
Go! Go! Haskell Curry!

Matthew Retchin (mhr2145)

November 2022

1 Overview

I will implement the classic minimax search algorithm with alpha-beta pruning
in Haskell, applying it to the ancient Chinese board game of Go. I will parallelize
minimax to improve its performance.

2 Background

Go is a turn-based abstract strategy game that has been played for thousands
of years. Until very recently, it was considered extremely difficult to beat a
professional human Go player with a computer algorithm. However, DeepMind’s
AlphaGo was able to combine a version of minimax search with a neural network
in 2016 to beat one of history’s best Go players. [1]

While I won’t be using a neural network for my project, I will be using
minimax search. Minimax search is a strategy for adversarial turn-based games
like Go that relies on the minimax decision rule. As we minimize our loss, we
assume that our opponent’s goal is to maximize our loss. And we assume that
our opponent operates under the assumption that we are minimizing our loss.
And so on; indeed, minimax is a recursive algorithm. Each possible move/board
state exists within a tree, and our objective is to search this tree until we reach
the leaves (completed games) with the minimum loss. If we can’t reach the
leaves in a reasonable amount of time, which often happens for games with a
high branch factor like Go, then we use a heuristic on the incomplete board
state to determine the state’s value.

As mentioned, Go has an exceedingly high branch factor in its search tree,
so we will try boards with dimensions ranging from 6x6 to 9x9 to keep the
computation feasible and neural nets unnecessary. The write-up will describe
what dimensions are most feasible.

Below is imperative Pythonic pseudocode for the sequential version of min-
imax (from Wikipedia):

def alphabeta(node, depth, alpha, beta, is_max):

if depth == 0 or node is terminal:

return heuristic_value(node)

1



if is_max:

value = -infinity

for child in node.children:

value = max(value, alphabeta(child, depth - 1, alpha, beta, False))

if value >= beta:

break

alpha = max(alpha, value)

return value

else:

value = infinity

for child in node.children:

value -= min(value, alphabeta(child, depth - 1, alpha, beta, True))

if value <= alpha:

break

beta = min(beta, value)

return value

alphabeta(root, depth, -infinity, infinity, True) # initial call like so

As is apparent by the sequential for-loops, what’s tricky about parallelizing
alpha-beta pruned minimax is that it’s fundamentally a sequential algorithm.
You save work by skipping branches of the search tree you’ve already determined
aren’t worth checking. One answer is to parallelize vanilla minimax (without
pruning) up to a certain depth in the search tree, after which we switch to a
sequential version and introduce alpha-beta pruning. It’s rather like the Fibon-
naci example in class where you use parallelism until a certain recursion depth,
after which you switch to a vanilla sequential version.

3 Objectives

• Implement a Go game engine that determines the legality of moves and
maintains a board state data structure. If I can introduce any parallelism
into the game engine to speed it up, then I will, though I don’t anticipate
the opportunity arising.

• Provide an graphical, quantitative Threadscope-based analysis comparing
parallel minimax with sequential minimax to see how much of a speedup
parallelism provides.

• Implement a textual user interface (TUI) so a user can play against the
AI. This is not a core feature, so I will likely drop it if I don’t have time.

• Write a few tests to sanity-check whether parallel minimax outputs the
same values as sequential minimax.

2



4 References

[1] https://www.theverge.com/2019/11/27/20985260/ai-go-alphago-lee-se-dol-retired-deepmind-defeat
[2] https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning#Pseudocode

3

https://www.theverge.com/2019/11/27/20985260/ai-go-alphago-lee-se-dol-retired-deepmind-defeat
https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning#Pseudocode

	Overview
	Background
	Objectives
	References

