
Word Search

Anshit Shirish Chaudhari (ac4772)
Soamya Agrawal (sa3881)

Word Search 1
Problem Statement 2

Dictionary-Search (Extension) 2
Algorithm 2

Test Inputs 3
Parallelization Strategies 3

Word-Search 3
Dictionary Search 10

Results 10
word-search 10
dictionary-search 12

Conclusion 12
References 13
Code 13



Problem Statement

Finding the word in a matrix is a common game that humans love. The aim of our project is to build
a parallel algorithm in Haskell to check if a word is present in the grid of characters. We say a word
exists if it can be constructed from letters of sequentially adjacent cells, where adjacent cells are
horizontally, vertically, or diagonally neighboring (similar to a snaking puzzle). The same letter cell
cannot be used more than once. Without the loss of generality, we restrict the input grid and the
query word to contain only lowercase English letters.

Dictionary-Search (Extension)

A�er tackling the above challenge, we decided to parallelize the problem of finding top-1000
frequent english words in the input grid. We call this dictionary-search. It takes the input grid and a
text-file containing dictionary words (top-1000 frequent english words in this case) and outputs the
number of words which are present in the grid.

Algorithm

Following are the components of our algorithm:
● Grid is a m*n matrix of lowercase characters.
● Query word is the word consisting of lowercase characters that we want to search in the

grid.
● word_exist method takes query_word and grid as input, and calls visit_cell method for all

the cells of the grid.



● visit_cell method takes the query word, grid, and the current cell as input and checks if the
initial character of the word is the same as the character present at the cell. In case it
matches, then it recursively calls itself, with neighboring cells and the remaining part of the
word until there are no more characters le� in the word. In case it is not, then it returns
False.

Test Inputs

We chose a input grid of 500*500 characters, where lowercase characters (a-z) were randomly
generated and saved to a file. We use the process of random generation to reduce the chances of
bias towards specific input words.

For testing the word-search algorithm, we chose the input query words “haskell” and “gingera”.
“haskell” is present in our input test grid and “gingera” is not present in our input test grid. Since
“haskell” is present in the input test grid, the time taken to search it in the grid will be lesser as
compared to “gingera”. For the query word, “haskell” the algorithm should return True as soon as
the word is found, but for “gingera” it would exhaust all the paths and then return “False”. Due to
the different nature of computation for both these queries, we choose these words in our analysis.
Note that both the words are of equal length, so it would be fair to test on these two words.

For the dictionary search query, we chose the top 1000 english words from google-10000-english.

Parallelization Strategies

We now discuss the different strategies that we tried out before reaching the optimal solution. For
each of the strategies, we evaluate the performance of the algorithm for the test inputs mentioned
above.

Word-Search

1. The first step of the algorithm is to call visit_path for all the cells. We are essentially visiting all
the paths that begin with each cell. We attempted to parallelize these calls because they are
independent of each other and we only care about the first call that returns success(true).

We use parList to visit all the cells in parallel

https://github.com/first20hours/google-10000-english


map visit_cell_dash cells `using` parList rseq

word-search-exe inputs/large_input_500.txt 500 500 "haskell" +RTS -N8 -s -ls 81.26s user 0.92s
system 132% cpu 1:02.22 total

SPARKS: 250000 (18537 converted, 231463 overflowed, 0 dud, 0 GC'd, 0 fizzled)
INIT    time    0.001s  (  0.011s elapsed)
MUT     time   79.155s  ( 61.823s elapsed)
GC      time    2.097s  (  0.345s elapsed)
EXIT    time    0.000s  (  0.005s elapsed)
Total   time   81.253s  ( 62.184s elapsed)



word-search-exe inputs/large_input_500.txt 500 500 "gingera" +RTS -N8 -s -ls 364.72s user 3.16s
system 106% cpu 5:45.71 total

SPARKS: 250000 (17533 converted, 232467 overflowed, 0 dud, 0 GC'd, 0 fizzled)
INIT    time    0.001s  (  0.015s elapsed)
MUT     time  363.230s  (345.272s elapsed)
GC      time    1.483s  (  0.380s elapsed)
EXIT    time    0.001s  (  0.005s elapsed)
Total   time  364.714s  (345.673s elapsed)

We see that many m*n sparks are created and most of them are overflowed. If the query word is
not present in the matrix, all the sparks will be utilized as we need to search through all the
paths. But in other cases, we will only be needing fewer sparks than m*n. We also observe that
all the cores are not optimally used.

2. We then move to using parBuffer since it creates limited sparks by regulating the number of
outstanding sparks

We use,

map visit_cell_dash cells `using` parBuffer 5000 rpar



word-search-exe inputs/large_input_500.txt 500 500 "haskell" +RTS -N8 -s -ls 74.37s user 0.64s
system 696% cpu 10.772 total

SPARKS: 247835 (178852 converted, 4853 overflowed, 1537 dud, 8815 GC'd, 53778 fizzled)
INIT    time    0.001s  (  0.007s elapsed)
MUT     time   72.847s  ( 10.532s elapsed)
GC      time    1.482s  (  0.199s elapsed)
EXIT    time    0.042s  (  0.006s elapsed)
Total   time   74.372s  ( 10.744s elapsed)



word-search-exe inputs/large_input_500.txt 500 500 "gingera" +RTS -N8 -s -ls 347.12s user 2.38s
system 700% cpu 49.912 total

SPARKS: 523351 (305294 converted, 4643 overflowed, 1927 dud, 2040 GC'd, 209447 fizzled)
INIT    time    0.001s  (  0.017s elapsed)
MUT     time  345.017s  ( 49.521s elapsed)
GC      time    2.098s  (  0.323s elapsed)
EXIT    time    0.000s  (  0.005s elapsed)
Total   time  347.117s  ( 49.866s elapsed)

We saw many sparks getting fizzled. This meant that the main thread computed the result of
these sparks and thus the program was not able to make use of extra cores. This means that we
need to increase the sequential nature of the program.

3. Instead of using rpar in the command in part 2 above, we tried rseq as the strategy for parBuffer

We use,

map visit_cell_dash cells `using` parBuffer 5000 rseq



word-search-exe inputs/large_input_500.txt 500 500 "haskell" +RTS -N8 -s -ls 43.99s user 0.62s
system 708% cpu 6.293 total

SPARKS: 116683 (111796 converted, 0 overflowed, 0 dud, 4886 GC'd, 1 fizzled)
INIT    time    0.001s  (  0.012s elapsed)
MUT     time   43.160s  (  5.800s elapsed)
GC      time    0.815s  (  0.143s elapsed)
EXIT    time    0.012s  (  0.007s elapsed)
Total   time   43.989s  (  5.962s elapsed)



word-search-exe inputs/large_input_500.txt 500 500 "gingera" +RTS -N8 -s -ls 283.56s user 2.04s
system 705% cpu 40.463 total

SPARKS: 250000 (249999 converted, 0 overflowed, 0 dud, 0 GC'd, 1 fizzled)
INIT    time    0.001s  (  0.011s elapsed)
MUT     time  282.066s  ( 40.183s elapsed)
GC      time    1.488s  (  0.230s elapsed)
EXIT    time    0.000s  (  0.009s elapsed)
Total   time  283.556s  ( 40.433s elapsed)

We thus reduce the frizzled sparks to almost 0. This also leads to a decrease in our runtime.

4. So far, we have only parallelised searching on paths with different starting cells. All the child
paths are still being evaluated sequentially. We now investigate if we can parallelize child paths.

The total number of child paths is exponential as there are at most seven (eight neighbours less
the previously visited neighbour cell) options to go to from each cell. But depending on the
query word, most of the paths get pruned. The nature of the algorithm is to proceed along paths
who share prefixes with the input words. Thus, we will not benefit from parallelization.

To validate our conclusion, we conducted experiments by allocating eight sparks to each
child-path exploration. Which meant, each execution of visit_cell creates eight sparks, one for
each neighbour. This approach led to a severe increase in the number of frizzled sparks and



drastically increased our runtime. This confirmed our hypothesis that due to high pruning on
child path level, we do not gain from parallelism.

Dictionary Search

In our example, we use the top-1000 english words as our dictionary. We see that there are three
possible avenues for parallelization:

- parallelize iteration on dictionary words, but word-search is executed sequentially
- sequentially iterate through dictionary words, but word-search is executed in parallel
- parallelize dictionary words iteration and word-search

In our experiments, the first two strategies did not perform as good as the last strategy. Hence, we
focused on improving the last strategy.

Because of the dual nature of parallelization, we had to conduct experiments with several
configurations for the number of parallelization (number of sparks) for dictionary words and
word-search. Empirically, we found that using around 10 sparks for dictionary-words and 1000
sparks (we reduced the number of sparks from 5000 in the parallel implementation of word-search
discussed in the previous section to 1000 here) for the word-search algorithm gave good results.
Giving more sparks to dictionary-words worsened the performance as the word-search algorithm
would then not get enough time to execute and thus it would slow down the speed. On the other
hand, giving more sparks to the word-search algorithm was also not beneficial as it reduced the
parallelization for dictionary-words.

Results

In this section, we analyze the run times and spark metrics for word-search and dictionary-search
algorithms.

word-search

https://github.com/first20hours/google-10000-english


Cores "haskell" speedup "gingera" speedup

1 18.265 1 148 1

2 16.197 1.127677965 161 0.9192546584

3 10.946 1.668646081 54.871 2.697235334

4 6.728 2.714774078 37.35 3.962516734

5 5.789 3.155121783 38.618 3.832409757

6 4.883 3.740528364 33.652 4.397955545

7 4.91 3.719959267 31.798 4.654380779

8 4.403 4.148307972 29.435 5.028027858

We analyze the runs of word search queries: “haskell” and “gingera”. We see that the runtime for
both the queries decrease as the number of cores increase. There is huge improvement in runtime
from when we go from 2->3 cores and that can be explained by the dip in garbage collected and
fizzled sparks. The rate of decrease of runtime slows down a�er cores increase from 5, but it still
decreases. We see a speedup of 4x for “haskell” query and 5x for “gingera” query.



dictionary-search

Cores top-1000 words speedup

1 148 1

2 171 0.865497076

3 58.58 2.526459543

4 45.863 3.227002159

5 43.26 3.421174295

6 36.887 4.012253639

7 35.426 4.177722577

8 37.599 3.936274901

We analyze the run of finding top-1000 english words [1] in the input grid. We observe that the
speedup reaches a maximum of 4.1 when the number of cores is 7. As the number of cores increase,
we see an increase in the garbage collected sparks and that explains the decrease in speedup
beyond 7 cores.

Conclusion

The word-search algorithm achieves a speedup of 4x for words present in the grid and a speedup of
5x for words not present in the matrix. Given the random nature of our input and the query words, a
similar speedup could be achieved for other queries as well. The maximum speedup was achieved
when we used 8 cores.



The dictionary-search algorithm achieves a speedup of 4x when running on 7 cores. We observe
that speedup decreases when the number of cores is 8 due to increase in the number of garbage
collected sparks.

References
1. https://github.com/first20hours/google-10000-english
2. https://stackoverflow.com/questions/4978578/how-to-split-a-string-in-haskell
3. https://leetcode.com/problems/word-search/

Code
GitHub Link: https://github.com/anshit-chaudhari/word-search
(This is a private repository at this moment. If you need access, please send a request to Anshit
Shirish Chaudhari)

Code Snippet
WordSearch.hs

import SearchParallel(word_exist_par)
import InputReader(boolToString, validate, formMatrixFromInput)
import System.Exit(die)
import System.Environment(getArgs)

main :: IO ()
main = do args <- getArgs

case args of
[fileName, rows, columns, word] -> do

contents <- readFile fileName
if (length word) < 1 then

die $ "Length of the word should be >= 1"
else if not (validate word) then

die $ "word must contain only lowercase English letters"
else

putStrLn (boolToString (word_exist_par (formMatrixFromInput contents m n) m n word))
where

m = (read rows) :: Int

https://github.com/first20hours/google-10000-english
https://stackoverflow.com/questions/4978578/how-to-split-a-string-in-haskell
https://leetcode.com/problems/word-search/
https://github.com/anshit-chaudhari/word-search


n = (read columns) :: Int
_ -> do

die $ "Usage: word_exist <sample_input.txt> <rows> <columns> <word>"

DictSearch.hs

import DictSearchParallel(dict_search)
import InputReader(formMatrixFromInput)
import System.Exit(die)
import System.Environment(getArgs)

main :: IO ()
main = do args <- getArgs

case args of
[fileName, dictFile, rows, columns] -> do

contents <- readFile fileName
query_content <- readFile dictFile
let query_words = words query_content
let res = dict_search (formMatrixFromInput contents m n) m n query_words
let present_words = (filter is_present (zip query_words res))
putStrLn ("#present_words: " ++ (show $ length present_words))
where

m = (read rows) :: Int
n = (read columns) :: Int
is_present (_,y) = y

_ -> do
die $ "Usage: word_exist <sample_input.txt> <rows> <columns> <word>"

InputReader.hs

module InputReader (boolToString, validate, formMatrixFromInput) where

import Search(word_exist)
import SearchParallel(word_exist_par)
import Data.Array
import Data.Char
import System.Exit(die)
import System.Environment(getArgs)
import Control.Applicative



-- Convert boolean to String
boolToString :: Bool -> String
boolToString True = "True"
boolToString False = "False"

wordsWhen :: String -> [Char]
wordsWhen s = case dropWhile isDelimiter s of

"" -> []
s' -> (head w) : wordsWhen s''

where
(w, s'') = break isDelimiter s'

where
isDelimiter = (li�A2 (||) (==',') isSpace)

-- Check if string has all lowercase letters
validate :: String -> Bool
validate s = all isLower s

-- Forms grid of characters
formMatrixFromInput:: String -> Int -> Int -> Array (Int,Int) Char
formMatrixFromInput contents rows columns = array ((1,1), (rows, columns)) ([ ((i,j), list !!
(columns*(i-1) + (j-1))) | i <- [1..rows], j <- [1..columns]])

where
list = wordsWhen contents

Search.hs

module Search (word_exist) where

import Data.Array
import qualified Data.Set as SetDash

get_nbrs :: Int -> Int -> [(Int, Int)]
get_nbrs i j = [(i-1,j), (i,j+1), (i+1,j), (i,j-1), (i-1,j-1), (i+1,j+1),(i+1,j-1),(i-1,j+1)]



visit_cell :: Array (Int, Int) Char -> SetDash.Set(Int, Int) -> Int -> Int -> [Char] -> (Int,Int) -> Bool
visit_cell _ _ _ _ [] _  = True
visit_cell matrix visited m n (x:xs) (i,j) | i < 1 || i > m = False

| j < 1 || j > n = False
| SetDash.member (i,j) visited = False
| x /= (matrix ! (i,j)) = False
| otherwise = any (==True) children_visits
where

visited_dash = SetDash.insert (i,j) visited
visit_cell_dash = visit_cell matrix visited_dash m n xs
children_visits = map visit_cell_dash (get_nbrs i j)

word_exist :: Array (Int, Int) Char -> Int -> Int -> [Char] -> Bool
word_exist _ _ _ []     = True
word_exist matrix m n (x:xs) = any (==True) valid_visits

where
cells = [(i,j) | i <- [1..m], j <- [1..n]]
visit_cell_dash = visit_cell matrix SetDash.empty m n (x:xs)
valid_visits = map visit_cell_dash cells

SearchParallel.hs

module SearchParallel (word_exist_par) where

import Data.Array
import qualified Data.Set as SetDash
import Control.Parallel.Strategies

( parBuffer, using, rseq )

get_nbrs :: Int -> Int -> [(Int, Int)]
get_nbrs i j = [(i-1,j), (i,j+1), (i+1,j), (i,j-1), (i-1,j-1), (i+1,j+1),(i+1,j-1),(i-1,j+1)]

visit_cell :: Array (Int, Int) Char -> SetDash.Set(Int, Int) -> Int -> Int -> [Char] -> (Int,Int) -> Bool
visit_cell _ _ _ _ [] _  = True
visit_cell matrix visited m n (x:xs) (i,j) | i < 1 || i > m = False

| j < 1 || j > n = False
| SetDash.member (i,j) visited = False



| x /= (matrix ! (i,j)) = False
| otherwise = any (==True) children_visits
where

visited_dash = SetDash.insert (i,j) visited
visit_cell_dash = visit_cell matrix visited_dash m n xs
children_visits = map visit_cell_dash (get_nbrs i j)

word_exist_par :: Array (Int, Int) Char -> Int -> Int -> [Char] -> Bool
word_exist_par _ _ _ []     = True
word_exist_par matrix m n (x:xs) = any (==True) valid_visits

where
cells = [(i,j) | i <- [1..m], j <- [1..n]]
visit_cell_dash = visit_cell matrix SetDash.empty m n (x:xs)
valid_visits = map visit_cell_dash cells `using` parBuffer 1000 rseq

DictSearchParallel.hs

module DictSearchParallel (dict_search) where

import SearchParallel(word_exist_par)
import Data.Array
import Control.Parallel.Strategies

( parBuffer, using, rseq )

dict_search :: Array (Int, Int) Char -> Int -> Int -> [String] -> [Bool]
dict_search _ _ _ [] = []
dict_search matrix m n query_words = map (word_exist_par matrix m n) query_words `using`
parBuffer 10 rseq


