
COMS W4995

hzip - Parallel gzip in Haskell

Annie F Song

December 22, 2021

1 Introduction

gzip is a popular compression algorithm and format. Developed by Mark Adler and Jean-loup
Gailly and first released in 1992, it stands as one of the most popular compression schemes in the
world.

2 Background

At the core of gzip is the DEFLATE algorithm. Specified in RFC 1951, DEFLATE algorithm is
a combination of the LZ77 compression algorithm and Huffman Encoding.

DEFLATE starts by figuratively separating the file into blocks. Each block can be compressed
using one of three compression strategies. Block type 0 means that the block will remain uncom-
pressed, a scheme which is useful for files that are already compressed. Block type 1 uses the LZ77
algorithm to reduce redundancy and a static Huffman encoding to encode the result. Block type 2
also uses the LZ77 algorithm, but uses a dynamically generated Huffman encoding to encode the
result. The dynamically generated Huffman encoding will also be encoded into the block. These
compressed blocks will then be written out to the compressed file, resulting in a smaller file.

3 Parallel Haskell Implementation

I was not able to find any Haskell implementation of the gzip compression algorithm online. I was
able to find some decompression algorithms,1 but any implementation of the compression scheme
invoked the zlib C library directly.2

In my project, I’ve implemented a simplified version of gzip. My implementation supports
block type 0 and block type 1. I was half way through implementing block type 2 (with dynamic
Huffman tree generation portion done) when I ran out of time.

My implementation also supports parallelization. Similar to the parallel implementation of gzip
(also known as pigz), developed by Mark Adler,3 I parallelized the compression of each block.

1https://hackage.haskell.org/package/pure-zlib
2https://hackage.haskell.org/package/zlib-0.6.2.3/docs/Codec-Compression-GZip.html
3https://zlib.net/pigz/

1

https://hackage.haskell.org/package/pure-zlib
https://hackage.haskell.org/package/zlib-0.6.2.3/docs/Codec-Compression-GZip.html
https://zlib.net/pigz/

4 Methods

The following tests were run on my personal desktop machine, running Ubuntu-20.04.2 with Linux
kernel 5.11.0-43-generic. My CPU is Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz, with 6 cores and
12 processors.

My tests were run on various corpora such as the Canterbury Corpus and the Large Corpus.4

5 Results

Each of the following tables represents a different corpus. Each file was compressed twice, one using
sequential implementation (with no parallelization flags enabled) and one using parallel implemen-
tation (with parallelization flags enabled).

Table 1: The Artificial Corpus

File Size (B) Compressed Size (B) Compression Ratio Seq Time (s) Par Time (s)

a.txt 1 21 2100.000 % 0.266 0.278
aaa.txt 100000 1420 1.420 % 3.041 0.895

alphabet.txt 100000 1869 1.869 % 0.465 0.360
random.txt 100000 99706 99.706 % 5.820 2.326

Table 2: The Calgary Corpus
File Size (B) Compressed Size (B) Compression Ratio Seq Time (s) Par Time (s)

bib 111261 65511 58.880 % 2.439 1.477
book1 768771 520342 67.685 % 17.130 6.176
book2 610856 353255 57.830 % 11.713 5.197
geo 102400 88764 86.684 % 3.656 2.341
news 377109 228641 60.630 % 8.405 3.798
obj1 21504 11996 55.785 % 0.829 0.810
obj2 246814 112378 45.531 % 4.404 2.527

paper1 53161 29862 56.173 % 1.215 1.253
paper2 82199 49512 60.234 % 1.847 1.203
paper3 46526 28982 62.292 % 1.163 0.811
paper4 13286 7991 60.146 % 0.538 0.510
paper5 11954 6877 57.529 % 0.486 0.427
paper6 38105 21089 55.344 % 0.951 0.715
pic 513216 72232 14.074 % 7.415 2.754

progc 39611 20235 51.084 % 0.953 0.737
progl 71646 26771 37.366 % 1.121 0.999
progp 49379 18681 37.832 % 0.861 0.599
trans 93695 41138 43.906 % 1.572 1.267

4https://corpus.canterbury.ac.nz/descriptions/

2

https://corpus.canterbury.ac.nz/descriptions/

Table 3: The Canterbury Corpus

File Size (B) Compressed Size (B) Compression Ratio Seq Time (s) Par Time (s)

alice29.txt 152089 90967 59.812 % 3.146 2.276
asyoulik.txt 125179 79235 63.297 % 2.787 1.534
cp.html 24603 12352 50.205 % 0.738 0.570
fields.c 11150 4294 38.511 % 0.375 0.531

grammar.lsp 3721 1489 40.016 % 0.321 0.441
kennedy.xls 1029744 293751 28.527 % 16.122 5.415
lcet10.txt 426754 251592 58.955 % 8.173 4.599

plrabn12.txt 481861 323802 67.198 % 10.394 4.737
ptt5 513216 72232 14.074 % 7.431 3.211
sum 38240 18324 47.918 % 1.102 0.931

xargs.1 4227 2163 51.171 % 0.327 0.434

Table 4: The Large Corpus

File Size (B) Compressed Size (B) Compression Ratio Seq Time (s) Par Time (s)

E.coli 4638690 2079253 44.824 % 59.749 26.503
bible.txt 4047392 2069616 51.135 % 64.402 29.776

world192.txt 2473400 1511588 61.114 % 54.467 27.370

Table 5: The Miscellaneous Corpus
File Size (B) Compressed Size (B) Compression Ratio Seq Time (s) Par Time (s)

pi.txt 1000000 779216 77.922 % 21.599 11.314

6 Analysis

Comparing the sequential and parallel results, we see that parallelization did improve performance.
This is expected given that 12 CPUs shared the work. The speed-up was most noticeable when
compressing large files, such as the bible, which cut down the time by more than half.

In some scenarios, however, parallelization did not prove to be worthy. This was specially
the case for smaller files. This was probably due to the fact that there was not much work to
be shared, and extra overhead of context-switching and thread creation slowed down the parallel
implementation.

The results also show when compression should not be used. When we started with a small file,
such as a.txt, we ended up with a bigger file because we had to add headers and footers following
the DEFLATE algorithm. This bloated the size from 1 byte to 21 bytes. This, however, should be
considered as an exception, given that we usually compress large files.

It should be noted that when although the runtime may differ, the compression ratio remained
the same. This is because compression ratio does not depend on how many threads are doing the
work. Compression ratio is related to the Huffman encoding and LZ77 compression algorithm, both
of which remained the same for the two runs.

3

Also attached in the appendix is ThreadScope analysis generated during the sample run while
compressing bible.txt. It it clear that all CPUs are busy. Of the 989 sparks generated, only 1
fizzled and the rest were converted.

7 Future Direction

I’ve thought of some ways to improve the project in the future. First, I can finish block type 2
implementation. The next thing I can improve is the performance of the LZ77 algorithm. Currently
it uses a naive approach without any sort of maps, which slows down the runtime by quite a lot.
CRC32 calculation is done by leveraging the C library, so it is also another area where I can improve
this project to make hzip pure Haskell.

8 Conclusion

In the report I presented hzip, a parallel Haskell implementation of the renowned gzip program.

4

A Appendix: ThreadScope

Figure 1: ThreadScope

Figure 2: Sparks

5

B Appendix: Code

Main.hs

module Main where

import Lib (writeOut, parCompress)

import System.Environment (getArgs)

import System.IO.Error

(catchIOError

, ioeGetFileName

, isDoesNotExistError

, isPermissionError

, isUserError

)

main :: IO ()

main = mainLogic `catchIOError` handler

mainLogic :: IO ()

mainLogic = do

[filename] <- getArgs

compressed <- parCompress filename

writeOut (filename ++ ".gz") compressed

return ()

handler :: IOError -> IO ()

handler e

| isDoesNotExistError e = putStrLn $ fn ++ ": No such file or directory"

| isPermissionError e = putStrLn $ fn ++ ": Permission denied"

| isUserError e = putStrLn "Usage: ./hzip <filename>"

| otherwise = ioError e

where

Just fn = ioeGetFileName e

6

Lib.hs

module Lib

(zlibCompress,

parCompress,

seqCompress,

writeOut,

getHeader,

getFooter,

)

where

import qualified Block as B

import qualified Codec.Compression.GZip as GZip

import qualified Data.ByteString.Lazy as LBS

import qualified Data.Functor((<&>))

-- write the output to a given filename

writeOut :: String -> LBS.ByteString -> IO ()

writeOut = LBS.writeFile

-- use zlib for compression

zlibCompress :: String -> IO LBS.ByteString

zlibCompress fname = LBS.readFile fname Data.Functor.<&> GZip.compress

-- sequential implementation

seqCompress :: String -> IO LBS.ByteString

seqCompress fname =

LBS.readFile fname >>= (\f -> return (LBS.concat [getHeader, B.doSeqCompress f]))

parCompress :: String -> IO LBS.ByteString

parCompress fname =

LBS.readFile fname >>= (\f -> return (LBS.concat [getHeader, B.doParCompress f]))

emptyCompress :: IO LBS.ByteString

emptyCompress = return $ LBS.concat [getHeader, x, getFooter]

where

x = LBS.pack [0x01, 0x00, 0x00, 0xff, 0xff]

-- add the 10-byte header for .gz files

getHeader :: LBS.ByteString

getHeader = LBS.pack [0x1f, 0x8b, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03]

-- add the 8-byte footer for .gz files

getFooter :: LBS.ByteString

getFooter = LBS.pack [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]

7

LZ77.hs

module LZ77 where

import BitHelper

import qualified Data.ByteString.Lazy as LBS

import qualified Data.List as L

import qualified Data.Word as W

-- The result is either a (length, distance) pair

-- or 8-bit characters representing the string value

type Result = (Int, Int, W.Word8)

type MResult = Maybe Result

-- minimum matching length as described in RFC 1951.

minMatchLength :: Int

minMatchLength = 3

windowLength :: Int

windowLength = 10000

getFileContent :: String -> IO LBS.ByteString

getFileContent = LBS.readFile

{-

do lz77 compression

-}

lz77Compress :: LBS.ByteString -> [MResult]

lz77Compress content = doLZ77 [] (LBS.unpack content)

doLZ77 :: [W.Word8] -> [W.Word8] -> [MResult]

doLZ77 buffer str

| null str = [Nothing]

| otherwise = Just res : doLZ77 newBuffer newStr

where

res@(l, d, c) = search buffer str

matchLen = if l == 0 then 1 else l

(matched, newStr) = splitAt matchLen str

tempBuffer = buffer ++ matched

newBuffer = drop (max 0 (length tempBuffer - windowLength)) tempBuffer

search :: [W.Word8] -> [W.Word8] -> (Int, Int, W.Word8)

search buffer str

| null str = error "this shouldn't happen"

| null buffer = (0, 0, fromIntegral $ head str)

| otherwise = (len, dist, fromIntegral nextChar)

where

searchStr = take 258 str

8

(len, dist) = findBuf buffer searchStr

nextChar = head str

{-

Given a buffer and a needle, return the (length,distance) pair

returns the longest input that begins in the buffer

Length has to be a minimum of 3 characters following DEFLATE convention

-}

findBuf :: [W.Word8] -> [W.Word8] -> (Int, Int)

findBuf buffer str

| null buffer || null str = (0, 0)

| otherwise = comPair (len, dist) temp

where

mLen = prefixMatch buffer str

len = if mLen >= minMatchLength then mLen else 0

dist = if len > 0 then length buffer else 0

temp = findBuf (drop 1 buffer) str

prefixMatch :: [W.Word8] -> [W.Word8] -> Int

prefixMatch [] _ = 0

prefixMatch _ [] = 0

prefixMatch (x:xs) (y:ys)

| x == y = 1 + prefixMatch xs ys

| otherwise = 0

{-

Compares two (len,dist) pairs and returns the more optimal pair.

-}

comPair :: (Int, Int) -> (Int, Int) -> (Int, Int)

comPair (llen, ldist) (rlen, rdist)

| llen > rlen = (llen, ldist)

| llen == rlen = if ldist < rdist then (llen, ldist) else (rlen, rdist)

| otherwise = (rlen, rdist)

9

Block.hs

{-# LANGUAGE DeriveGeneric, DeriveAnyClass #-}

module Block

(doSeqCompress,

doParCompress,

combineCrc,

combine,

splitUp,

)

where

import BitHelper (word16ToLBS, word32ToLBS, wordsToBits, bitsToLBS)

import qualified Control.Parallel.Strategies as S

import qualified Data.Bits as Bits

import qualified Data.ByteString.Lazy as B

import qualified Data.List as L

import qualified Data.Word as W

import Deflate (deflate)

import LZ77 (lz77Compress)

import MyCRC32 (CRC32 (crc32), crc32Combine)

import qualified GHC.Generics as S

-- Three types of data blocks

-- Uncompressed, using static tree, using dynamic tree

data BlockType

= Uncompressed

| Static

| Dynamic

deriving (Eq)

data InputBlock = InputBlock

{ iType :: BlockType,

iLast :: Bool,

iData :: B.ByteString

}

data OutputBlock = OutputBlock

{ oData :: [Bool],

oCrc :: W.Word32,

oLen :: W.Word32

} deriving (S.NFData, S.Generic)

splitUp :: B.ByteString -> [InputBlock]

splitUp s

| B.length t == 0 = [InputBlock Static True h]

| otherwise = InputBlock Static False h : splitUp t

where

10

(h, t) = B.splitAt 4096 s

combine :: [OutputBlock] -> B.ByteString

combine blocks = B.concat [bitsToLBS contents, fcrc, flen]

where

contents = concatMap oData blocks

(len, pairs) =

L.mapAccumL (\a x -> (a + oLen x, (oCrc x, oLen x))) 0 blocks

(tcrc, tlen) = foldl1 combinePair pairs

flen = word32ToLBS tlen

fcrc = word32ToLBS tcrc

combinePair ::

(W.Word32, W.Word32) -> (W.Word32, W.Word32) -> (W.Word32, W.Word32)

combinePair p1 p2 = (newCrc, newLen)

where

(crc1, len1) = p1

(crc2, len2) = p2

newCrc = combineCrc crc1 p2

newLen = combineLen len1 len2

-- TODO: Do this math in haskell

-- CRC32(AB) = CRC32(A0) ^ CRC32(0B) = CRC32(A0) ^ CRC32(B)

-- https://stackoverflow.com/questions/23122312/crc-calculation-of-a-mostly-static-data-stream

combineCrc :: W.Word32 -> (W.Word32, W.Word32) -> W.Word32

combineCrc crc1 pair = crc32Combine crc1 crc2 (fromIntegral len2)

where

(crc2, len2) = pair

combineLen :: W.Word32 -> W.Word32 -> W.Word32

combineLen len1 len2 = len1 + len2

doParCompress :: B.ByteString -> B.ByteString

doParCompress s = combine blocks

where

chunks = splitUp s

blocks = map doCompress' chunks `S.using` S.parList S.rdeepseq

doSeqCompress :: B.ByteString -> B.ByteString

doSeqCompress s = combine $ map doCompress' $ splitUp s

doCompress' :: InputBlock -> OutputBlock

doCompress' i

| t == Uncompressed = getUncompressed i

| t == Static = getStatic i

| t == Dynamic = getDynamic i

| otherwise = error "invalid block type"

where

11

t = iType i

getUncompressed :: InputBlock -> OutputBlock

getUncompressed iblock = OutputBlock hc crc (fromIntegral l)

where

content = iData iblock

crc = S.runEval $ S.rseq $ crc32 content

header = [iLast iblock, False, False] ++ replicate 5 False

l = (fromIntegral $ B.length content) :: W.Word16

cl = Bits.complement l

hc = reverse header ++ comp

comp = wordsToBits (B.unpack $ B.concat [word16ToLBS l, word16ToLBS cl, content])

getStatic :: InputBlock -> OutputBlock

getStatic iblock = OutputBlock (bits ++ output) crc (fromIntegral l)

where

content = iData iblock

crc = crc32 content

isFinal = iLast iblock

l = (fromIntegral $ B.length content) :: W.Word16

bits = isFinal : [True, False]

output = deflate content

getDynamic :: InputBlock -> OutputBlock

getDynamic _ = error "unimplemented"

12

BitHelper.hs

module BitHelper where

import Data.Bits (FiniteBits)

import qualified Data.ByteString.Builder as Builder

import qualified Data.ByteString.Lazy as B

import qualified Data.List.Split as LS

import qualified Data.Word as W

import Table (distTable, litLenTable, llHuffmanCode)

word32ToLBS :: W.Word32 -> B.ByteString

word32ToLBS w = Builder.toLazyByteString $ Builder.word32LE w

word16ToLBS :: W.Word16 -> B.ByteString

word16ToLBS w = Builder.toLazyByteString $ Builder.word16LE w

bitsToLBS :: [Bool] -> B.ByteString

bitsToLBS bits = B.pack $ map bitsToWord8 (LS.chunksOf 8 bits)

{-

Given a list of bits (at most 8 bits),

convert to word8

-}

bitsToWord8 :: [Bool] -> W.Word8

bitsToWord8 bits

| n > 8 = error "too long"

| otherwise = foldl (\a f -> 2 * a + if f then 1 else 0) 0 (reverse padded)

where

n = length bits

padded = replicate (8 - n) False ++ bits

wordsToBits :: [W.Word8] -> [Bool]

wordsToBits = concatMap (\f -> wordToBits (f, 8))

{-

Given the code and expected length in bits, convert into bits

of expected length

-}

wordToBits :: (Integral a) => (a, W.Word8) -> [Bool]

wordToBits (code, len) = replicate pLen False ++ bits

where

bits = wordToBits' code

pLen = fromIntegral len - length bits

wordToBits' :: (Integral a) => a -> [Bool]

wordToBits' 0 = []

wordToBits' x = wordToBits' (x `div` 2) ++ [x `rem` 2 == 1]

13

{-

Given a ll code, we need to convert it into bits

if less than 256, convert to literal

if more than 256, convert to length + extra bits

-}

litToBits :: W.Word16 -> [Bool]

litToBits = wordToBits . llHuffmanCode

lenToBits :: W.Word16 -> [Bool]

lenToBits l = litToBits code ++ reverse (wordToBits (l - base, extra))

where

(code, extra, base) = litLenTable l

distToBits :: W.Word16 -> [Bool]

distToBits d = wordToBits (code, 5) ++ reverse (wordToBits (d - base, extra))

where

(code, extra, base) = distTable d

14

HuffmanTree.hs

{-# LANGUAGE TupleSections #-}

module HuffmanTree where

import BitHelper (wordToBits)

import Data.ByteString.Lazy (ByteString, unpack)

import Data.Function (on)

import Data.List (insertBy, sort, sortBy)

import Data.Map (Map, fromList, fromListWith, toList)

import Data.Maybe (fromJust, isNothing)

import Data.Tuple (swap)

import Data.Word (Word8)

data HuffTree = HuffLeaf Word8 Int | HuffNode HuffTree HuffTree Int deriving (Show)

type EncDict = Map Word8 [Bool]

weight :: HuffTree -> Int

weight (HuffLeaf _ w) = w

weight (HuffNode _ _ w) = w

toFreqList :: ByteString -> [(Word8, Int)]

toFreqList bs = toList $ fromListWith (+) $ map (,1) $ unpack bs

mergeTrees :: HuffTree -> HuffTree -> HuffTree

mergeTrees f s = HuffNode f s (weight f + weight s)

construct :: [(Word8, Int)] -> HuffTree

construct ts = construct' $ map (uncurry HuffLeaf) (sortBy (compare `on` snd) ts)

construct' :: [HuffTree] -> HuffTree

construct' [] = error "empty huffman tree"

construct' [t] = t

construct' (f : s : xs) = construct' $ insertBy (compare `on` weight) (mergeTrees f s) xs

-- Given a huffman tree, build bl_count in RFC 1951

buildBitLen :: HuffTree -> [(Int, [Word8])]

buildBitLen tree = toList $ fromListWith (++) $ buildBitLen' tree 0

buildBitLen' :: HuffTree -> Int -> [(Int, [Word8])]

buildBitLen' (HuffNode a b _) blen = buildBitLen' a (blen + 1) ++ buildBitLen' b (blen + 1)

buildBitLen' (HuffLeaf c _) blen

| blen <= 15 = [(blen, [c])]

| otherwise = error "unsupported yet"

buildEncTree :: [(Int, [Word8])] -> EncDict

15

buildEncTree map = fromList $ buildEncTree' 1 0 map

{-

blen -> number of bits

start -> start point for these bits

prev -> number of elements in the previous bit width

map -> bl_count (bit len -> bits)

-}

buildEncTree' :: Int -> Int -> [(Int, [Word8])] -> [(Word8, [Bool])]

buildEncTree' 16 _ _ = []

buildEncTree' blen start map = curr ++ buildEncTree' (blen + 1) newStart map

where

entries = lookup blen map

curr = maybe [] (\f -> genCodeForBitLen f blen start) entries

count = maybe 0 length entries

newStart = (start + count) * 2

genCodeForBitLen :: [Word8] -> Int -> Int -> [(Word8, [Bool])]

genCodeForBitLen words bitlen start = zip swords bits

where

swords = sort words

nums = [start .. (start + length swords)]

bits = map (wordToBits . (,fromIntegral bitlen)) nums

16

Deflate.hs

module Deflate

(deflate,

)

where

import BitHelper (lenToBits, litToBits, distToBits)

import qualified Data.ByteString.Lazy as B

import LZ77 (MResult, lz77Compress)

deflate :: B.ByteString -> [Bool]

deflate input = translate $ lz77Compress input

dummyCompress :: B.ByteString -> [MResult]

dummyCompress input = map (\f -> Just (0,0,f)) (B.unpack input) ++ [Nothing]

translate :: [MResult] -> [Bool]

translate [] = error "empty results, shouldn't happen"

translate [Nothing] = replicate 7 False

translate (Just (l, d, c) : rs)

| l == 0 = litToBits (fromIntegral c) ++ translate rs

| otherwise = lenToBits (fromIntegral l) ++ distToBits (fromIntegral d) ++ translate rs

translate _ = error "this should not be possible"

17

Table.hs

module Table

(litLenTable,

llHuffmanCode,

distTable,

)

where

import qualified Data.Word as W

{-

Block type 1 has static trees that are defined in RFC 1951.

This file contains those trees.

-}

{-

Value 0-256 can be converted to bits as is

Value 257-285 must be looked up according to the table

Given a length, return (code, num of extra bits, base)

-}

litLenTable :: W.Word16 -> (W.Word16, W.Word8, W.Word16)

litLenTable ll

| ll < 3 = error "too small"

| ll == 3 = (257, 0, 3)

| ll == 4 = (258, 0, 4)

| ll == 5 = (259, 0, 5)

| ll == 6 = (260, 0, 6)

| ll == 7 = (261, 0, 7)

| ll == 8 = (262, 0, 8)

| ll == 9 = (263, 0, 9)

| ll == 10 = (264, 0, 10)

| ll <= 12 = (265, 1, 11)

| ll <= 14 = (266, 1, 13)

| ll <= 16 = (267, 1, 15)

| ll <= 18 = (268, 1, 17)

| ll <= 22 = (269, 2, 19)

| ll <= 26 = (270, 2, 23)

| ll <= 30 = (271, 2, 27)

| ll <= 34 = (272, 2, 31)

| ll <= 42 = (273, 3, 35)

| ll <= 50 = (274, 3, 43)

| ll <= 58 = (275, 3, 51)

| ll <= 66 = (276, 3, 59)

| ll <= 82 = (277, 4, 67)

| ll <= 98 = (278, 4, 83)

| ll <= 114 = (279, 4, 99)

| ll <= 130 = (280, 4, 115)

18

| ll <= 162 = (281, 5, 131)

| ll <= 194 = (282, 5, 163)

| ll <= 226 = (283, 5, 195)

| ll <= 257 = (284, 5, 227)

| ll == 258 = (285, 0, 258)

| otherwise = error "invalid length"

{-

Given a lit val, return the corresponding huffman tree val

and also bit length

-}

llHuffmanCode :: W.Word16 -> (W.Word16, W.Word8)

llHuffmanCode val

| val <= 143 = (48 + val, 8)

| val <= 255 = (400 + (val - 144), 9)

| val <= 279 = (val - 256, 7)

| val <= 287 = (192 + (val - 280), 8)

| otherwise = error "invalid val"

{-

(code, num extra bits, base)

-}

distTable :: W.Word16 -> (W.Word16, W.Word8, W.Word16)

distTable d

| d == 0 = error "invalid zero dist"

| d == 1 = (0, 0, 1)

| d == 2 = (1, 0, 2)

| d == 3 = (2, 0, 3)

| d == 4 = (3, 0, 4)

| d <= 6 = (4, 1, 5)

| d <= 8 = (5, 1, 7)

| d <= 12 = (6, 2, 9)

| d <= 16 = (7, 2, 13)

| d <= 24 = (8, 3, 17)

| d <= 32 = (9, 3, 25)

| d <= 48 = (10, 4, 33)

| d <= 64 = (11, 4, 49)

| d <= 96 = (12, 5, 65)

| d <= 128 = (13, 5, 97)

| d <= 192 = (14, 6, 129)

| d <= 256 = (15, 6, 193)

| d <= 384 = (16, 7, 257)

| d <= 512 = (17, 7, 385)

| d <= 768 = (18, 8, 513)

| d <= 1024 = (19, 8, 769)

| d <= 1536 = (20, 9, 1025)

| d <= 2048 = (21, 9, 1537)

| d <= 3072 = (22, 10, 2049)

19

| d <= 4096 = (23, 10, 3073)

| d <= 6144 = (24, 11, 4097)

| d <= 8192 = (25, 11, 6145)

| d <= 12288 = (26, 12, 8193)

| d <= 16384 = (27, 12, 12289)

| d <= 24576 = (28, 13, 16385)

| d <= 32768 = (29, 13, 24577)

| otherwise = error "invalid dist"

20

MyCRC32.hsc

{-# LANGUAGE ForeignFunctionInterface, FlexibleInstances #-}

--

-- |

-- Copyright : (c) 2008 Eugene Kirpichov

-- License : BSD-style

--

-- Maintainer : ekirpichov@gmail.com

-- Stability : experimental

-- Portability : portable (H98 + FFI)

--

-- CRC32 wrapper

--

module MyCRC32 (

CRC32, crc32, crc32Update, crc32Combine

) where

import Data.ByteString.Unsafe (unsafeUseAsCStringLen)

import Foreign

import qualified Data.ByteString as S

import qualified Data.ByteString.Lazy as L

import qualified Data.ByteString.Lazy.Internal as LI

import qualified System.IO.Unsafe as U

#include "zlib.h"

-- | The class of values for which CRC32 may be computed

class CRC32 a where

-- | Compute CRC32 checksum

crc32 :: a -> Word32

crc32 = crc32Update 0

-- | Given the CRC32 checksum of a string, compute CRC32 of its

-- concatenation with another string (t.i., incrementally update

-- the CRC32 hash value)

crc32Update :: Word32 -> a -> Word32

instance CRC32 S.ByteString where

crc32Update = crc32_s_update

instance CRC32 L.ByteString where

crc32Update = crc32_l_update

instance CRC32 [Word8] where

crc32Update n = (crc32Update n) . L.pack

21

crc32_s_update :: Word32 -> S.ByteString -> Word32

crc32_s_update seed str

| S.null str = seed

| otherwise =

U.unsafePerformIO $

unsafeUseAsCStringLen str $

\(buf, len) -> fmap fromIntegral $

crc32_c (fromIntegral seed) (castPtr buf) (fromIntegral len)

crc32_l_update :: Word32 -> L.ByteString -> Word32

crc32_l_update = LI.foldlChunks crc32_s_update

crc32Combine :: Word32 -> Word32 -> Word64 -> Word32

crc32Combine crc1 crc2 len2 = fromIntegral $ U.unsafePerformIO $ combine

where

combine = crc32_combine_c (fromIntegral crc1) (fromIntegral crc2) (fromIntegral len2)

foreign import ccall unsafe "zlib.h crc32"

crc32_c :: #{type uLong}

-> Ptr #{type Bytef}

-> #{type uInt}

-> IO #{type uLong}

foreign import ccall unsafe "zlib.h crc32_combine"

crc32_combine_c :: #{type uLong}

-> #{type uLong}

-> #{type z_off_t}

-> IO #{type uLong}

22

	Introduction
	Background
	Parallel Haskell Implementation
	Methods
	Results
	Analysis
	Future Direction
	Conclusion
	Appendix: ThreadScope
	Appendix: Code

