
Altera’s Avalon Communication Fabric

Stephen A. Edwards

Columbia University

Spring 2022



Altera’s Avalon Bus

Something like “PCI on a chip”

Described in Altera’s Avalon Memory-Mapped Interface
Specification document.

Protocol defined between peripherals and the “bus”
(actually a fairly complicated circuit).



Intended System Architecture

Source: Altera



Masters and Slaves

Most bus protocols draw a distinction between

Masters: Can initiate a transaction, specify an address, etc.
E.g., the Nios II processor

Slaves: Respond to requests from masters, can generate
return data. E.g., a video controller

Most peripherals are slaves.

Masters speak a more complex protocol

Bus arbiter decides which master gains control



The Simplest Slave Peripheral

Avalon-MM

 Interface

(Avalon-MM

 Slave Port)

Application-

Specific

Interface

writedata[15..0]

write

chipselect

clk

pio_out[15..0]

CLK_EN

>

D Q

Avalon-MM Peripheral

Basically, “latch when I’m selected and written to.”



Slave Signals

For a 16-bit connection that spans 32 halfwords,

Slave

← clk
← reset
← chipselect
⇐ address[4:0]
← read
← write
⇐ byteenable[1:0]
⇐ writedata[15:0]
readdata[15:0] ⇒
irq →

Avalon



Avalon Slave Signals

clk Master clock
reset Reset signal to peripheral
chipselect Asserted when bus accesses peripheral
address[..] Word address (data-width specific)
read Asserted during peripheral→bus transfer
write Asserted during bus→peripheral transfer
writedata[..] Data from bus to peripheral
byteenable[..] Indicates active bytes in a transfer
readdata[..] Data from peripheral to bus
irq peripheral→processor interrupt request

All are optional, as are many others for, e.g., flow-control
and burst transfers.



In SystemVerilog

module myslave(input logic clk,
input logic reset,
input logic [7:0] writedata,
input logic write,
input logic chipselect,
input logic [2:0] address);



Basic Slave Read Transfer

clk

address

read

chipselect

readdata

Bus cycle starts on rising clock edge

Data latched at next rising edge

Such a peripheral must be purely combinational



Slave Read Transfer w/ 1 Wait State

clk

address

read

chipselect

readdata

Bus cycle starts on rising clock edge

Data latched two cycles later

Approach used for synchronous peripherals



Basic Async. Slave Write Transfer

clk

address

write

chipselect

writedata

Bus cycle starts on rising clock edge

Data available by next rising edge

Peripheral may be synchronous, but must be fast



Basic Async. Slave Write w/ 1 Wait State

clk

address

write

chipselect

writedata

Bus cycle starts on rising clock edge

Peripheral latches data two cycles later

For slower peripherals



The Vga_ball Peripheral

module vga_ball(input logic clk,
input logic reset,
input logic [7:0] writedata,
input logic write,
input chipselect,
input logic [2:0] address,

output logic [7:0] VGA_R, VGA_G, VGA_B,
output logic VGA_CLK, VGA_HS, VGA_VS,

VGA_BLANK_n,
output logic VGA_SYNC_n);

logic [10:0] hcount;
logic [9:0] vcount;

logic [7:0] background_r, background_g, background_b;

vga_counters counters(.clk50(clk), .*);



The Vga_ball Peripheral

always_ff @(posedge clk)
if (reset) begin

background_r <= 8’h0;
background_g <= 8’h0;
background_b <= 8’h80;

end else if (chipselect && write)
case (address)
3’h0 : background_r <= writedata;
3’h1 : background_g <= writedata;
3’h2 : background_b <= writedata;

endcase

always_comb begin
{VGA_R, VGA_G, VGA_B} = {8’h0, 8’h0, 8’h0};
if (VGA_BLANK_n )

if (hcount[10:6] == 5’d3 &&
vcount[9:5] == 5’d3)

{VGA_R, VGA_G, VGA_B} = {8’hff, 8’hff, 8’hff};
else

{VGA_R, VGA_G, VGA_B} =
{background_r, background_g, background_b};

end


