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Altera’s Avalon Bus

Something like “PCI on a chip”

Described in Altera’s Avalon Memory-Mapped Interface
Specification document.

Protocol defined between peripherals and the “bus”
(actually a fairly complicated circuit).



Intended System Architecture

Source: Altera



Masters and Slaves

Most bus protocols draw a distinction between

Masters: Can initiate a transaction, specify an address, etc.
E.g., the Nios II processor

Slaves: Respond to requests from masters, can generate
return data. E.g., a video controller

Most peripherals are slaves.

Masters speak a more complex protocol

Bus arbiter decides which master gains control



The Simplest Slave Peripheral
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Basically, “latch when I’m selected and written to.”



Slave Signals

For a 16-bit connection that spans 32 halfwords,

Slave

← clk
← reset
← chipselect
⇐ address[4:0]
← read
← write
⇐ byteenable[1:0]
⇐ writedata[15:0]
readdata[15:0] ⇒
irq →

Avalon



Avalon Slave Signals

clk Master clock
reset Reset signal to peripheral
chipselect Asserted when bus accesses peripheral
address[..] Word address (data-width specific)
read Asserted during peripheral→bus transfer
write Asserted during bus→peripheral transfer
writedata[..] Data from bus to peripheral
byteenable[..] Indicates active bytes in a transfer
readdata[..] Data from peripheral to bus
irq peripheral→processor interrupt request

All are optional, as are many others for, e.g., flow-control
and burst transfers.



In SystemVerilog

module myslave(input logic clk,
input logic reset,
input logic [7:0] writedata,
input logic write,
input logic chipselect,
input logic [2:0] address);



Basic Slave Read Transfer
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Bus cycle starts on rising clock edge

Data latched at next rising edge

Such a peripheral must be purely combinational



Slave Read Transfer w/ 1 Wait State
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Bus cycle starts on rising clock edge

Data latched two cycles later

Approach used for synchronous peripherals



Basic Async. Slave Write Transfer
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Bus cycle starts on rising clock edge

Data available by next rising edge

Peripheral may be synchronous, but must be fast



Basic Async. Slave Write w/ 1 Wait State
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write
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Bus cycle starts on rising clock edge

Peripheral latches data two cycles later

For slower peripherals



The Vga_ball Peripheral

module vga_ball(input logic clk,
input logic reset,
input logic [7:0] writedata,
input logic write,
input chipselect,
input logic [2:0] address,

output logic [7:0] VGA_R, VGA_G, VGA_B,
output logic VGA_CLK, VGA_HS, VGA_VS,

VGA_BLANK_n,
output logic VGA_SYNC_n);

logic [10:0] hcount;
logic [9:0] vcount;

logic [7:0] background_r, background_g, background_b;

vga_counters counters(.clk50(clk), .*);



The Vga_ball Peripheral

always_ff @(posedge clk)
if (reset) begin

background_r <= 8’h0;
background_g <= 8’h0;
background_b <= 8’h80;

end else if (chipselect && write)
case (address)
3’h0 : background_r <= writedata;
3’h1 : background_g <= writedata;
3’h2 : background_b <= writedata;

endcase

always_comb begin
{VGA_R, VGA_G, VGA_B} = {8’h0, 8’h0, 8’h0};
if (VGA_BLANK_n )

if (hcount[10:6] == 5’d3 &&
vcount[9:5] == 5’d3)

{VGA_R, VGA_G, VGA_B} = {8’hff, 8’hff, 8’hff};
else

{VGA_R, VGA_G, VGA_B} =
{background_r, background_g, background_b};

end


