
PFP Fall 2021

Parallel Functional Programming Final Project Report:
Parallel Word Ladder

Yiqu Liu(uni: yl4617)
Daisy Wang(uni: yw3753)

1. Background
Word Ladder, also known as Doublets, or word-links, is a well-studied word game
problem invented by Lewis Carroll. The target of this problem is to find the shortest
transformation sequence from one word to a target word based on a given set of words,
in which any two adjacent words differ by one character and each word must be a
proper English word.

2. Our Approach
The traditional word ladder problem focuses on changing one character in each step
and not modifying the length of each word. In our project, we extend the scope of this
problem a bit by defining, adding or removing one character in each step as a valid
transformation.

We implemented a parallel version of the Breadth-first searching algorithm to find the
shortest path from the given word to the target word. We parallelized the generation of
each layer. Our haskell implementation led to 1.9x speed up than the original sequential
version when running on a 8-core machine with 8 threads assigned to it.

3. Implementation Architecture

3.1 Sequential
We implemented a Breadth-first search to find the shortest path. This algorithm
begins at the root node of the tree and then visits all nodes level by level. BFS
uses a queue to keep the status of its searching. It takes the head of the queue,
looking for all the possible children of this node. Once a node is processed, all
the children will be added to the end of the queue.

The sequential version of our word ladder works as follow:
1. Read the word.txt file into memory.
2. Cast all the words into lower cases and generate a StringSet based on the

result.
3. Set up a queue and put the root node in the queue.
4. Take the first element in the queue
5. Check if this node is the target node. If so, return the result.
6. Check if this node has been visited before. If so, move to the next node.
7. Generate all the possible children of it, and insert those elements into the

end of the queue.
8. Go back to step 4 until the queue is empty.

The graph below shows the major components of our implementation.

3.2 Parallel
Based on our sequential implementation, we optimized our program by applying
parallelism to two key transitions. The parallel implementation of our program is
shown in the graph below. The arrow in black indicates a sequential step and the
arrow in red indicates parallel step.

In the second step, based on the current level of the tree, we are trying to explore
the next level by building a list of words with all combinations of the alphabet. In
this step, parallelism is implemented using rpar & rseq.

For each node in the current level, the previous exploration is applied.
Parallelism in this step is realized by using parMap. In the best case, it should
compute the alphabet combination for each node in parallel.

4. Experimental Design
We expect to experiment with parallelizing, exploring different strategies to receive
benefits in performance, we will be using thread scope for runtime analyzing, and
considering the balance between empirical results and the number of cores.

4.1 Parallelization
In our project, in order to parallel the BFS searching, some changes need to be
made to the original version. Instead of maintaining a queue, we maintain a list,
which only stores all the nodes in the current level. We process level by level,
which means it will not move to the next level until the result of every node in this
level is generated. Our final solution composed of the following steps:

1. Read the word.txt file into memory.
2. Cast all the words into lower cases and generate a StringSet based on the

result.
3. Set an empty list and put the root node into it.
4. Build nodes for words on the same level of the tree
5. Explore all potential nodes for a given node and check if it is a valid word
6. Check if the word is the same as the target word. If so, return the result.
7. Go back to step 3

Obviously, step2, step 4 and 5 could be parallized. Experiments are conducted
by parallelizing these three parts.

4.2 Experiment
1. Monitor the effect of parallelism on the tree node exploring

a. Monitor the effect of using rpar and rseq
b. Monitor the effect of using parMap

2. Monitor the effect of parallelism on the construction of an entire level in a
tree

3. Find the effect of parallelism with change of word dictionary size
4. Find the effect of parallelism with the change of maximum depth of tree

4.3 Experiment Preparation
In order to see the performance of parallelization, we have to enlarge the
searching scope.

1. Large word dictionary. This dictionary includes more than 290,000 words.
It is downloaded from a public Github repository:
https://github.com/dwyl/english-words

2. Start word and end word: If the word ladder can be found within a few
steps, it’s hard to see the advantages of the parallel version over the
sequential one. In order to avoid this situation, we chose two words
between which there’s no valid word ladder: gimlets and affinage

5. Performance

5.1 Sequential Performance
The maximum searching depth is set to 50. The sequential version of word
ladder uses 14.274 seconds when searching for the ladder between gimlets and
affinage.

5.2 Parallel Performance
5.2.1 Parallel the word generating part

https://github.com/dwyl/english-words

Given a word a, the possible next step would be
1. Insert one character: a[0]+c+a[1..], a[..1]+c+a[2..], …
2. Change one character: a[0]+c+a[2..], a[..1]+c+a[2..]...
3. Delete one character: a[0]+a[2..], a[..1]+c+a[3..]

These three choices of transformations could be generated at the same time.
Checking if the word is valid also moved in this stage. We use Par Monad to
synchronize this part. After changing this part, the performance of the search is
improved.
We ran the program using gimlets and affinage, with the maximum searching
depth set to 50, on an 8-core machine. The performance on a 6 threads is as
followed:

The performance on 8 threads is as followed:

Compared to the original version, the parallelized one was sped up 0.76 times.
There’s still space to improve.

5.2.2 Parallel the children generating part
Every node on the same level has to generate its possible one-hop words, which
can be done simultaneously. We use par Monad to optimize this part by creating
sparks for each node and concat the results after every result is generated.
The performance is dramatically improved by implementing this parallelization.

We ran the program using gimlets as start word and affinage as end word, with
the maximum searching depth set to 50, on an 8-core machine. The performance
on a 6 threads is as followed:

The performance on 8 threads:

On a 6-thread parallelization, it is 1.9 times faster than the sequential
version.

5.2.3 Parallel the dictionary reading part

As we mentioned before, we cast all the words to lower cases. That happens
before the BFS starts. Surprisingly, after we parallelized this part, the
performance did not improve much.
On 6 threads, there’s an around 50% slowdown than the previous version.

Our guessing is, even if the casting work is paralleled, this job is a relatively
simple one which takes only a very short time. So parallelizing this part does not
bring much benefit compared to the overhead of creating sparks, garbage
collection, context switching, and so on.

6. Further Analysis
While testing the overall performance and effect of applying parallelization, we also
monitored the effects of parallelism while changing the maximum allowed depth of tree,
The performance of the result is in the table below. While sticking with the same start
and end word, same word dictionary, run with the same degree of parallelism, we keep
track of both sequential and parallel performance over different max depth and record
the result into the table below.

Sequential Parallel

10 1.83s user , cpu 1.998 total 3.78s user , cpu 1.918 total

20 8.03s user , cpu 8.200 total 13.35s user , cpu 4.591 total

50 15.34s user , cpu 16.878 total 21.43s user , cpu 8.136 total

100 14.36s user , cpu 15.093 total 20.91s user , cpu 6.613 total

200 14.07s user , cpu 14.466 total 21.15s user , cpu 7.094 total

500 13.35s user , cpu 13.656 total 21.29s user , cpu 7.110 total

Compute the above table into a line graph, where y-axis represents the ratio of parallel
run time versus sequential run time, and x-axis keeps track of the depth. We get the line
chart below.

Based on the line chart, we don’t see the effects of parallelism getting greater as the
max depth increases. The degree of benefit brought by using parallelism has been
roughly consistent as max depth increases.

7. Code
pfp_final.hs

import Data.Char(toLower)

import System.Environment(getArgs)

import qualified Data.Set as Set

import System.IO(hPutStrLn, stderr)

import System.Exit(exitFailure)

import Data.List as List

import Control.Parallel.Strategies hiding(parMap)

import Control.DeepSeq

type StringSet = Set.Set String

parMap :: (a -> b) -> [a] -> Eval [b]

parMap _ [] = return []

parMap f (a:as) = do

b <- rpar (f a)

bs <- parMap f as

return (b:bs)

-- pmap :: (a -> b) -> [a] -> [b]

-- pmap f xs = map f xs `using` parList rseq

-- concatMap1 :: (a -> [b]) -> [a] -> [b]

-- concatMap1 f xs = concat $ pmap f xs

-- usage :: IO ()

-- usage = do

-- pn <- getProgName

-- die $ "Usage: " ++ pn ++ " <dictionary-filename> <from-word>

<to-word>"

readDict :: String -> Int -> IO StringSet

readDict filename _ =

(Set.fromList . (map (map toLower)) . words) `fmap` readFile

filename

search :: StringSet -> String -> String -> Int -> Maybe [String]

search dictionary fromWord toWord maxDepth =

bfs [[fromWord]] (Set.singleton fromWord) maxDepth

where

bfs :: [[String]] -> StringSet -> Int -> Maybe [String]

bfs _ _ 0 = Nothing

bfs paths visited depth =

case filter ((==toWord) . head) paths of

(solution:_) -> Just solution

[] -> bfs paths'' visited' (depth - 1)

where

paths' = concat $ runEval $ parMap takeAStep paths

(paths'', visited') = foldr validStep ([], visited)

paths'

validStep np@(w:_) (existing, v)

| not (Set.member w v)

= (np : existing, Set.insert w v)

| otherwise = (existing, v)

validStep [] _ = error "validStep: empty list?"

takeAStep :: [String] -> [[String]]

takeAStep [] = error "takeAStep: empty list?"

takeAStep p@(x:_) = concat $ runEval $ parMap

allletters $ zip (inits x) (tails x)

-- takeAStep p@(x:_) = concat $ zipWith (allletters)

(inits x) (tails x)

where

-- pair = zip (inits x) (tails x)

-- helper p = zip (map fst p) (map (tail . snd)

(init p))

allletters (pre,w@(_:ws)) =runEval $ do

as' <- rpar (force

(generateNextHop pre w))

bs' <- rpar (force

(generateNextHop pre ws))

rseq as'

rseq bs'

return (as' ++ bs')

allletters (_,[]) = []

-- allletters pre w@(_:ws) = runEval $ do

-- as' <- rpar

(force (generateNextHop pre w))

-- bs' <- rpar

(force (generateNextHop pre ws))

-- rseq as'

-- rseq bs'

-- return (as' ++

bs')

-- allletters _ [] = []

generateNextHop pre w = [b : p | c <- ['a'..'z'],

let b = (pre ++ [c] ++ w), Set.member b dictionary, not $ Set.member

b visited]

maxSteps :: Int

maxSteps = 200

main :: IO ()

main = do args <- getArgs

case args of

[filename, start, end] -> do

contents <- readDict filename (length start)

case search contents start end maxSteps of

Nothing -> putStrLn "no ladder"

Just _ -> putStrLn "parallelized"

_ -> do

-- pn <- getProgName

hPutStrLn stderr $ "Usage: wordLadder

<dictionary-filename> <from-word> <to-word>"

exitFailure

