
COMS W4995 002 Parallel Functional Programming Final Report

YAX: Yet Another Cross Referencer

Name: Xuheng Li(UNI: xl2784)

December 22, 2021

1 Introduction

A cross referencing tool, or commonly known as cross referencer, is a software that indexes source code
and provides information for symbols and definitions on a given code base such that the user can find
where a symbol is defined or used in that code base. The cross referencer, such as Cscope [1], is widely
used in software development and integrated into IDEs and editors like vscode or vim. Since parsing
the symbols on a single source code file is usually independent from the rest of the files for the given
code base, the procedure of building the database can be paralleled. Therefore, I implemented YAX:
Yet Another Cross Referencer, a parallelized version of Cscope written in Haskell. Given the
time constraint, YAX will only work on preprocessed C99 [3] source code. Other languages, including
various C extensions, such as GNU C extension or LLVM C extension, are not supported.

Alex [5] and Happy [6] are the Haskell counterpart for Lex and YACC [4] for C, respectively. They
can be used together to parse source code into the Abstract Syntax Tree(AST) and in turn used by
YAX to build the cross reference database. However, writing Alex and Happy compatible parsing
rules is time consuming and off the topic of this lecture. Therefore, I use an existing Haskell module,
language-c [2] that leverages Alex and Happy, to translate the C source code into ASTs. YAX can then
analyze the ASTs and extract symbols together with necessary information, including the location of
the symbol and how the symbol used, to the database.

2 Design and Implementation

YAX takes a source code or a directory of source code tree as the input, parses the source code by
language-c into the AST, traverses the AST to extract symbols, together with how the symbol is used,
the file, column and row where the symbol is located, and finally adds them to the database. Not all
of the symbols will be added to the database. For example, local variables are always considered as
temporary variables only visible to a certain scope and thus is less meaningful to be indexed.

2.1 Parsing

language-c parses each source code file into an AST. The full definition of the C AST is pages long
and thus is not included in this report but can be found in [3]. I present an example of a simple C
source code shown in Figure 1 and its AST shown in Figure 2. Each box in Figure 2 is a node of
the AST and each node is tagged with its location information in the source code. For example, the
Decl: g0 box which is the left child of Root has the location information ("example.c", 1, 5),
which means the symbol g0 is defined in the first row, fifth column of file example.c. Underscored
symbols in Figure 1 and shadowed boxes in Figure 2 represent the symbol added to the database,
while others are omitted.

More specifically, only the following symbols will be added to the database and indexed:

• declaration of global variables,

Xuheng Li/xl2784 1

COMS W4995 002 Parallel Functional Programming Final Report

1 // example.c
2 int g0 = 0;

3 struct st1 { int f1; long f2; };
4 void func3(int arg) {
5 int j, k, i;
6 j = g2;

7 lbl:
8 i = st2->f1;
9 if (cond1)

10 j = g0;

11 func2(foo, 2, arg);
12 }

Figure 1: Example of C source code.

Root

Decl: g0 Decl: struct st1

Decl: f1 Decl: f2

Fun: func3

Decl: arg Compound

Decl: i, j, k Statement

Assign Label: lbl

Var: j Var: g2 Statement

Assign

Var: i Member

Struct: st2 Field: f1

If

Condition: cond1 Statement

Assign

Var: j Var: g0

Call: func2

Var: foo Lit: 2Var: arg

Figure 2: AST of the example of C source code.

• reference of global variables, either in the global scope or the local scope,

• definition of global composite data types such as struct,

• declaration of and reference to members of global composite data types,

• declaration of functions,

• labels.

Key words, local variables as well as components of other C extensions are omitted. Together
with the location, a tag of how the symbol is used is also saved. YAX defines four types of symbol
usage: variable or function declaration, function call, label and regular reference. Regular reference
means the symbol is used in the way other than the first three. Since a function in C can also be
used as a pointer variable, not all references to a function name is considered as a function call but
only when the function is explicitly called by the C function call syntax. Calling a function pointer is
usually determined at runtime and therefore is not considered as a function call, even if the name of
the function pointer is the same as the function.

The information of a symbol is saved in a tuple of (file::String, column::String, row::

String, entryType::EntryType) where EntryType is a defined Haskell data type of how the symbol
is used as introduced above. Then the tuple is saved to a map of which the key is the name of the
symbol. Since a symbol usually appears more than once in a code base, the value is a list of tuples.
The map uses the strict map module as opposed to the lazy map because for a cross referencer, the
database should only be queried after it is fully build-up and the strict map has better performance
than the lazy map.

2.2 Local Variables

A cross referencer generally does not index a local variable to avoid excess temporary variables flush-
ing the database. To address this problem, YAX traverses the AST with two databases - a global
database stores information that will be merged to the final result and a local database stores lo-
cal variables visible to the current scope. More specifically, for a C program, the scope for a local
variable is a compound and if a local variable has the same name of a global variable, the local vari-
able shadows the global one. Therefore when parsing a compound, YAX takes the local database
from its parent as an argument. When a local variable declaration is found, the variable is added
to the local database and if a symbol is used in the following code and that symbol is in the lo-
cal database, it will not be added to the global database. After a compound is parsed and returns

Xuheng Li/xl2784 2

COMS W4995 002 Parallel Functional Programming Final Report

to its parent compound, which means the life cycle for local variables in the compound is termi-
nated, the local database is discarded and the parent can still keep its own local database unchanged.

1 void func(void){
2 int i;
3 {int k; func2(g,i,j,k);}

4 func2(g,i,j,k);

5 }

Figure 3: Example of local variables indexing.

Figure 3 shows an example of how symbols are
indexed when local variables are involved. Un-
derlined symbols are added to the database. In
line 3, the function call to func2 is indexed, to-
gether with variable g and j. i is declared as a
local variable in the scope of the function and k

is in the scope of the compound in line 3, so they
will not be indexed. Similarly in line 4, func2, g
and j is indexed but since k is no longer a local
variable here, it will also be indexed.

2.3 Parallelism

Potentially, YAX can be paralleled in two manners: (1) parse an AST in parallel or (2) parse an AST
sequentially and process multiple files in parallel to scale to a large code base. The first one is less
practical because regardless the size of a target project, a single source code file should always have a
reasonable size. The overhead introduced by parsing an AST in parallel can swamp the performance
gained from parallelism.

Therefore YAX chooses to use a single thread to parse an AST and launches multiple threads
when working on a large code base. Currently, YAX uses one spark for each AST. YAX takes the
root directory of the source code as the input, recursively reads source code into a list of ByteString,
one file per element and map the parsing function to each element in the list in parallel. The reading
and mapping procedure are connected via a pseq function so all data are enforced to be read into the
memory before the paralleled part running. The parsing function returns the reference database as a
map and thus the main thread gets a list of maps when all source code are parsed. Then YAX unions
the maps in the list to build the final result. When there is a key conflict when union-ing the map, i.e.
a symbol appears in different files, the values, which is a list of symbol information, are concatenated
to each other. Since the location of a symbol in the database, as well as the order of the information
of the symbol do not affect the result of querying the database, the returned map is an monoid and
therefore can also be unioned in parallel. However, based on my experiment, parallel fold and union
the list of maps has minimal impact on the performance.

Various parallelism schema is tested to reach the best performance of YAX, including dynamically
chunking, statically chunking and lazy stream with parBuffer. But the experiment shows different
parallelism schema has barely no impact on the performance. Therefore a simple but more scalable
parList rpar is used.

3 Performance Evaluation

Since YAX can only work on preprocessed C source code, to evaluate the performance of YAX and its
parallelism implementation, I ran YAX on a synthesized code based. The code are randomly gener-
ated through a Python script outputting various C component, including global variable declaration,
composite data type definition, function definition and different C statements such as assign, condi-
tion, function call, etc. The size of each file is also randomized so different sparks may have different
workload. The synthesized code based has 16K C files and a total of 13M LOC.

To better demonstrate the performance for YAX on the real world project, the distribution of the
size of files in the synthesized code based mimics the Linux kernel source code tree.

I ran YAX on a HP ML350 workstation, with a 10-core Intel Xeon 2640v4 CPU at 2.40GHz,
hyperthreading off, 64GB of RAM and 1TB SSD. The performance is measured by the time from

Xuheng Li/xl2784 3

COMS W4995 002 Parallel Functional Programming Final Report

YAX reading the source code into the memory until the database being build, not including the time
for querying the database.

Figure 4: Threadscope of single threaded YAX.

Figure 5: Threadscope of 10 threads YAX.

Figure 4 and Figure 5 show the Threadscope information of single threaded YAX and YAX with 10
paralleled threads, respectively. Figure 5 indicates the workload is evenly distributed into all 10 threads
Evenly.

Xuheng Li/xl2784 4

COMS W4995 002 Parallel Functional Programming Final Report

Number of threads

B
oo

st

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

2 4 6 8 10

Figure 6: Performance boost for parallel YAX.

In an earlier version of YAX, the I/O action
of reading source code into the memory is not
enforced by the pseq and the paralleled perfor-
mance is hit by the I/O when evaluating the in-
put list. When pseq is used and all I/O are en-
forced to be done before the parallel evaluation,
YAX gains a slightly performance improvement
especially when more threads are used. Figure 6
shows the performance boost for parallel YAX
from 2 threads to 10 threads with the baseline
of sequential YAX. 2-threads is 1.71 times faster
and 10-threads has a multiplier of 5.70. One of
the major overhead for YAX is the Garbage Col-
lection. Because YAX has to read all source code
into a list and chunk that list for parallel evalua-

tion, lots of memory will used to hold the entire code base and makes GC expensive. The Threadscope
figure shows almost 50% of time is used for doing GC.

References

[1] Cscope Home Page. 2012. url: http://cscope.sourceforge.net/.

[2] Joe Hermaszewski. language-c: Analysis and generation of C code. 2020. url: https://hackage.
haskell.org/package/language-c-0.9.0.1.

[3] ISO. ISO C Standard 1999. Tech. rep. 1999. url: http://www.open-std.org/jtc1/sc22/wg14/
www/docs/n1124.pdf.

[4] John R Levine et al. Lex & yacc. ” O’Reilly Media, Inc.”, 1992.

[5] Simon Marlow. Alex: A lexical analyser generator for Haskell. url: https://www.haskell.org/
alex/.

[6] Simon Marlow. Happy: The Parser Generator for Haskell. url: https://www.haskell.org/
happy/.

Xuheng Li/xl2784 5

http://cscope.sourceforge.net/
https://hackage.haskell.org/package/language-c-0.9.0.1
https://hackage.haskell.org/package/language-c-0.9.0.1
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
https://www.haskell.org/alex/
https://www.haskell.org/alex/
https://www.haskell.org/happy/
https://www.haskell.org/happy/

COMS W4995 002 Parallel Functional Programming Final Report

Appendix: List of Haskell Source Code of YAX

app/Main.hs

1 module Main where

2 import ParseAST

3

4 import Language.C

5 import Language.C.System.GCC

6

7 import System.Environment

8 import System.Directory

9 import System.Exit

10 import qualified Data.Map.Strict as Map

11

12 import Control.Monad

13 import System.FilePath

14 import System.Posix.Files

15

16 import Control.Parallel

17 import Control.Parallel.Strategies

18

19 usage :: IO ()

20 usage = do

21 prog <- getProgName

22 die $ "Usage: " ++ prog ++ " <filename>|<directory> -p|-s"

23

24 -- Borrowed from https://stackoverflow.com/a/23822913

25 traverseDir :: FilePath -> (FilePath -> Bool) -> IO [FilePath]

26 traverseDir top exclude = do

27 ds <- getDirectoryContents top

28 paths <- forM (filter (not.exclude) ds) $ \d -> do

29 let path = top </> d

30 s <- getFileStatus path

31 if isDirectory s

32 then traverseDir path exclude

33 else return [path]

34 return (concat paths)

35

36 filesToStreamList :: [FilePath] -> IO [(InputStream, FilePath)]

37 filesToStreamList fs = sequence $ map (\f -> do

38 s <- readInputStream f

39 return (s, f))

40 fs

41

42 -- Credit: https://stackoverflow.com/questions/19117922/parallel-folding-in-haskell/19119503

43 pfold :: (a -> a -> a) -> [a] -> a

44 pfold _ [x] = x

45 pfold mappend' xs = (ys `par` zs) `pseq` (ys `mappend'` zs) where

46 len = length xs

47 (ys', zs') = splitAt (len `div` 2) xs

48 ys = pfold mappend' ys'

Xuheng Li/xl2784 6

COMS W4995 002 Parallel Functional Programming Final Report

49 zs = pfold mappend' zs'

50

51 doHandleStream :: (InputStream, FilePath) -> IdDB

52 doHandleStream (s, f) = case parseC s $ initPos f of

53 Right tu -> case tu of

54 CTranslUnit l _ -> parseTranslUnit Map.empty l

55 Left _ -> Map.singleton "" [dummyEntry]

56 handleStreams :: [(InputStream, FilePath)] -> IdDB

57 handleStreams ss = foldl (Map.unionWith unionResult) Map.empty $

58 map doHandleStream ss

59 parHandleStreams :: [(InputStream, FilePath)] -> IdDB

60 parHandleStreams ss =

61 pfold (Map.unionWith unionResult) $

62 withStrategy (parList rpar) . map doHandleStream $ ss

63 unionResult :: [IdEntry] -> [IdEntry] -> [IdEntry]

64 unionResult new old = new ++ old

65

66 -- Simple query interface for the database

67 loopQuery :: IdDB -> IO ()

68 loopQuery db = do

69 putStrLn "Search symbol:"

70 sym <- getLine

71 print $ Map.lookup sym db

72 loopQuery db

73

74 main :: IO ()

75 main = do

76 args <- getArgs

77 case args of

78 [f, c] -> handleFileDir f c

79 _ -> usage

80 where

81 handleFileDir f c = do

82 isF <- doesFileExist f

83 if isF then readWithPrep f

84 else handleDir f c

85 handleDir f c = do

86 isD <- doesDirectoryExist f

87 if isD then do

88 files <- traverseDir f excludeDot

89 contents <- pseq () (filesToStreamList files)

90 case c of

91 "-s" ->

92 loopQuery $ handleStreams contents

93 "-p" ->

94 loopQuery $ parHandleStreams contents

95 _ -> usage

96 else die $ ("File does not exists: " ++) $ show f

97 excludeDot "." = True

98 excludeDot ".." = True

99 excludeDot _ = False

Xuheng Li/xl2784 7

COMS W4995 002 Parallel Functional Programming Final Report

src/ParseAST.hs

1 module ParseAST where

2

3 import qualified Data.Map.Strict as Map

4 import Language.C

5 import Language.C.System.GCC

6

7

8 data EntryType = IdDecl | IdRef | IdCall | IdLabel | IdLocal deriving (Eq, Show)

9 -- Not meaningful, just in case of sorting for searching

10 instance Ord EntryType where

11 IdLocal `compare` _ = EQ

12 _ `compare` IdLocal = EQ

13 IdDecl `compare` _ = LT

14 IdRef `compare` IdDecl = GT

15 IdRef `compare` _ = LT

16 IdCall `compare` IdLabel = LT

17 IdCall `compare` _ = GT

18 IdLabel `compare` _ = GT

19

20 -- | IdEntryVal stores the information about a symbol:

21 -- (file, row, column, type)

22 type IdEntryVal = (String, Int, Int, EntryType)

23 -- | (ident, key)

24 -- type IdEntry = (String, IdEntryVal)

25 -- type IdDB = [IdEntry]

26

27 type IdEntry = IdEntryVal

28 type IdDB = Map.Map String [IdEntry]

29

30 -- dummy entry for local symbols to avoid unnecessary GC

31 dummyEntry :: IdEntry

32 dummyEntry = ("", 0, 0, IdLocal)

33

34 identToEntry :: Ident -> EntryType -> IdEntry

35 identToEntry ident entry_type =

36 let id_file = case fileOfNode ident of

37 Nothing -> ""

38 Just p -> p in

39 let id_pos = posOfNode $ nodeInfo ident in

40 let id_row = posRow $ id_pos in

41 let id_col = posColumn $ id_pos in

42 (id_file, id_row, id_col, entry_type)

43

44 -- Just use linear search as the size of the local list should be handy

45 inLocalList :: IdDB -> String -> Bool

46 -- "true" and "false" are excluded since they are widely used as keywords

47 inLocalList _ "true" = True

48 inLocalList _ "false" = True

49 inLocalList db id_name = case Map.lookup id_name db of

50 Just _ -> True

Xuheng Li/xl2784 8

COMS W4995 002 Parallel Functional Programming Final Report

51 _ -> False

52

53 addEntry :: Ident -> EntryType -> IdDB -> IdDB

54 addEntry ident IdLocal gl =

55 let id_name = (identToString ident) in

56 Map.insert id_name [dummyEntry] gl

57 addEntry ident t gl =

58 let id_name = (identToString ident) in

59 let id_entry = identToEntry ident t in

60 Map.insertWith mergeEntry id_name [id_entry] gl

61 where

62 mergeEntry :: [IdEntry] -> [IdEntry] -> [IdEntry]

63 mergeEntry [n] o = n : o

64 mergeEntry _ o = o -- we know new_value must be a singleton list

65

66 parseDeclList :: IdDB -> IdDB -> [(Maybe (CDeclarator a0), b0, c0)] ->

67 (IdDB, IdDB)

68 parseDeclList gl ll [] = (gl, ll)

69 parseDeclList gl ll ((cDeclr, _, _):xs) = case cDeclr of

70 Nothing -> (gl, ll)

71 Just (CDeclr (Just ident) _ _ _ _) ->

72 case null ll of

73 True -> let gl' = addEntry ident IdDecl gl in parseDeclList gl' ll xs

74 _ -> let ll' = addEntry ident IdLocal ll in parseDeclList gl ll' xs

75 _ -> (gl, ll)

76

77 parseCSU :: IdDB -> IdDB -> CStructureUnion a -> (IdDB, IdDB)

78 parseCSU gl ll (CStruct _ mident mdecl _ _) = case mident of

79 Just ident ->

80 -- struct variable declarations are always indexed

81 let gl' = addEntry ident IdDecl gl in

82 case mdecl of

83 Just declL -> (parseStructDeclList gl' declL, ll)

84 _ -> (gl', ll)

85 _ -> (gl, ll)

86 where

87 -- struct fields are always indexed

88 parseStructDeclList gl' [] = gl'

89 parseStructDeclList gl' (x:xs) =

90 let (dl, _) = (parseDecl gl' Map.empty x) in parseStructDeclList dl xs

91

92 parseCType :: IdDB -> IdDB -> [CDeclarationSpecifier a] ->

93 [(Maybe (CDeclarator a0), b0, c0)] -> (IdDB, IdDB)

94 parseCType gl ll [] _ = (gl, ll)

95 parseCType gl ll (cType:_) declList = case cType of

96 -- struct or union

97 CTypeSpec (CSUType (csu) _) ->

98 let (gl', ll') = parseCSU gl ll csu in

99 case declList of

100 [] -> (gl', ll')

101 _ -> parseDeclList gl' ll' declList

Xuheng Li/xl2784 9

COMS W4995 002 Parallel Functional Programming Final Report

102 -- other types

103 _ -> parseDeclList gl ll declList

104

105 --parseDecl :: CDeclaration a -> IdEntry

106 parseDecl :: IdDB -> IdDB -> (CDeclaration a) ->

107 (IdDB, IdDB)

108 parseDecl gl ll (CDecl cTypeList declrList _) =

109 parseCType gl ll cTypeList declrList

110 parseDecl gl ll _ = (gl, ll)

111

112 -- expr and stmt won't introduce new symbols so local DB is always discarded

113 parseExprList :: IdDB -> IdDB -> [CExpression a] -> EntryType -> IdDB

114 parseExprList gl _ [] _ = gl

115 parseExprList gl ll (expr:xs) id_type =

116 let gl' = parseExpr gl ll expr id_type in

117 parseExprList gl' ll xs id_type

118

119 parseExpr :: IdDB -> IdDB -> (CExpression a) -> EntryType -> IdDB

120 parseExpr gl ll cexpr id_type = case cexpr of

121 CComma exprList _ -> parseExprList gl ll exprList IdRef

122 CAssign _ expr1 expr2 _ ->

123 parseExpr2 gl ll (expr1, IdRef) (expr2, IdRef)

124 CCond expr1 Nothing expr2 _ ->

125 parseExpr2 gl ll (expr1, IdRef) (expr2, IdRef)

126 CCond expr1 (Just expr2) expr3 _ ->

127 parseExpr3 gl ll (expr1, IdRef) (expr2, IdRef) (expr3, IdRef)

128 CBinary _ expr1 expr2 _ ->

129 parseExpr2 gl ll (expr1, IdRef) (expr2, IdRef)

130 CCast _ expr _ -> parseExpr gl ll expr IdRef

131 CUnary _ expr _ -> parseExpr gl ll expr IdRef

132 CSizeofExpr expr _ -> parseExpr gl ll expr IdRef

133 CIndex expr1 expr2 _ ->

134 parseExpr2 gl ll (expr1, IdRef) (expr2, IdRef)

135 CCall expr exprList _ ->

136 -- callee must be defined so ll can't be changed

137 let gl' = parseExpr gl ll expr IdCall in

138 parseExprList gl' ll exprList IdRef

139 CMember struct field _ _ -> -- field :: Ident is always indexed

140 let gl' = parseExpr gl ll struct IdRef in

141 addEntry field IdRef gl'

142 CVar ident _ ->

143 -- if the ident is a local variable, just discard it

144 if inLocalList ll (identToString ident)

145 then gl

146 else addEntry ident id_type gl

147 _ -> gl

148

149 parseExpr2 :: IdDB -> IdDB -> (CExpression a, EntryType) ->

150 (CExpression a, EntryType) -> IdDB

151 parseExpr2 gl ll (expr1, t1) (expr2, t2) =

152 let gl' = parseExpr gl ll expr1 t1 in

Xuheng Li/xl2784 10

COMS W4995 002 Parallel Functional Programming Final Report

153 parseExpr gl' ll expr2 t2

154

155 parseExpr3 :: IdDB -> IdDB -> (CExpression a, EntryType) ->

156 (CExpression a, EntryType) -> (CExpression a, EntryType) -> IdDB

157 parseExpr3 gl ll exprt1 exprt2 (expr3, t3) =

158 let gl' = parseExpr2 gl ll exprt1 exprt2 in

159 parseExpr gl' ll expr3 t3

160

161 parseStmt :: IdDB -> IdDB -> (CStatement a) -> IdDB

162 parseStmt gl ll cstmt = case cstmt of

163 CLabel label stmt _ _ ->

164 let gl' = addEntry label IdLabel gl in

165 parseStmt gl' ll stmt

166 CCase expr stmt _ ->

167 let gl' = parseExpr gl ll expr IdRef in

168 parseStmt gl' ll stmt

169 CCases expr1 expr2 stmt _ ->

170 let gl' = parseExpr2 gl ll (expr1, IdRef) (expr2, IdRef) in

171 parseStmt gl' ll stmt

172 CDefault stmt _ ->

173 parseStmt gl ll stmt

174 CExpr (Just expr) _ ->

175 parseExpr gl ll expr IdRef

176 CCompound label compoundItems _ ->

177 parseCompound gl ll label compoundItems

178 CIf expr stmt Nothing _ ->

179 let gl' = parseExpr gl ll expr IdRef in

180 parseStmt gl' ll stmt

181 CIf expr stmt1 (Just stmt2) _ ->

182 let gl' = parseExpr gl ll expr IdRef in

183 let gl'' = parseStmt gl' ll stmt1 in

184 parseStmt gl'' ll stmt2

185 CSwitch expr stmt _ ->

186 let gl' = parseExpr gl ll expr IdRef in

187 parseStmt gl' ll stmt

188 CWhile expr stmt _ _ ->

189 let gl' = parseExpr gl ll expr IdRef in

190 parseStmt gl' ll stmt

191 CFor _ _ _ _ _ -> parseCFor cstmt

192 CGoto label _ ->

193 addEntry label IdLabel gl

194 CReturn (Just expr) _ ->

195 parseExpr gl ll expr IdRef

196 _ -> gl

197 where

198 mParseExpr gl' ll' mexpr = case mexpr of

199 Nothing -> Just gl'

200 Just expr -> Just (parseExpr gl' ll' expr IdRef)

201 parseCFor (CFor (Left mexpr1) (mexpr2) (mexpr3) stmt _) =

202 case mParseExpr gl ll mexpr1 >>= \gl1 ->

203 (mParseExpr gl1 ll) mexpr2 >>= \gl2 ->

Xuheng Li/xl2784 11

COMS W4995 002 Parallel Functional Programming Final Report

204 (mParseExpr gl2 ll) mexpr3 of

205 Nothing -> gl

206 Just gl3 -> parseStmt gl3 ll stmt

207 parseCFor (CFor _ _ _ _ _) = gl

208 parseCFor _ = gl

209

210 -- C code compound, gl is global symbol DB, ll is local symbol DB

211 -- Updates to a local symbol in a compound is discarded when the compound

212 -- is parsed

213 parseCompound :: IdDB -> IdDB -> [Ident] -> [CCompoundBlockItem a]

214 -> IdDB

215 parseCompound gl _ _ [] = gl -- end of parsing, ll is discarded

216 parseCompound gl ll labels (blockItem:xs) = case blockItem of

217 CBlockStmt stmt -> -- Stmt won't introduce new symbols

218 let gl' = parseStmt gl ll stmt in

219 parseCompound gl' ll labels xs

220 CBlockDecl decl ->

221 let (gl', ll') = parseDecl gl ll decl in

222 parseCompound gl' ll' labels xs

223 CNestedFunDef (_) -> gl -- GNU C nested function is not supported

224

225 parseFunDeclr :: IdDB -> (CDerivedDeclarator a) -> IdDB

226 parseFunDeclr ll (CFunDeclr (Left _) _ _) = ll -- old-style function declaration is not supported

227 parseFunDeclr ll (CFunDeclr (Right (cDecls, _)) _ _) =

228 forEachCDecl ll cDecls

229 where

230 forEachCDecl :: IdDB -> [CDeclaration a] -> IdDB

231 forEachCDecl rl [] = rl

232 forEachCDecl rl (cDecl:xs) =

233 let (new_rl, _) = (parseDecl rl Map.empty cDecl) in forEachCDecl new_rl xs

234 parseFunDeclr ll _ = ll

235

236 -- Function definitions

237 parseDef :: IdDB -> (CFunctionDef a) -> IdDB

238 parseDef gl (CFunDef _ cDeclr _ cCompound _) = case cDeclr of

239 (CDeclr (Just ident) [cFunDeclr] _ _ _) ->

240 let gl' = addEntry ident IdDecl gl in -- add function name to global list

241 let ll = parseFunDeclr Map.empty cFunDeclr in -- add function arguments to local list

242 case cCompound of

243 (CCompound labels items _) ->

244 parseCompound gl' ll labels items

245 _ -> gl'

246 _ -> gl

247

248 parseTranslUnit :: IdDB -> [CExternalDeclaration a] -> IdDB

249 parseTranslUnit gl [] = gl

250 parseTranslUnit gl (x:xs) = case x of

251 CDeclExt decl -> let (dl, _) = (parseDecl gl Map.empty decl) in parseTranslUnit dl xs

252 CFDefExt def -> let dl = parseDef gl def in parseTranslUnit dl xs

253 _ -> gl

254

Xuheng Li/xl2784 12

COMS W4995 002 Parallel Functional Programming Final Report

255 parseAST :: CTranslationUnit a -> IdDB

256 parseAST (CTranslUnit l _) = parseTranslUnit Map.empty l

257

258 readWithPrep :: String -> IO ()

259 readWithPrep input_file = do

260 ast <- errorOnLeftM "Parse Error" $

261 parseCFile (newGCC "gcc") Nothing [""] input_file

262 mapM_ print $ parseAST ast

263

264 errorOnLeft :: (Show a) => String -> (Either a b) -> IO b

265 errorOnLeft msg = either (error . ((msg ++ ": ")++).show) return

266 errorOnLeftM :: (Show a) => String -> IO (Either a b) -> IO b

267 errorOnLeftM msg action = action >>= errorOnLeft msg

Xuheng Li/xl2784 13

	Introduction
	Design and Implementation
	Parsing
	Local Variables
	Parallelism

	Performance Evaluation

