
COMS 4995 - Project Report - WordEmb

Yang, Yifan
yy3185@columbia.edu

Huang, Erik
th2925@columbia.edu

December 22, 2021

1 Introduction

For our final project, we are looking into a fundamental component for many natural language
processing tasks, word embeddings. More specifically, we are revisiting, from the perspective of
functional parallel processing, the static word embeddings derived from word co-occurrence matrix
with a fixed-size context window and the truncated SVD method.

Word embeddings, or word vectors, aim to encode a word’s meaning in a fixed-size vector, whose
dimension is typically magnitudes smaller than the size of the vocabulary. The intuition behind
the use of co-occurrence matrix is the distributional hypothesis [1]: the meaning of a word can be
determined from the context it appears in. And words with similar meaning would occur in similar
context.

To represent a word’s context, we slide a fixed-size context window over the corpus and count
all pairs of words that occurred in each other’s context. The result is a co-occurrence matrix M ,
where element Mij represents how many times a word i occurred in the context of the word j. For
example, for the following corpus:

1. I enjoy flying.

2. I like NLP.

3. I like deep learning.

A context window of size 1 would produce the following co-occurrence matrix.

Figure 1: Example co-occurrence matrix taken from [3]

Building upon the co-occurrence matrix, studies show that raw counts on occurrences are often
not a great measure of association between words as they tend to be very skewed [2]. Therefore, to

1

COMS W4995 Parallel Functional Programming Fall 2021 Erik Huang, Yifan Yang

obtain the vector representation of a word, we compute what is called a Positive Pointwise Mutual
Information matrix from the co-occurrence matrix, using the equation below.

PPMI(word1,word2) = max(log2(
P (word1,word2)

P (word1)P (word2)
), 0) (1)

Finally, because the vector representations we have obtained from the co-occurrence matrix
has very high dimension (d = |V |, where V is the vocabulary set), we want to obtain an approx-
imate representation using fewer dimensions. One way to do so is the truncated Singular Value
Decomposition method, in which we truncate a matrix M to the top k singular values.

Figure 2: Visualization of truncated SVD matrix [2]

The |V | × k matrix W would be the final word embedding, where k is the dimension of the
embedding. The obtained embedding can then be used for downstream NLP tasks such as sentiment
analysis, named entity recognition, etc.

2 Objective

As outlined in the introduction, we aim to implement a parallel algorithm in computing the static
word embedding. The procedure that we will be mainly focus on are:

1. Parallelizing the computation of co-occurrence matrix, which involves how do we partition
the corpus and combine intermediate results. This would be challenging because the co-
occurence matrix would be incredibly sparse, and threads/workers cannot afford maintain an
entire co-occurrence matrix in the memory.

2. Parallelizing the computation of the PPMI matrix. This poses similar challenges as above.

We have decided to use an existing solver for SVD (SVDLIBC by Doug Rohde) because it is
overly complicated to demonstrating Haskell’s parallelism mechanics in a complex algorithm such
as SVD.

3 Problem Formulation

In this section we outline the input and output of our program.
The program takes 4 inputs. The first input is a file path to the input corpus file. The corpus file

are sentences separated by a new line character. The second input is a tuneable depth parameter
that dictates the parallelization depth of the program. The third parameter is the dimensionality
of the final word embedding. The last parameter is the path to which the program writes the final
output to.

Page 2

COMS W4995 Parallel Functional Programming Fall 2021 Erik Huang, Yifan Yang

The output is a text file where each line is the computed word embedding for a given word.
Each word is converted to lower case and the number of dimension matches the dimension specified
in the input. Each dimension is represented by a real number (possibly in scientific notation). The
format is as follows:

word [dim1] [dim2] [dim3] ...

4 Implementation

In this section we describes our implementation for each step in computing the word embeddings.

4.1 Corpus Pre-processing

There are two tasks in our preprocessing step. The first task is to tokenize, clean, and format our
corpus. We split the corpus by new lines to obtain a list of sentences, then tokenize each sentence
into a list of tokens. We then filter out invalid tokens, such as punctuations and tokens that include
non-alphabetical characters. Lastly, we converted all the tokens to lower case for good measure.

The second task is to build a word-index dictionary that maps each word to a integer index.
This is done because in our later computations, we are going to index our matrix with word indices
instead of strings.

4.2 Computing Co-occurrence Matrix

Word co-occurrences are very sparse in languages, which means that each word would only co-
occur with a very limited set of other words. Therefore, if we represent co-occurrences in a dense
matrix, most entries in the matrix will be 0 (we can see this effect in the previous toy corpus).
Therefore, dense matrix representation for co-occurrences are bound to be wasteful, and sometimes
not practical. For instance, in the Brown Corpus we tested our program on, there are well over
40,000 unique words. Representing a 40,000 × 40,000 integer matrix in a dense representation would
have required 11.92 GB on a 64-bit machine. In addition, less than 0.2% of the co-occurrence matrix
have non-zero values.

Thus, we decided to represent our co-occurrence data in a sparse matrix representation using a
map of matrix coordinate to value: Map (Int, Int) Int. This is done to reduce the memory
profile and increase the efficiency of our program.

The computation of co-occurrence matrix can be parallelized because the computation for each
sentence is independent of each other, and the final co-occurrence matrix can be combined by
adding together the matrices for each sentence.

We parallelize this step by recursively partitioning our corpus into two halves until a certain
depth d, and compute each partition in parallel. After the computation for both partitions has
finished, we sum the two sparse matrices using Map.UnionWith (+) to get the final result.

4.3 Computing PPMI Matrix from the Co-occurrence Matrix

This step transforms each value of the co-occurrence matrix, which is the raw count of co-occurrences
of a word with another word, to a better measure that gives more information about whether a
context word is particularly indicative of a target word.

Again, each cell in the co-occurrence matrix can be transformed without dependency on any
other cells. We effectively perform a parallel map operation. Again, we recursively partition the

Page 3

COMS W4995 Parallel Functional Programming Fall 2021 Erik Huang, Yifan Yang

co-occurrence matrix until a certain depth, apply our transformation at the root, then recursively
build up to the final PPMI matrix by combining each sub-map.

4.4 SVD Truncation

As previously established, our resulting matrix would be very sparse, and also not every dimension
would be indicative or useful in the downstream tasks. Therefore, we build a more compact vector
representation of words by truncating the original matrix down to the top k singular value and
their respective dimension using SVD. We relied on an existing solver for this step because solving
SVD is not naturally parallelizable and they are inappropriate in demonstrating Haskell’s parallel
mechanism.

As a result, we project the original matrix, which might have over 40,000 dimensions, down to
the top k (e.g., 100) dimensions and we consider this as our final word embeddings.

5 Evaluation

Hardware

The processor which we perform our analysis on is 2.3 GHz 4-Core Intel Core i5 with Hyper
Threading.

Evaluation Method

We used Brown University Standard Corpus of Present-Day American English as our input text
file. There are two parameters we can tune 2 variables to analyze the performance: N, d (the
recursive depth level of partition).

Balancing and Granularity Test

In Table 1, we experimented our implementation with depth fixed at 5 and different N values. We
found that the program is most efficicent when N = 8, twice as much as the number of cores we
have. We think that this is because of the hyper-threading of the CPU. As N goes higher, the time
cost starts to increase again due to the increased amount of overhead. Our conversion rate remains
constant when N > 1. The reason might be that the depth is rather shallow at d = 5. So that we
will further test the effect of different d values.

Threadscope Analysis

Figure 3 and 4 demonstrates the eventlog from running the program with N = 4, d = 5 and
N = 8, d = 5. We can observe the sequential preprocessing of data in the beginning. Following is
the parallelization of co-occurrence matrix formation. Since the final folding must happen on one
HEC, we can see that towards the end of this step the task becomes unbalanced. At the very end
we have the PPMI matrix conversion, which is also parallelized.

Page 4

COMS W4995 Parallel Functional Programming Fall 2021 Erik Huang, Yifan Yang

Figure 3: Eventlog of N=4 d=5

Figure 4: Eventlog of N=8 d=5

Page 5

COMS W4995 Parallel Functional Programming Fall 2021 Erik Huang, Yifan Yang

Table 1: Experiment with different N and d = 5

N Speedup time total converted overflow GC’d fizzled

1 1 28.565 127 0 0 2 125
2 1.66 17.159 127 64 0 0 63
4 2.44 11.689 127 64 0 0 63
6 2.59 11.021 127 64 0 0 63
8 2.69 10.620 127 64 0 0 63
10 2.36 12.071 127 64 0 0 63
16 1.97 14.520 127 64 0 0 63

In table 2 we fixed our N value to be 8 and test out different values for d. The number of total
sparks is approximately 2d+2 − 1. The conversion rate stays around 50% until the value of d
becomes very large. At d = 20, we have a conversion rate of 6% and more than half of the sparks
created are garbage collected. The optimal value for depth d seems to be 5.

Table 2: Experiment with different d and N = 8

d Speedup time total converted overflow GC’d fizzled

0 1 33.940 3 2 0 0 1
1 1.52 22.324 7 4 0 0 3
2 2.25 15.083 15 9 0 0 6
3 2.78 12.206 31 18 0 0 13
4 2.71 12.520 63 32 0 0 31
5 3.18 10.674 127 64 0 0 63
6 3.11 10.892 255 128 0 0 127
8 3.00 11.290 1055 530 0 0 525
10 2.8 12.132 4619 2320 0 1 2298
20 2.45 13.841 4352473 263946 951 2629877 1392163

6 Conclusion

In this project, we presented the parallel computation schemes for two important steps in the
computation of word embedding. We demonstrated a sparse matrix representation for word co-
occurrences that both drastically reduce memory usage and increased our computation efficiency.
We leveraged parallelization and lazy constructs in Haskell, such as Control.DeepSeq and
Control.Parallel.Strategies, to build a parallel program that gained noticeable speedups
from the sequential counterpart.

7 Code

app/Main.hs

module Main where

import Lib
import System.Exit(die)
import System.IO
import System.Environment(getArgs, getProgName)
import qualified Data.Text.IO as TIO

Page 6

COMS W4995 Parallel Functional Programming Fall 2021 Erik Huang, Yifan Yang

import qualified Data.Text as T
import qualified Data.Map as M
import qualified Numeric.LinearAlgebra as LA
import qualified Numeric.LinearAlgebra.Data as NL
import qualified Numeric.LinearAlgebra.Devel as NLD
import qualified Numeric.LinearAlgebra.SVD.SVDLIBC as SVD
import qualified Control.DeepSeq as DS
import Foreign.C.Types(CInt)

toCInt :: Int -> CInt
toCInt x = (fromIntegral x) :: CInt

main :: IO ()
main = do

args <- getArgs
case args of

[input, depth, vector_length, output] -> do
outfile <- openFile output WriteMode
contents <- TIO.readFile input
let corpus = lineTokenize contents

vocab = vocabulary corpus
cm = parCooccurenceMatrix (read depth::Int) corpus

vocab 5↪→

dim = M.size vocab
pmi = ppmi (read depth::Int) cm dim
pmis = NLD.mkCSR $ M.toList pmi
(u, s, vt) = SVD.sparseSvd (read vector_length::Int) pmis
w = DS.force (NL.tr' u) LA.<> (NL.diag s)
embs = map (\i -> T.unwords $ map (T.pack . show) $

NL.toList $ w NL.! i) [0..dim-1]↪→

word_embs = zip (M.keys vocab) embs

-- putStr $ show $ M.size pmi
mapM_ (TIO.hPutStrLn outfile) $ map (\(word, emb) -> T.unwords

[word, T.pack " ", emb]) word_embs↪→

hClose outfile
_ -> do

pn <- getProgName
die $ "Usage: "++pn++" <input_filename> <depth> <vector_length>

<output_filename>"↪→

src/Lib.hs

module Lib
(module Utils,
module WordEmbSeq,
module WordEmbPar,

Page 7

COMS W4995 Parallel Functional Programming Fall 2021 Erik Huang, Yifan Yang

module Matrix
) where

import WordEmbSeq
import WordEmbPar
import Utils
import Matrix

src/Matrix.hs

module Matrix
(

ppmi
) where

import qualified Data.Map as M
import qualified Data.Vector.Unboxed as V
import qualified Control.Parallel.Strategies as ST

rowSum :: M.Map (Int, Int) Int -> Int -> V.Vector Int
rowSum m dim = V.accum (+) acc items

where items = map (\(k, v) -> (fst k, v)) $ M.toList m
acc = V.generate dim (\i -> 0)

colSum :: M.Map (Int, Int) Int -> Int -> V.Vector Int
colSum m dim = V.accum (+) acc items

where items = map (\(k, v) -> (snd k, v)) $ M.toList m
acc = V.generate dim (\i -> 0)

-- Note: Int potential overflow? yes.
-- However, wc -w brown.txt -> 1161192 << 2ˆ64 so we are in the safe

zone for now↪→

matSum :: M.Map (Int, Int) Int -> Int
matSum = sum . M.elems

ppmi :: Int -> M.Map (Int, Int) Int -> Int -> M.Map (Int, Int) Double
ppmi depth m dim = _ppmiMatPar depth pwc pw pc

where
n = matSum m
(pw, pc, pwc) = ST.runEval $ do

rs' <- ST.rpar $ V.map (`floatDiv` n) $ rowSum m dim
cs' <- ST.rpar $ V.map (`floatDiv` n) $ colSum m dim
pwc <- ST.rpar $ M.map (`floatDiv` n) m
return (cs', rs', pwc)

_ppmiMatPar :: Int -> M.Map (Int, Int) Double -> V.Vector Double ->
V.Vector Double -> M.Map (Int, Int) Double↪→

_ppmiMatPar 0 pwc pw pc = _ppmiMat pwc pw pc

Page 8

COMS W4995 Parallel Functional Programming Fall 2021 Erik Huang, Yifan Yang

_ppmiMatPar d pwc pw pc = M.unionWith (+) m1 m2
where

maxKey = fst . fst $ M.findMax pwc
minKey = fst . fst $ M.findMin pwc
mid = (minKey + maxKey) `div` 2
(x,y) = M.split (mid, -1) pwc
m1 = ST.runEval $ ST.rpar (_ppmiMatPar (d-1) x pw pc)
m2 = ST.runEval $ ST.rpar (_ppmiMatPar (d-1) y pw pc)

_ppmiMat :: M.Map (Int, Int) Double -> V.Vector Double -> V.Vector
Double -> M.Map (Int, Int) Double↪→

_ppmiMat pwc pw pc = M.mapWithKey eval pwc
where eval = _ppmiCell pw pc

_ppmiCell :: V.Vector Double -> V.Vector Double -> (Int, Int) -> Double
-> Double↪→

_ppmiCell pw pc (i, j) pwc | pwpc == 0 = 0 -- ppmi is +infinite
| pwc == 0 = 0 -- ppmi is -infinite
| otherwise = max 0 (logBase 2 pmi)

where pwi = pw V.! i
pcj = pc V.! j
pwpc = pwi * pcj
pmi = pwc / pwpc

floatDiv :: Int -> Int -> Double
floatDiv a b = (fromIntegral a) / (fromIntegral b)

src/Utils.hs

module Utils
(

lineTokenize,
vocabulary

)
where

import qualified Data.Text as T
import qualified Data.Set as S
import qualified Data.Map as M
import qualified Data.Text.IO as TIO
import Data.Char (isSpace, isAlpha, toLower)

validToken :: T.Text -> Bool
validToken = T.all isAlpha

cleanTokens :: [T.Text] -> [T.Text]
cleanTokens = filter validToken . map T.toLower

Page 9

COMS W4995 Parallel Functional Programming Fall 2021 Erik Huang, Yifan Yang

wrapStartEnd :: [T.Text] -> [T.Text]
wrapStartEnd seq = [T.pack "<START>"] ++ seq ++ [T.pack "<END>"]

-- Drop empty sequences
validSequence :: [T.Text] -> Bool
validSequence = not . null

-- Seperate text into list of list of words
lineTokenize :: T.Text -> [[T.Text]]
lineTokenize contents = map wrapStartEnd $ filter validSequence $ map

cleanTokens $ map T.words $ T.lines contents↪→

-- Output all words into a map vocabulary
vocabulary :: [[T.Text]] -> M.Map T.Text Int
vocabulary corpus = M.fromList $ zip (S.toAscList . S.fromList $ concat

corpus) [0..]↪→

src/WordEmbSeq.hs

module WordEmbSeq
(

cooccurence,
cooccurenceMatrix

)
where

import qualified Data.Text as T
import qualified Data.Vector as V
import qualified Data.Map as M
import Data.Maybe(fromMaybe)

-- create cooccurence sparse matrix
cooccurenceMatrix :: [[T.Text]] -> M.Map T.Text Int -> Int -> M.Map

(Int, Int) Int↪→

cooccurenceMatrix corpus vocab window = foldr (M.unionWith (+)) M.empty
cooccurences↪→

where cooccurences = map (\line -> cooccurence (V.fromList line)
vocab window) corpus↪→

-- cooccurence(sentence, vocab, window_size) -> cooccurence matrix
cooccurence :: V.Vector T.Text -> M.Map T.Text Int -> Int -> M.Map

(Int, Int) Int↪→

cooccurence sentence vocab window =
foldr (M.unionWith (+)) M.empty $ map (_cooccurence sentence vocab

window) [0..V.length sentence -1]↪→

_cooccurence :: V.Vector T.Text -> M.Map T.Text Int -> Int -> Int ->
M.Map (Int, Int) Int↪→

Page 10

COMS W4995 Parallel Functional Programming Fall 2021 Erik Huang, Yifan Yang

_cooccurence sentence vocab window i = M.fromListWith (+) $ V.toList $
left_cooccur V.++ right_cooccur↪→

where center_word = sentence V.! i
(left_context, right_context) = _context sentence window i
left_cooccur = V.map (\left -> ((vocab M.!

center_word, vocab M.! left), 1)) left_context↪→

right_cooccur = V.map (\right -> ((vocab M.!
center_word, vocab M.! right), 1)) right_context↪→

_context :: V.Vector T.Text -> Int -> Int -> (V.Vector T.Text, V.Vector
T.Text)↪→

_context sentence window i = (V.slice left_start left_len sentence,
V.slice (i + 1) right_len sentence)↪→

where left_start = max 0 (i - window)
left_len = i - left_start
right_end = min (i + window) (V.length sentence - 1)
right_len = right_end - i

toWordsMatrix :: M.Map (Int, Int) Int -> M.Map T.Text Int -> M.Map
(T.Text, T.Text) Int↪→

toWordsMatrix cm vocab = M.fromList $ map (\(k,v) -> ((toWords M.! (fst
k), toWords M.! (snd k)), v)) $ M.toList cm↪→

where toWords = revertMap vocab
revertMap m = M.fromList $ map (\(x,y) -> (y,x)) $ M.toList m

src/WordEmbPar.hs

{-# LANGUAGE BlockArguments #-}
module WordEmbPar

(
parCooccurenceMatrix,

)
where

import qualified WordEmbSeq as WES
import qualified Utils as U
import qualified Control.Parallel.Strategies as ST hiding(parMap)
import qualified Data.Text as T
import qualified Data.Vector as V
import qualified Data.Map as M

parCooccurenceMatrix :: Int -> [[T.Text]] -> M.Map T.Text Int -> Int ->
M.Map (Int, Int) Int↪→

parCooccurenceMatrix 0 corpus vocab window = WES.cooccurenceMatrix
corpus vocab window↪→

parCooccurenceMatrix d corpus vocab window = M.unionWith (+) m1 m2
where

(x,y) = splitAt ((length corpus) `div` 2) corpus

Page 11

COMS W4995 Parallel Functional Programming Fall 2021 Erik Huang, Yifan Yang

m1 = ST.runEval $ ST.rpar (parCooccurenceMatrix (d-1) x vocab
window)↪→

m2 = ST.runEval $ ST.rpar (parCooccurenceMatrix (d-1) y vocab
window)↪→

References

[1] Association for Computational Linguistics. Distributional Hypothesis. Dec. 2010. url: https:
//aclweb.org/aclwiki/Distributional_Hypothesis.

[2] D. Jurafsky. Vector Semantics. 2019. url: https://web.stanford.edu/˜jurafsky/
li15/lec3.vector.pdf.

[3] C. Maning. CS224n: Natural Language Processing with Deep Learning. 2019. url: http://
web.stanford.edu/class/cs224n/readings/cs224n-2019-notes01-wordvecs1.
pdf.

Page 12

