
Trie Autocomplete
Thang Nguyen (tn2468) and Siddharth Pittie (sp4013)

I. Introduction

Our project is a word autocomplete feature, similar to what is commonly seen on search
engines, where a word is partially typed and the suggestions are generated to complete
the word. For example, typing "do" into Google may generate suggestions like "dog",
"dominos", "docs", etc. The project takes in a file containing a cleaned corpus of words,
in this case we use a dataset of all papers submitted to the 2015 NeurIPS conference
[1]. The program then asks the user to enter a search term and returns the 10 most
probable words, given the search string.

II. Trie

To perform this autocomplete task in the most efficient manner, we decided to use the Trie data
structure [2].

Trie Example [2]

Trie Autocomplete
Thang Nguyen (tn2468) and Siddharth Pittie (sp4013)

The trie is a 26-ary tree, with each child node representing a letter in the alphabet, along
with a boolean flag to represent whether the current node can be the end of a word, and
an integer for the number of occurrences of the word. This is an ideal data structure for
our task because we are able to efficiently find all words starting with a certain string,
and then traverse through its children to find all words starting with that string.
Continuing with the example from earlier, if the string "do" is entered, the tree is
traversed by first going to node "d" and then to its child "o", following which a
depth-first-search is performed on every child tree that forms a word.
Once we find all corresponding words and their frequencies, we are able to sort
according to frequency and return the n most frequently seen words.

III. Data

The dataset used is a collection of all papers submitted to the NeurIPS conference in
2015 [1]. This dataset was cleaned using a Python script to remove all words that
contained numbers or special characters and any single-character words. This left us
with a dataset containing 1,737,937 words (11MB). We also duplicated this data 6 times
to create a dataset of 10,427,550 words (63MB), which was used for all the
performance calculations.

IV. Workflow
In order to tackle the project effectively, our team breaks down the topic into these
sequential steps:

● Word Frequency Mapper
● Word Frequency Reducer
● Populate the Trie
● Search and find phrase and its trie(s) suggestions
● Return the top 10 most frequent words

Our test device is an Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz with 12 cores and 32
GB of RAM.

Trie Autocomplete
Thang Nguyen (tn2468) and Siddharth Pittie (sp4013)

Word Frequency Mapper
Given the corpus, which has been split into a list of words, we map that list to create a
new list which contains pairs of (word, 1) for each word in the corpus.

Sequentially, we iterate through the word list and map each word to (word, 1). Our
runtime for this operation is consistently 6 seconds on a 63MB text file, which will be
the benchmark for our parallelled approach.

With the help of parallelism in Haskell, we were able to improve this runtime
significantly. After realizing that instead of loading the entire file in memory and
generating sparks at once (parList), we realize we can use parBuffer with rdeepseq
strategy to fully evaluate the expression and avoid spark pool overflow by enforcing a
constant buffer size. With some experiments, we concluded that parBuffer with buffer
size of 10 would be ideal strategies for our use case. Below are two tables analyzing the
two metrics, which clearly demonstrates the maximum performance at buffer of size 10.

Buffer Size Runtime Speed Up

4 2.916 3.084

10 2.872 3.128

100 3.447 2.553

1000 5.227 0.773

With buffer size = 10
Cores Runtime Speed Up

1 1.841 4.159

2 2.301 3.699

4 2.656 3.344

6 2.872 3.128

8 3.012 2.988

While buffer size is correlating with speed up time with a cap at size 10, we can observe
that the runtime got worse as we increased the number of cores. This made sense
because our test machine has a lot of memory, which is ideal for this trivial task of the

Trie Autocomplete
Thang Nguyen (tn2468) and Siddharth Pittie (sp4013)

project, so increasing the number of cores means more work to put the results together,
garbage collecting, and dealing with fizzled sparks rather than doing meaningful work.

The parallel method is listed below:
wordMapperPar :: [String] -> [(String, Int)]
wordMapperPar wl = map (, 1) wl `using` parBuffer 10 rdeepseq

Word Frequency Reducer
After converting all words into frequency pairs in the form of (word, 1), our reducer will
proceed to add them together sequentially using Map.fromListWith. The goal is to obtain
the frequency of each word in the corpus. This is the most important part of the project
since it takes the most time to compute.

Sequential
As stated above, we utilized the built-in fromListWith function from the package Map to
go through and add all the entries together.

wordsToCounts word_list = Map.toList $ Map.fromListWith (+) $ map (, 1) word_list

Below is a table of runtimes on different size corpora, which indicate sharp increase in
runtime when increasing the length of the corpus.

Corpus size R1 R2 R3 Average

1737925 3.159 3.211 3.162 3.177

3475850 6.501 6.291 6.523 6.438

10427550 19.772 19.517 19.258 19.516

Parallel Approach
In order to mitigate the runtime increase observed above, we decided to tackle the
reducing step by splitting the list of frequency pairs into chunks, with the initial intention

Trie Autocomplete
Thang Nguyen (tn2468) and Siddharth Pittie (sp4013)

to parallel the compute parts of the list in parallel instead of going through the list
sequentially.

In order to do so, we experimented with different chunk sizes using chunksOf, which
split a given list into multiple chunks of size n which we specified. In addition, we utilized
parMap to map our chosen strategy to each chunk. After experimenting with both
parBuffer and parList, we found that rpar has the best performance and executed what
we intended the program to do.

After parallelization, we obtained a list of maps, which we then combined to create the
final representation of word frequency in our corpus.

wordReducerPar :: (Ord k, Num a, NFData k, NFData a) => [(k, a)] -> [(k, a)]
wordReducerPar wl = Map.toList $ Map.unionsWith (+) (parMap rpar (Map.fromListWith
(+)) chunks)

where chunks = chunksOf 500000 wl

Below is the statistics of of different configurations with their average runtimes, and a
Threadscope demonstration of our best run with 6 cores:

Cores
Cores Runtime

1 21.674

2 16.132

4 10.262

6 8.543

8 10.165

Chunk size

Chunk Size Runtime

50 20.776

100 20.487

500 15.767

5000 12.693

Trie Autocomplete
Thang Nguyen (tn2468) and Siddharth Pittie (sp4013)

500000 8.964

5000000 17.633

With sequential data as the benchmark and our experiments, we decided to go with the
configurations of 6 cores and chunkSize of 500000. This will produce less sparks than
smaller sizes, which reduces the overall number of overflows and garbage collection.

Trie Search

Once the data has been map reduced, we populate the Trie and then perform search.
We found that the Trie population and search is very efficient and took less than 100ms.
This testing was performed by populating the Trie with all words in an English dictionary,
which would represent the worst case scenario. Trying to optimize the search, we
experimented with a number of strategies, but the runtime remained within a reasonable
error. Hence, we utilized a parallel approach that seemed theoretically the most
efficient: Each child node evaluation was sparked in parallel, using rpar, but only to a
depth of 4. We chose a depth of 4 since most English words have a length of 4 or 5.

Trie Autocomplete
Thang Nguyen (tn2468) and Siddharth Pittie (sp4013)

Evaluation

File Size Sequential (s) Parallel (s) Speed Up (x)

11MB 3.670 2.702 1.36x

42MB 12.130 6.602 1.84x

63MB 19.532 9.340 2.09x

Our original goal with this project was to optimize the Trie search, but we quickly
realized that the true efficiency gains would be found in optimizing the mapreduce
process, which made up the primary computation time. Hence, we attempted a number
of optimizations to the mapping and reducing process, which gave us over a 2x
improvement for 63MB file.With some more improvements to the reducing algorithm,
like recursively combining the reduced chunks (similar to merge sort), may improve this
further.

Trie Autocomplete
Thang Nguyen (tn2468) and Siddharth Pittie (sp4013)

Surprisingly we found no noticeable improvement going from sequential to parallel. We
put this down to the high efficiency of the Trie structure for this task. Overall, we were
satisfied with the performance gains achieved in the data loading process, and if this
was the sole purpose we may have been able to create more elaborate algorithms to
further reduce this time.

V. References

1. https://archive.ics.uci.edu/ml/datasets/NIPS+Conference+Papers+1987-2015
2. http://theoryofprogramming.azurewebsites.net/wp-content/uploads/2015/06/tri

e12.jpg

https://archive.ics.uci.edu/ml/datasets/NIPS+Conference+Papers+1987-2015
http://theoryofprogramming.azurewebsites.net/wp-content/uploads/2015/06/trie12.jpg
http://theoryofprogramming.azurewebsites.net/wp-content/uploads/2015/06/trie12.jpg

Trie Autocomplete
Thang Nguyen (tn2468) and Siddharth Pittie (sp4013)

VI. Code

Main.hs

module Main where

import qualified Lib as L
import qualified Trie as T
import Data.List()
import qualified Data.Map as Map
import Control.Monad()
import System.Environment(getArgs, getProgName)
import System.Exit(die)

main :: IO ()
main = do args <- getArgs

pn <- getProgName
case args of
[corpus, method] -> do
wordList <- readFile corpus
let ws = words wordList

if method /= "linear" && method /= "parallel"
then die "Invalid Method"

else do
let word_counts = if method == "parallel" then

L.wordsToCountPar ws else L.wordsToCounts ws

let root = T.populateTrie (T.TrieNode Map.empty 0 False)
word_counts

print "Please Enter Search Term below:"
search <- getLine
let searchNode = T.searchTrie search root ""
let results = T.fanTriePar searchNode search 4

putStrLn ""
mapM_ (putStrLn . L.showPair) (L.topNWords 10 results)

_ -> die $ "Usage: " ++ pn ++ " <corpus-path> <running-method
linear|parallel>"

Trie Autocomplete
Thang Nguyen (tn2468) and Siddharth Pittie (sp4013)

Lib.hs

{-# LANGUAGE TupleSections #-}
module Lib

(
wordsToCounts,
wordsToCountPar,
topNWords,
showPair

) where
import qualified Data.List as List
import Data.List.Split(chunksOf)
import qualified Data.Map as Map

import Control.Parallel.Strategies (using, parBuffer, rdeepseq, parList,
NFData, rpar, parMap)

wordsToCounts :: [String] -> [(String, Int)]
wordsToCounts [] = []
wordsToCounts word_list = Map.toList $ Map.fromListWith (+) $ map (, 1)
word_list

wordMapperPar :: [String] -> [(String, Int)]
wordMapperPar wl = map (, 1) wl `using` parBuffer 10 rdeepseq

wordReducer :: (Ord k, Num a) => [(k, a)] -> [(k, a)]
wordReducer wl = Map.toList $ Map.fromListWith (+) wl

wordReducerPar :: (Ord k, Num a, NFData k, NFData a) => [(k, a)] -> [(k, a)]
wordReducerPar wl = Map.toList $ Map.unionsWith (+) (parMap rpar
(Map.fromListWith (+)) chunks)

where chunks = chunksOf 500000 wl

wordsToCountPar :: [String] -> [(String, Int)]
wordsToCountPar word_list = wordReducerPar $ wordMapperPar word_list

topNWords :: Int -> [(String, Int)] -> [(String, Int)]
topNWords n l = take n $ List.sortBy (\(_, a) (_, b) -> compare b a) l

showPair :: (String, Int) -> [Char]
showPair (x, y) = show y ++ " " ++ x

Trie Autocomplete
Thang Nguyen (tn2468) and Siddharth Pittie (sp4013)

Trie.hs

module Trie (Trie(..), insertIntoTrie, populateTrie, searchTrie, fanTrie,
fanTriePar) where

import qualified Data.List as List
import qualified Data.Map as Map
import Control.Monad
import Data.Maybe
import Control.Parallel.Strategies (parMap, runEval, using, rdeepseq, parList,
rpar)

data Trie = TrieNode (Map.Map Char Trie) Int Bool | EmptyNode deriving (Show,
Read, Eq)

insertIntoTrie :: String -> Int -> Trie -> Trie
insertIntoTrie _ _ EmptyNode = EmptyNode
insertIntoTrie [] _ t = t
insertIntoTrie [c] count (TrieNode children freq end) =

case Map.lookup c children of
Nothing -> TrieNode (Map.insert c (TrieNode Map.empty count True)

children) freq end
Just EmptyNode -> TrieNode (Map.insert c (TrieNode Map.empty count True)

children) freq end
Just (TrieNode m _ _) -> TrieNode (Map.insert c (TrieNode m count True)

children) freq end

insertIntoTrie (c:cs) count (TrieNode children freq end) =
case Map.lookup c children of
Nothing -> TrieNode (Map.insert c (insertIntoTrie cs count (TrieNode

Map.empty 0 False)) children) freq end
Just v -> TrieNode (Map.insert c (insertIntoTrie cs count v) children)

freq end

populateTrie :: Foldable t => p -> t (String, Int) -> Trie
populateTrie word_counts = foldl (\ x (w, f) -> insertIntoTrie w f x)
(TrieNode Map.empty 0 False)

searchTrie :: String -> Trie -> String -> Trie
searchTrie _ EmptyNode _ = error "Bad Trie"
searchTrie [] trie ans = trie
searchTrie (c:cs) (TrieNode trie freq end) ans =

Trie Autocomplete
Thang Nguyen (tn2468) and Siddharth Pittie (sp4013)

case Map.lookup c trie of
Nothing -> TrieNode trie freq end
Just node -> searchTrie cs node (ans ++ [c])

fanTrie :: Trie -> String -> [(String, Int)]
fanTrie EmptyNode _ = []
fanTrie (TrieNode m freq end) word_so_far
| end && not (null child_list) = (word_so_far, freq) : foldl1 (++) (map

(\(c, node) -> fanTrie node (word_so_far ++ [c])) child_list)
| end = [(word_so_far, freq)]
| not (null child_list) = foldl1 (++) (map (\(c, node) -> fanTrie node

(word_so_far ++ [c])) child_list)
| otherwise = []
where
child_list = Map.toList m

fanTriePar :: Trie -> [Char] -> Int -> [(String, Int)]
fanTriePar EmptyNode _ _ = []
fanTriePar (TrieNode m freq end) word_so_far depth
| end && not (null child_list) = do
if depth > 0
then
(word_so_far, freq) : foldl1 (++) (map (\(c, node) -> fanTriePar node

(word_so_far ++ [c]) (depth - 1)) child_list `using` parList rdeepseq)
else
(word_so_far, freq) : foldl1 (++) (map (\(c, node) -> fanTriePar node

(word_so_far ++ [c]) (depth - 1)) child_list)
| end = [(word_so_far, freq)]
| not (null child_list) = do
if depth > 0
then
foldl1 (++) (map (\(c, node) -> fanTriePar node (word_so_far ++ [c])

(depth - 1)) child_list `using` parList rdeepseq)
else
foldl1 (++) (map (\(c, node) -> fanTriePar node (word_so_far ++ [c])

(depth - 1)) child_list)
| otherwise = []
where
child_list = Map.toList m

