
1

CSEE4840 Project Design Document
Homomorphic Encryption Accelerator

Lanxiang Hu, Liqin Zhang, Enze Chen
Department of {Electrical Engineering, Computer Science}

Columbia University
New York, NY

{lh3116, lz2809, ec3576}@columbia.edu

CONTENTS

I Introduction 2

II System Block Diagram 2

III Theory 3
III-A Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
III-B Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
III-C Encryption and Key Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
III-D Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
III-E Encrypted Domain Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

III-E1 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
III-E2 Linear Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
III-E3 Weighted Inner Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
III-E4 Polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
III-E5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

IV Design 6
IV-A Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

IV-A1 Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
IV-A2 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
IV-A3 Client-Server Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

IV-B Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
IV-B1 Client-side Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
IV-B2 Server-side Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

IV-C Hardware/Software Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
IV-C1 Client-side Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
IV-C2 Server-side Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

V Resource Budgets 16

References 17



2

I. INTRODUCTION

In the past few decades, it has witnessed evolution in cryptographic techniques and growing numbers of applications. In
Zhou and Wornell’s work [1], the fully homomorphic encryption scheme they proposed encrypts integer vectors to deliberately
generate malleable ciphertext and to allow computation of arbitrary polynomials in the encrypted domain. In this scheme,
specific integer vector operations including addition, linear transformation and weighted inner products are supported. Building
upon that and by taking combinations of these primitive operations, arbitrary polynomial can be effectively computed with
high accuracy.

This fully homomorphic encryption scheme is useful for applications in cloud computation, when one be interested in learning
low dimensional representations of the stored encrypted data without exposing either data plaintext or operation plaintext to
the server.

Moreover, in the dawn of the DL explosion for smartphones and embedded devices, it’s possible for the devices deployed
with DL models to be interested in accessing cloud data and make inferences on them. However, many DL-based models
deployed on embedded devices are not well-protected, a research in 2019 showed that out of 218 DL-based Android apps,
only less than 20% of them use encryption [2]. Homomorphic encryption, on the other hand, can resolve this problem easily
by the DL models to meallable ciphertexts.

II. SYSTEM BLOCK DIAGRAM

In this work, we present the Integer Vector Homomorphic Encryption scheme on embedded devices as a prototype for
encrypting vector-valued functions. We will use softwares run by the processor as client and server in the encryption scheme,
and hardwares implemented on FPGA as the accelerators. The system block diagram can then be drawn as shown in Fig. 1.

Figure 1. Overview of the Software/Hardware Architecture Design
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In this architecture, whenever the client decides to perform a linear operation on the encrypted integer vectors stored in
the server, the key-switching accelerator will compute the key-switching matrix that corresponds to the specific operation and
the client will send the matrix along with desired operation to the server. On the other hand, once received these information
from the client, the server carries out vectorized calculations in the custom accelerator over the encrypted domain, and returns
encrypted computational results to the client.

III. THEORY

A. Motivation
Consider the following scenario. Assume there is a client whose data is stored in a cloud server and the data is encrypted.

The client decides to a make hidden query on the data without letting the cloud server learn the nature of the data or anything
about the query.

To achieve this goal, fully homomorphic encryption is adopted to make ciphertext meallable. According to the homomorphic
encryption scheme proposed by Zhou and Wornell, both plaintext and ciphertext considered in this case are integer-valued
vectors with a integer-valued matrix as the secret key. Mathematically, we can formulate the problem as follows.

B. Formulation
Let the plaintext be x ∈ Zm and the corresponding ciphertext be x ∈ Zn with a large scalar w, a secret key S ∈ Zm×n,

and an error term e ∈
{
e ∈ Zm

∣∣∣∣ei < w

2

}
such that

Sc = wx+ e (1)

To keep the error term small while applying multiple linear operations in the encrypted domain, we want to assume∥S∥ ≪ w.
Moreover, consider an arbitrary linear operator A ∈ Rn×m, to keep the result as integer vector and the scheme self-consistent,

the following operations along with their notations will be used throughout this presentation and will be implemented in the
accelerators.
Definition B1 For scalar a ∈ R, define ⌊a⌉ to round a to the nearest integer.
Definition B2 For vector a ∈ Rn, define ⌊a⌉ to round each entry ai in a to the nearest integer.
Definition B3 For vector a ∈ Rn, define |a| := maxi{|ai|}.
Definition B4 For matrix A ∈ Rn×m, define |A| := maxij{

∣∣Aij

∣∣}.
Definition B5 For matrix A ∈ Rn×m, define vec (A) :=

[
aT1 , . . . ,a

T
m

]T
as a vector concatenating all ai where ai is the ith

column of A.

C. Encryption and Key Switching
To encrypt x, let wI be the original secret key. Consider a key-switching operation that can change a secret-key-ciphertext

pair to another with a new secret key while keeping the original plaintext encrypted. Without loss of generality, let the plaintext
currently be encrypted as ciphertext c ∈ Zn, we want to device a new secret-key-ciphertext pair

(
S′, c′

)
such that

S′c′ = Sc (2)

The first step is to convert S and c into intermediate bit representation S∗ and c∗ with c = Sc. The bit representation
follows |c∗| := max

{
|ci|

}
= 1 to prevent the transformed error term e′ from growing too large to preserve correctness while

rounding to the nearest integer.
First of all, pick a scalar ℓ that satisfies 2ℓ > |c|. Assume ci = bi0 + bi12 + · · ·+ bi(ℓ−1)2

ℓ−1. We can then rewrite c in its

bit representation following the rule: bi =
[
bi(ℓ−1), . . . , bi1, bi0

]T
with bik ∈ {−1, 0, 1} , k ∈ {ℓ− 1, . . . , 0}. And this gives

Eq. 3.

c∗ =
[
bT
1 , . . . ,b

T
n

]T
(3)

Similarly, we can make a bit-representation of the secret key S to acquire a new key S∗ with Eq. 4.

S∗
ij =

[
2ℓ−1Sij , . . . , 2Sij , Sij

]
(4)

And it can be demonstrated [3, 4] that this technique preserves S∗c∗ = Sc.
Beyond that, the second step is to convert the bit vector representation into a new secret-key-ciphertext pair. Consider a

random Gaussian noise matrix E ∈ Zm×nℓ, Eij ∼i.i.d. N
(
0, σ2

E

)
for some σE , key-swiching matrix M ∈ Zn′×nℓ along with

the new key S′ such that

S′M = S∗ + E (5)
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Consider keys only with the form S′ = [I, T ], as a identity matrix concatenated horizontally with some matrix T , whose
choice is not critical for our purposes. Now we can calculate

M =

[
S∗ − TA+ E

A

]
(6)

where A is another random Gaussian matrix K ∈ Z(n′−m)×nℓ,Kij ∼i.i.d. N
(
0, σ2

K

)
for some σK . Define

c′ = Mc∗ (7)

And it allows us to calculate

S′c′ = S∗c∗ + e′ (8)

where e′ = Ec∗ is the new error term.

D. Decryption
With the encryption scheme specified above, given that we know the secret key S, large scalar w, notice that neareast integer

rounding allows us to recover the plaintext by taking

x =

⌊
Sc

w

⌉
(9)

according to the linear relation in Eq. 1 and the fact that the error term is taken from the set
{
e ∈ Zm

∣∣∣∣ei < w

2

}
with

constrained error.

E. Encrypted Domain Operations
To dive into the mathematical algorithm in the operations, first we need to define several variables (or registers in hardware

design):
Definition E1 c1, c2 are two ciphertexts in the big data stored in the server.
Definition E2 S is the secret key for encryption. To be mentioned, all the ciphertexts are encrypted with the same secret key,

and the key only depends on the operation we choose.
Definition E3 M is the key-switch matrix that contains the information of the operation as well as the switched secret key.
Definition E4 x1, x2 are the corresponding plaintexts of ciphertexts c1, c2. Usually the cipher-plain pairs are predone and

the client knows the address of each ciphertexts, so he/she just need to tell which 2 addresses are used.
After that, we can illustrate the algorithms for carrying out each operation in the encrypted domain as follows.
1) Addition: It is obvious that

S(c1 + c2) = w(x1 + x2) + (e1 + e2) (10)

so the addition of the ciphertexts in the encrypted domain simply follows

c′ = c1 + c2 (11)

Notice that e1, e1 are devised such that the error is contained within |e1|+|e2| ≤ w.
2) Linear Transform: Given a linear transformation G ∈ Zm′×m, the encrypted result is

(GS) c = wGx+Ge (12)

When we consider GS as a secret key, then the equation above is an encryption of plaintext Gx. Thus, the client need to
create the key-switch matrix M ∈ Z(m′+1)×m′ℓ to switch the key from GS to S′ ∈ Zm′×(m′+1). After getting M and S′, the
client can send M to the server, and the cloud server simply computes

c′ = Mc (13)

as the encrypted result for the client to decrypt.
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3) Weighted Inner Product: Consider some plaintext x1,x2, their corresponding ciphertexts c1, c2 and a matrix H with
information about weights of the inner products we want to take. The inner product of our interest takes the form

h = xT
1 Hx2 (14)

Now, we need one mathematical side note to proceed. Consider the following Lemma.
Lemma E1 For any arbitrary vectors x,y and matrix M with appropriate dimensions, its inner product follows

xTHy = vec (M)
T vec

(
xyT

)
(15)

See [1] and [3] for proof of this Lemma.
In order to compute Eq. 14 in the encrypted domain, we can leverage Lemma E1 to derive the proposition specified below.

Proposition E1 Consider secret key S = vec
(
ST
1 HS2

)T
and ciphertext c =

⌊
vec

(
c1c

T
2

)
w

⌉
corresponding to the plaintext of

the inner product xT
1 Hx2. And for some error term e independent of e1 and e2 for c1 and c2 they satisfy the following

condition,

vec
(
ST
1 HS2

)T
⌊

vec
(
c1c

T
2

)
w

⌉
= wx1Hx2 + e (16)

See [3] and [5] for details about the proof of this Proposition.

Notice that instead of a key switching matrix here, the operator to be applied to

⌊
vec

(
c1c

T
2

)
w

⌉
in calculating the weighted

inner product is a row vector vec (S1HS2)
T . Because of the vectorization operation, the width of operator vec (S1HS2)

T after
key switching is n2.

To this end, we can leverage this property of the row vector, and concatenate m′ such operators, each of which corresponds
to a weight matrix Hj , j ∈

{
1, . . . ,m′}, together to be a key-switching matrix S′ so that m′ such weighted inner products

can be carried out simultaneously.
Namely, we now have

S′

⌊
vec

(
c1c

T
2

)
w

⌉
= wp+ e (17)

where vector p contains m′ entries of weighted inner products, each of which corresponds to an inner product xT
1 Hjx2.

We can then apply the key-switching algorithm as specificed in Eq. 3 to Eq. 8 to S′ and obtain a corresponding key switching
matrix M ∈ Zn2×(m′+1) along with a new secret key S′′ ∈ Zm′×(m′+1). The final ciphertext is therefore

c′′ = M

⌊
vec

(
c1c

T
2

)
w

⌉
(18)

4) Polynomial: Building upon the three aforementioned operations, we can now synthesize polynomial operations with
weighted inner products introduced above to calculate multiple arbitrary degree polynomials in parallel. All we need is to expand
the x and S′ and thereby account for constant terms in polynomials. Let the modified input vector xp = [1, x1, x2, ..., xn]

T .
The new ciphertext then becomes c′ := [w, c1, ..., cn]

T . We also need to extend the secret key S because we simply added a
constant factor 1 to x:

S′ :=

[
1 0
0 S

]
(19)

Thus, given any inner product weight matrices {Hj}, we can calculate its key-switch pair M so that each xT
p Hjxp can be

calculated in accordance with Eq. 16, or more compactly with Eq. 17 to deal with all {Hj} in parallel. The steps follow the ones
introduced in the Weighted Inner Product section. For degree 2 polynomials, one inner product simply does the computation.
For higher-degree polynomials, notice that higher-order polynomials can be calculated based on lower-order polynomials.

5) Examples:
• Key Switching Example Consider the case ℓ = 3, ciphertext c = [1,−2], and

S =

[
1 2
3 4

]
(20)

The corresponding bit representation of c and S are therefore

c∗ = [1, 0, 0, 0,−1, 0] (21)
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S∗ =

[
4 2 1 8 4 2
12 6 3 16 8 4

]
(22)

• Polynomial/Weighted Inner Product Example To calculate the polynomial f(x) = x2
2 − 4x1x3, we can express it as

an weighted inner product x′THx′, and

H =

 0 0 −2
0 1 0
−2 0 0

 (23)

IV. DESIGN

A. Software
Software serves as both the client and the server in this project, each of which takes different responsibilities.
1) Client: The client-side software serves as the function caller to general homomorphic encryption, and key switching

operation that generates public keys for one of the four operations discussed above. Note that key switching is not needed for
vector addition. Once the client-side functions are called, homomorphic encryption and key switching for each of the primary
operation will be done in the key switching matrix accelerator by making a syscall and invoking the corresponding device
driver. The following client-side operations are sketched in pseudocode to illustrate their functionalities. Notice that a library
of client-side syscalls is also needed for client user program to talk to the kernel.

1 // Here we assume the device driver has been properly initialized and allocated with
memory↪→

2 // The following syscalls write and read from the key-switching device driver.
3 // each operation specified below corresponds to a call that interacts with I/O memory

corresponds to the device driver.↪→

4 static long key_switching_ioctl(struct file *f, unsigned int cmd, arg*) {
5 switch (cmd) {
6 case WRITE_BIT_REPR_MATRIX:
7 // copy matrix S from user, send it to key switching accelerator
8 case READ_BIT_REPR_MATRIX:
9 // read matrix Sˆ* from device driver, send it to user program

10 case GET_RANDOM_MATRIX:
11 // get a random matrix with the get_random_matrix module in hardware
12 case WRITE_MATRIX_MULT:
13 // write to the matrix multiplication module
14 case READ_MATRIX_MULT:
15 // read from the matrix multiplication module
16 case WRITE_MATRIX_VECTORIZE:
17 // write to the matrix vectorization module
18 case READ_MATRIX_VECTORIZE:
19 // read from the matrix vectorization module
20 case WRITE_NINT_VECTOR_DIVIDE:
21 // write to the nint_vector_divide module
22 case READ_NINT_VECTOR_DIVIDE:
23 // read from the nint_vector_divide module
24 }
25 }
26

27

28 // a struct that contains two matrices
29 struct client_mat_pair {
30 mat* A;
31 mat* B;
32 } mat_pair;
33

34 // secret key generator with seed T, such that S' = [I, T]
35 mat get_secret_key (mat &T) {
36 // generator an identity matrix
37 // concatenate it with T
38 return [I, T];
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39 }
40

41 // perform key switching operation
42 // it returns new secret key S' and key-switching matrix M
43 mat_pair key_switch (mat &T, mat &S)
44 {
45 // call key_switching_accelerator in hardware
46 ioctl(fd, WRITE_BIT_REPR_MATRIX, &S); // compute key switch matrix in hardware
47 mat S_star;
48 ioctl(fd, READ_BIT_REPR_MATRIX, &S_star);
49 mat A, E;
50 ioctl(fd, GET_RANDOM_MATRIX, &A);
51 ioctl(fd, GET_RANDOM_MATRIX, &E);
52

53 mat TA;
54 ioctl(fd, WRITE_MATRIX_MULT, &T, &A);
55 ioctl(fd, READ_MATRIX_MULT, &TA);
56

57 M = [S_tar - TA + E]
58 // concatenate M vertically with A
59

60 S_prime = get_secret_key(&T);
61 mat_pair result;
62 result.A = &S_prime;
63 result.B = &M;
64 return result;
65

66 }
67

68 mat decrypt (mat &S, mat &c, int w)
69 {
70 mat Sc;
71 mat R;
72 ioctl(fd, WRITE_MATRIX_MULT, &S, &c);
73 ioctl(fd, READ_MATRIX_MULT, &Sc);
74 ioctl(fd, WRITE_NINT_VECTOR_DIVIDE, &Sc, w);
75 ioctl(fd, READ_NINT_VECTOR_DIVIDE, &R);
76 return R;
77 }
78

79 // to perform addition operation, key switching is not needed. See Eq. 11.
80

81

82 // call server side linear transform operation, send the key switch matrix M from GS
-> S' to the server. See Eq. 12.↪→

83 mat_pair client_linear_trans(mat &G, mat &S, mat &T)
84 {
85 mat GS;
86 ioctl(fd, WRITE_MATRIX_MULT, &G, &S);
87 ioctl(fd, READ_MATRIX_MULT, &GS);
88 return key_switch(&T, &GS);
89 }
90

91 // call server side inner product operation
92 // returns M, the key switch matrix from vec(Sˆt H S) to S, multiple rows of vec(Sˆt H

S) can be made into S'↪→

93 // notice that this code only takes vec(Sˆt H S) rather than S' as the operator
94 mat_pair client_inner_product(mat &H, mat &S, mat &T)
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95 {
96 mat HS;
97 mat StHS;
98 mat St;
99 mat vec_StHS;

100 // take S transpose, St
101

102 ioctl(fd, WRITE_MATRIX_MULT, &H, &S);
103 ioctl(fd, READ_MATRIX_MULT, &HS);
104 ioctl(fd, WRITE_MATRIX_MULT, &St, &HS);
105 ioctl(fd, READ_MATRIX_MULT, &StHS);
106

107 ioctl(fd, WRITE_MATRIX_VECTORIZE, &StHS);
108 ioctl(fd, READ_MATRIX_VECTORIZE, &vec_StHS);
109

110 return key_switch(&T, &vec_StHS);
111 }
112

113

114 // call server side polynomial operation
115 // returns M, the key switch matrix from vec(S'ˆt H S') to S'. Notice that S' is the

extended secret key↪→

116 mat_pair client_deg2_polynomial(mat &H, mat &S_prime, mat &T)
117 {
118 return client_inner_product(&H, &S_prime, &T);
119 }

The function specified above only works for degree-2 polynomial as an example demonstrate the workflow. To implement
arbitrary degree-d polynomial, more sophisticated functions are needed to factorize polynomials into a sequence of weighted
inner product operations.

2) Server: The server-side software serves as the data center where user information are stored. It takes pre-configured
and encrypted data and performs encrypted domain operations in the server-side hardware to accelerator computations. All
computations can be decomposed into a combination of vector additions, linear transformations and weighted inner products.
See the following functions for pseudocode.

1 // Here we assume the device drivers has been properly initialized and allocated with
memory↪→

2 // The following syscalls write and read from the key-switching device drivers.
3 // each operation specified below corresponds to a call that interacts with I/O memory

corresponds to the device drivers.↪→

4 static addition_ioctl(struct file *f, unsigned int cmd, arg*) {
5 switch (cmd) {
6 case VEC_ADDITION:
7 // perform vector addition for input vectors c1 and c2
8 // return the result in one cycle as a vector
9 }

10 }
11

12 static linear_transform_ioctl(struct file *f, unsigned int cmd, arg*) {
13 switch (cmd) {
14 case WRITE_LINEAR_TRANSFORM:
15 // write matrix M and vector c to linear transform accelerator
16 case READ_LINEAR_TRANSFORM:
17 // read result of the linear transform from device driver, send it to user

program↪→

18 }
19 }
20

21 static inner_prod_ioctl(struct file *f, unsigned int cmd, arg*) {
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22 switch (cmd) {
23 case WRITE_WEIGHTED_INNER_PROD:
24 // write key-switching matrix W along with vector c1, c2, and scalar w to

weighted inner product accelerator↪→

25 case READ_WEIGHTED_INNER_PROD:
26 // read result of weighted inner product device driver, send it to user

program↪→

27 }
28 }
29

30 // server side addition operation, return the vector addition of two ciphtertexts
31 vec serv_addition(vec &c1, vec &c2)
32 {
33 vec c;
34 ioctl(fd, VEC_ADDITION, &c_1, &c_2, &c);
35 return c;
36 }
37

38 // server side linear transform operation, returns c'==S(Gx) given c=Sx and M
39 mat serv_linear_trans(mat &M, vec &c)
40 {
41 vec c_prime;
42 ioctl(fd, WRITE_LINEAR_TRANSFORM, &M, &c);
43 ioctl(fd, READ_LINEAR_TRANSFORM, &c_prime);
44 return c_prime;
45 }
46

47 // given two ciphertexts and the keyswitch matrix, computes a single weighted inner
product↪→

48 int serv_inner_product(vec c1, vec c2, mat M, int w)
49 {
50 int a;
51 ioctl(fd, WRITE_WEIGHTED_INNER_PROD, &c1, &c2, &M, w);
52 ioctl(fd, READ_WEIGHTED_INNER_PROD, a);
53

54 return a;
55 }
56

57 // given two ciphertexts and the keyswitch matrix, computes result of a degree 2
polynomial↪→

58 int serv_deg2_polynomial(vec c1, vec c2, mat M, int w)
59 {
60 return serv_inner_product(c1, c2, M, w);
61 }

The function specified above only works for degree-2 polynomial. To generalize the function that computes arbitrary degree-
d polynomial, more sophisticated functions are needed to factorize polynomials into a sequence of weighted inner product
operations.

3) Client-Server Communication: Query functions that can be called by the client to send information to the server in
order to carry out specific computations include:

Query functions that can be called by the server to send information to the server in order to carry out specific computations
include:

1 // Assume a socket or pipe is used for communication between client and server.
2 // Assume the socket/pipe has been initialized.
3

4 int send_query(int sockfd, size_t msg, size_t msgSize)
5 {
6 // send operation type
7 // send address for ciphertext 1
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8 // send address for ciphertext 2 (if any)
9 // send key-switching matrix (if any)

10 return success;
11 }
12

13 size_t listen(int sockfd, size_t *msgSize)
14 {
15 // receive signal
16 // read message (32-bit integer ciphertext)
17 // return NULL if fails
18 return ciphertext;
19 }

All the function calls via syscall can be interpreted as an operation done in the hardware.
1 struct query_information {
2 int operation_type;
3 int addr_1;
4 int addr_2;
5 mat* M;
6 } query;
7

8 // Assume a socket or pipe is used for communication between client and server.
9 // Assume the socket/pipe has been initialized.

10

11 size_t handle_query(int sockfd, size_t *msgSize)
12 {
13 // receive signal
14 // parse operation type
15 // parse address for ciphertext 1
16 // parse address for ciphertext 2 (if any)
17 // parse send key-switching matrix (if any)
18 // return NULL if fails
19

20 // acquire c1 and c2 according to the addresses
21 // return pointer to a struct query
22 return &query;
23 }
24

25 int write_back(int sockfd, size_t msg, size_t msgSize)
26 {
27 // send ciphertext through socket
28 return success;
29 }

B. Hardware
1) Client-side Accelerator: The client-side accelerator is mostly responsible for key-switching operations to get the correct

key-switching matrices for calculating linear transformation, weighted inner product and polynomial. After the key switching
completes, a new Secret key S′ will be derived and retained by the client to decrypt encrypted result once the server has done
computation, and a key-switching matrix M will also be generated and sent to the server to carry out different computations.
• Key-switching accelerator: The key-switching accelerator is the only device driver in the client-side hardware. It composes

of two major sub-modules, one module for getting bit-representation of a vector corresponding to Eq. 3, one module for
getting bit-representation of a matrix corresponding to Eq. 4 and one module for getting random Gaussian matrix in order
to calculate Eq. 6. We can sketch the pseudocode for each module as follows. Note that for vectors and matrices exceeding
the size capacity of the accelerators, the kernel is responsible for breaking the query into reasonable sizes that fits the
accelerators (maximum row and column number as 256).

1 module bit_repr_vector(input logic clk,
2 input logic reset,
3 ...,
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4 input logic write,
5 input logic chipselect,
6 input logic [7:0] width,
7 input logic [31:0] c_i,
8

9 output logic [7:0] output_length,
10 output logic [31:0] c_star_i);
11

12 logic read_enable;
13 logic start_comp;
14 logic [7:0] write_index;
15 logic [7:0] read_index;
16

17 // initialize a DMEM to store input vector.
18 dmem dmem_0(...);
19 always_ff @(posedge clk) begin
20 if (reset) begin
21 // handle reset conditions
22 end else if (chipselect && write) begin
23 // preload each element into DMEM
24 // keep track loaded index number
25 // once all elements loaded, set computational flag to true
26 end
27 end
28

29 // do computations when computational flag is true
30 always_ff @(posedge clk) begin
31 if (start_comp) begin
32 // perform bit-representation conversion for vector c
33 // keep track output length
34 // once finished, set read_enable to true
35 // set computational flag to false
36 end
37 end
38

39 // read each element every clock cycle
40 always_ff @(posedge clk) begin
41 if (read_enable) begin
42 // spitting out one element each cycle with appropriate index
43 // once finished, set read_enable to false
44 end
45 end
46 endmodule
47

48

49 module bit_repr_matrix(input logic clk,
50 input logic reset,
51 ...,
52 input logic write,
53 input logic chipselect,
54 input logic [7:0] width,
55 input logic [7:0] length,
56 input logic [31:0] S_ij,
57

58 output logic [7:0] output_length,
59 output logic [7:0] output_width,
60 output logic [31:0] S_star_ij);
61

62 logic read_enable;
63 logic start_comp;
64 logic [7:0] loaded_row_num;
65 logic [7:0] write_index;
66 logic [7:0] spitting_row_num;
67 logic [7:0] read_index;
68

69 genvar i;
70 generate
71 // initialize DMEM blocks, each to store an input row vector
72 endgenerate
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73

74 genvar j;
75 generate
76 // initialize DMEM blocks, each to store an output row vector
77 endgenerate
78

79 always_ff @(posedge clk) begin
80 if (reset) begin
81 // handle reset conditions
82 end else if (chipselect && write) begin
83 // preload element in each row into DMEM
84 // keep track index and loaded row numbers
85 // once all loaded, set computational flag to true
86 end
87 end
88

89 // do computations when computational flag is true
90 always_ff @(posedge clk) begin
91 if (start_comp) begin
92 // perform bit-representation conversion for secret key S
93 // keep track output length and width
94 // once finished, set read_enable to true
95 // set computational flag to false
96 end
97 end
98

99 // read element in each row every clock cycle
100 always_ff @(posedge clk) begin
101 if (read_enable) begin
102 // spitting out element in each row each cycle
103 // once finished, set read_enable to false
104 end
105 end
106

107 endmodule
108

109 module get_random_matrix(input logic clk,
110 input logic reset,
111 ...,
112 input logic gen,
113 input logic chipselect,
114 input logic [7:0] length,
115 input logic [7:0] width,
116

117 output logic [31:0] S_star_ij);
118

119 logic [31:0] seed;
120 logic [7:0] generated_row_num;
121

122 // generate multiple LFSR instances to create a Gaussian random variable at each cycle
123 lfsr lfsr_0(...);
124

125 genvar j;
126 generate
127 // initialize DMEM blocks, each to store an output row vector
128 endgenerate
129

130 always_ff @(posedge clk) begin
131 if (reset) begin
132 // handle reset conditions
133 end else if (chipselect && gen) begin
134 // generate a Gaussian random variable and store in DMEM
135 // keep track index and row numbers
136 // once finished, set read_enable to true
137 end
138 end
139

140 // read each element every clock cycle
141 always_ff @(posedge clk) begin
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142 if (read_enable) begin
143 // spitting out one element each cycle with appropriate index
144 // once finished, set read_enable to false
145 end
146 end
147

148 endmodule

Notice that more parallelism can be acquired with this design if we wrap each of the module presented above with a
higher-level module that instantiates multiple instances simultaneous, one for every row vector. This way, we can achieve
linear speedup proportional to the number of instances initiated.
Several helper modules corresponding to some operations defined in Definition B1 ∼ Definition B5 are needed including:

1 module dmem(...);
2 // Initialize DMEM of appropriate sizes
3 endmodule
4

5 module lfsr(...);
6 // Linear-feedback shift register as random number generator
7 endmodule
8

9 module mat_mult(...);
10 // Perform matrix multiplication
11 endmodule
12

13 module nint_vector_divide(...);
14 // Divide each entry in a vector by w
15 // Round division to nearest integer according to Definition B3
16 endmodule

2) Server-side Accelerator: Since the operations over the encrypted domain have four different types, each of which involves
different number and size of inputs, we want to use four different accelerators, each of which serves as a distinct device driver
in the kernel. Also, in order to be robust, each device driver needs to have sufficiently large memory in order to handle with
large key-switching matrices in various tests. This memory block will be implemented as DMEM and will be discussed in
more details in section VI.

At a high level, each device driver consists of two major steps: MEMORY READ that uses the address given by kernel to
fetch the ciphertexts from memory for calculation, and OPERATION that performs specific vector operations and generates
computational results. Note that each device driver corresponding to each of the four operations takes different number of
ciphertexts and perform different computations (as mentioned in the Encrypted Domain Operation section).

In other words, four device driver instances are needed including addition accelerator, linear transformation accelerator,
weighted inner product accelerator and polynomial accelerator respectively.

• Addition Accelerator:
The vector addition accelerator takes the simple form of performing a element-wise addition of two vectors. In the
pseudocode presented below, the vector addition accelerator adds two 16-element vectors together at one cycle. Queries
about ciphertexts stored at c_1_addr and c_2_addr will be read from the database, and each element will be sent to
one port of the following module.

1 module 16elem_addition(input logic clk,
2 input logic reset,
3 ...,
4 input logic write,
5 input logic chipselect,
6 input logic [31:0] c_1_1,
7 ...,
8 input logic [31:0] c_1_16,
9

10 input logic [31:0] c_2_1,
11 ...,
12 input logic [31:0] c_2_16,
13

14 output logic [31:0] c_1,
15 ...,
16 output logic [31:0] c_16);
17

18 // Instantiate 16 32-bit integer adders
19 adder adder_1(...);
20 ...;
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21 adder adder_16(...);
22

23 // Read adders' outputs
24

25 endmodule

• Linear Transformation Accelerator:
The linear transformation accelerator simply takes a matrix multiplication of the key-switching matrix received from the
client and apply it as a linear operator to ciphertext c stored at address c_addr. Queries about ciphertext stored at
c_addr will be read from the database and each 16-element row of the key-switching matrix M will be sent to the
accelerator from the server each cycle, with each of these elements takes one input port of the following module.

1 module 16elem_linear_transform(input logic clk,
2 input logic reset,
3 ...,
4 input logic write,
5 input logic chipselect,
6 input logic [7:0] width,
7 input logic [7:0] length,
8 input logic [31:0] W_i1,
9 ...,

10 input logic [31:0] W_i16,
11

12 input logic [31:0] c_1,
13 ...,
14 input logic [31:0] c_16,
15

16 output logic [31:0] y_i));
17

18

19 logic [7:0] current_row_num;
20

21 always_ff @(posedge clk) begin
22 if (reset) begin
23 // handle reset conditions
24 end else if (chipselect && write) begin
25 // take inner product of S_i with c
26 // keep track of current row numbers
27 // read the result as an integer at the next cycle
28 end
29 end
30

31 endmodule

• Weighted Inner Product Accelerator:
Recall Eq. 18, for this example pseudocode implementation of the weighted inner product module, consider ciphertext
as a 4-element vector c. 4-element vector c is chosen because matrix vectorization after outer production yields 42 = 16
element output. Queries about ciphertexts c1, c2 stored at c_1_addr and c_2_addr will be read from the database
and sent to the accelerator along with the scalar w in Eq. 18 in the first cycle. Each 16-element row of the key-switching
matrix M at one cycle.

1 module 16elem_weighted_inner_prod(input logic clk,
2 input logic reset,
3 ...,
4 input logic write,
5 input logic chipselect,
6 input logic [31:0] w,
7 input logic [31:0] c_1_1,
8 ...,
9 input logic [31:0] c_4_1,

10 input logic [31:0] c_1_2,
11 ...,
12 input logic [31:0] c_4_2,
13 input logic [7:0] width,
14 input logic [7:0] length,
15 input logic [31:0] W_i1,
16 ...,
17 input logic [31:0] W_i16,
18
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19

20 output logic [31:0] c));
21

22 logic start_outer_prod;
23 logic start_vectorize;
24 logic read_enable;
25 logic [7:0] current_row_num;
26

27 genvar i;
28 generate
29 // initialize DMEM blocks, each to store an input row vector in M
30 endgenerate
31

32 genvar j;
33 generate
34 // initialize DMEM blocks, each to store an row vector of the outer product
35 endgenerate
36

37 always_ff @(posedge clk) begin
38 if (reset) begin
39 // handle reset conditions
40 end else if (chipselect && write) begin
41 // preload vectors c_1, c_2 and scalar w to registers
42 // preload each row of M
43 // keep track loaded row numbers
44 // once all loaded, set start_outer_prod to true
45 end
46 end
47

48 vectorize vectorizor(...);
49

50 // do outer_product when start_outer_prod is true
51 always_ff @(posedge clk) begin
52 if (start_outer_prod) begin
53 // perform outer product c_1 c_2ˆT
54 // keep track output length and width
55 // once finished, set start_vectorize to true
56 // and vectorize the outer product
57 end
58 end
59

60 // once vectorization done
61 // read vectorization output
62

63 nint_vector_divide nint_divider(...);
64 // divide the vectorized result by w
65 // round each entry to nearest integer
66 // let the vector be c'
67 // once finished, set read_enable to true
68

69 always_ff @(posedge clk) begin
70 if (read_enable) begin
71 // take inner product of W_i with c'
72 // keep track of current row numbers
73 // read the result as an integer at the next cycle
74 end
75 end
76

77 endmodule

• Polynomial Accelerator:
Note that calculating polynomial is essentially a glorified weighted inner product according to our scheme. Therefore,
having let the kernel figure out how to perform a sequence of weighted inner products to obtain a polynomial of degree
d, we can potentially customize an accelerator for a polynomial of, say degree 2, that supports inner product for two
ciphertexts c1, c2 as 16-element vectors. The only difference is that W is now derived from a secret key of the form
Eq. 19. Therefore, as long as we modify the weighted inner product module presented above to a slightly larger size that
fits the key-switching matrix corresponding to S′ → S′′ in Eq. 18, the accelerator can do its job.
In our design, we action of scheduling and arranging accumulative weighted inner product is done in the kernel. Only
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individual weighted inner products are performed in hardware.
Several helper modules corresponding to some operations defined in Definition B1 ∼ Definition B5 are needed including:

1 module vectorize(...);
2 // Merge two vectors in to one
3 // Can be used to vectorize a matrix according to Definition B5
4 endmodule
5

6 module nint_vector_divide(...);
7 // Divide each entry in a vector by w
8 // Round division to nearest integer according to Definition B3
9 endmodule

10

11 module outer_product(...);
12 // Perform outer product according to Eq.18;
13 endmodule
14

15 module adder(...);
16 // 32-bit integer scalar adder;
17 endmodule
18

19 module dmem(...);
20 // Initialize DMEM of appropriate sizes
21 endmodule

C. Hardware/Software Interface
1) Client-side Kernel: For the client-side kernel, the only device driver can be accessed is the key-switching accelerator.

Recall from Eq. 4 to Eq. 6, for each key-switching operation, in order to compute S∗, M and S′, the module needs to take
matrix S as input, along with two random Gaussian matrices that can be generated by the hardware itself (see the Client-side
accelerator section).

In this design, we plan to support key-switching matrix of up to 16 elements of width and 256 elements of lengths (height,
number of rows). Namely, from Eq. 5, it follows n′ ≤ 256, nℓ ≤ 16.

At the lowest level based on our hardware design, the key-switching operation is done by taking element-wise inputs and
store them into multiple DMEM blocks, each of which as a row vector. However, notice that this operation can be further
parallelized if we modify the bit_repr_matrix module such that processes each row vector at a time. Alternatively, it can
also be done by instantiating multiple instances of bit_repr_vector to convert each row of S to its bit representation at
one cycle.

With this architecture, there will be 16 32-bit-wide input ports for the key-switching accelerator to deliver one row of the
secret key S at a time and achieve a significant speedup.

2) Server-side Kernel: For the client-side kernel, the device drivers that can be accessed include addition accelerator, linear
transformation accelerator, weighted inner product accelerator and polynomial accelerator.

In this design, we plan to support vector operations with up to 16 elements at a time in one cycle. Each element in a vector
is taken as a 32-bit signed integer in agreement with the scheme. Specifically, that means the addition accelerator can calculate
the sum of two 16-element vectors c1, c2 in one cycle. The linear transformation accelerator can compute the inner product
of one 16-element row vector Wi with one 16-element column vector c and completes the desired linear transformation in
m cycles given W ∈ Zm×16. The weighted inner product accelerator and the polynomial accelerator take in 16-element row
vector of W each cycle along with c1, c2, w at the first cycle, and they generate the output all at once after some cycles of
operations to compute intermediate steps.

As discussed in the Server-side accelerator section, one thing to notice is that polynomial accelerator is essentially the same
as the weighted inner product accelerator with a slightly different key-switching matrix and ciphertext. Therefore, it’s important
for the kernel and the polynomial accelerator device driver to handle one weighted inner product operation at a time. The order
at which weighted inner products will be carried out and the exact steps are handled by the server-side software as discussed
in Server-side software section.

V. RESOURCE BUDGETS

For the client-side accelerator, notice that we plan to support key-switching matrix of up to 16 elements of width and 256
elements of lengths. Since each element is a 32-bit integer, each row in the key-switching matrix takes a DRAM of size
16× 32, so the maximum size for a DRAM that stores each row is Mi = 512 bits. For a key-switching matrix with m ≤ 256
rows, it takes up to 256 such DRAM blocks to store all rows. This costs 256 × 512 = 131072 bits = 16384B = 16kB. Let
each of this memory module be call Dmem in the system block diagram as shown in Fig. 1. We can create 8 such DRAM
modules as client-side accelerator’s cache, and it takes 16kB × 8 = 128kB of memory on FPGA.
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For the server-side accelerator, we as well plan to support key-switching matrix of up to 16 elements of width and 256
elements of lengths. This is the same as the client-side accelerator because the key-switching matrix serves as the public key
and need to be used by the server to carry out linear transformation and polynomial computations. We want to create 16 such
DRAM modules as server-side accelerator’s cache for not only key-switching matrix but also results from outer product and
vector addition, so it takes 16kB × 16 = 256kB of memory on FPGA.

Some registers might also be needed to store real-time vector inputs, results including nearest integer vector division, matrix
vectorization and linear transformation results while doing linear transformation. Assume they take up to 256kB of memory
on FPGA.

Combine all of them together, we need around 640kB of memory on FPGA. From The Cyclone® V FPGA core architecture’s
specifications, it states that the FPGA comprises of up to 12 Mb of embedded memory arranged as 10 Kb (M10K) blocks.
Namely, we have more than 1 MB of memory avaliable on FPGA.

Therefore, we can assume that there is sufficient memory on FPGA for all computations required.
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