL, joining on a predicate is essentially the inner 

join so my project will basically produce tuples that are the result of an inner join. 

In database implementation, one set of techniques in query optimization is applying equivalence

rules to relational algebra operators in order to create more efficient query plans (for example, by 

reducing the number of rows that need to be scanned). The focus of my project is not creating an 

optimal query plan, so I won’t be doing much of this. Since my goal is to test the raw performance 

improvement of joins via parallelism, the actual efficiency of the query isn’t something I’ll be trying to 

optimize.

I plan to create several baseline queries of varying complexity (join conditions, joining on 

multiple columns, performing various filters and sorts). For each, I will perform my join algorithms 

without parallelism, and with parallelism, and compare the results. Additionally, I will highlight 

implementation details of the parallel approaches which improve performance.

Questions

I’d really appreciate feedback on a few things:

1. Is this problem “Haskell-y”? Does it make sense to do this in Haskell, and (the thing I really 

hope to be the case)- are there specific advantages to doing this type of work in Haskell?

2. Is this a good fit with Haskell’s flavor of parallelism? I don’t think this is too far removed from 

some of the parallelism examples we’ve studied, and for that matter we did some join-type stuff

in homework 5.

3. Is this an appropriate level of complexity? I’m planning to work on my own. Is this a case 

where you’d expect to see a huge input data set? If so, I’d appreciate that feedback as soon as 

possible so that I can find or create a large enough data set. 


