Project Proposal: Parallel Convex Hull
COMS 4995 Parallel Functional Programming

Andrei Coman

November 27, 2022

1 Introduction

In this project, I will work on the Convex Hull Prob-
lem: given a large dataset D of points in the xy-plane,
find the smallest convex polygon which covers all the
points in D. While there are many efficient solutions
to this problem (most of which have a linear time
complexity in the size of the dataset), the constants
in their runtimes are large due to expensive arith-
metic operations and branching. For this reason, I
will parallelize one of these algorithms and analyze
the performance improvement.

2 Background

The algorithm that I will parallelize is known as Gra-
ham’s algorithm [2, pg.1029] and performs the follow-
ing operations at a high level:

e Identify a point on the convex-hull (usually the
leftmost /bottommost point)

e Take that point to be the origin and sort all the
remaining data points in clockwise order

e Iterate through the dataset while also maintain-
ing a stack; at every step, insert a new point and
pop the stack as long as necessary to maintain
its convexity

This is my complete C++ implementation of the idea
described above:

C++ Convex Hull Sequential Implementation

int n;
struct Point{double x, y;} v[1 + MAXN];
bool cmpXY(Point A, Point B){
return (A.x < B.x ||
(A.x == B.x & A.y < B.y));
}
bool cmpTan(Point A, Point B){
if(A.x == v[1].x && B.x == v[1].x)
return A.y < B.y;
if(A.x == v[1].x) return 1;

if(B.x == v[1].x) return O;
return (A.x - v[1].x) * (B.y - v[1].y) <
(B.x - v[1l.x) * (A.y - v[1].y);
}
bool convex(int a, int b, int c){
float S = (v[al.x * v[bl.y + v[b]l.x * v[c]l.y
+ vlcl.x * v[al.y)
- (vlal.x * vlcl.y + v[b]l.x * v[al.y
+ vlcl.x * v[bl.y);
return S < 0;

}

int Stack[1 + MAXN], StackSize;

void convexHull(){
std::sort(v + 1, v + n + 1, cmpXY);
std::sort(v + 2, v + n + 1, cmpTan);

Stack[++StackSize] = 1;
Stack[++StackSize] 2;
for(int i = 3; i <= n; i++){
while(!'convex(Stack[StackSize - 1],
Stack[StackSize],
i))
StackSize--;
Stack[++StackSize] = i;

3 Parallelism

Before parallelizing the algorithm, I make the follow-
ing slight modification: Instead of computing the en-
tire convex hull in one pass through the dataset, I
separate the computation into two stages - comput-
ing the upper hull and the lower hull.

Using this version of the algorithm, I first fragment
the xy-plane into vertical strips. Then, each thread-
/spark is assigned the computation of the convex hull
for one particular strip using the modified Graham’s
algorithm. In the end, the main thread collects all
the ”partial” convex hulls and performs a merging
algorithm on them.

To merge two linearly separated convex hulls (which
is true in our case since we aligned the points accord-
ing to the vertical strips), it is enough to find their
common upper-tangent and lower-tangent. This is
made easier by the previous modification [3]:

e Knowing the upper/lower hull for all fragments,
we know the leftmost /rightmost points for all
hulls.

e At a merge, we start with the line between the
rightmost point of the left hull and the leftmost
point at the right hull. We move along the hulls
iteratively until we find the common tangent.

If time permits, I will also consider parallelizing the
merge operations in a divide-and-conquer approach -
merge the first half of the hulls and merge the second
half of the hulls in parallel, then merge the result.

4 Expected Results

I expect this idea to allow for a considerable paral-
lel speedup for large datasets when combined with
Haskell Vectors/Arrays. This is because the more

costly arithmetic operations can be parallelized al-
most completely, while merging should be relatively
inexpensive. I have also found a similar parallel im-
plementation in Python [1] which gives good results.

Due to the nature of this algorithm, the distribution
of the points in the xy-plane is not very significant,
so large datasets can be generated randomly.

References

[1] Miller Russ Chen, Weiyang. Parallel Im-
plementation of the Convex Hull Problem.
https://cse.buffalo.edu/faculty /miller/Courses/
CSE633/Weiyang-Chen-Spring-2020.pdf.

[2] Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 3rd
edition, 2009.

[3] Petr Felkel. Convex Hulls.
https://cw.fel.cvut.cz/b181/ _media/courses/
cg/lectures/04-convexhull.pdf.

