
Parallel SAT Solver
COMS4995

Yian Yu(yy3169)

Introduction
SAT is the problem of answering the question whether or not a propositional formula is
satisfiable. Despite the worst-case exponential run time of all known algorithms, satisfiability
solvers are increasingly leaving their mark as a general- purpose tool in areas as diverse as
software and hardware verification. More concretely, as the existing sequential algorithm used
the Davis-Putnam-Logemann-Loveland (DPLL) algorithm which decides satisfiability of
propositional formula in clause normal form, by using unit propagation and case distinction. This
project’s goal is parallelizing the DPLL algorithm in the functional programming language
Haskell. I would like to find the performance increments between sequential DPLL algorithm
and DPLL algorithm after parallelization under 1-4 core VM.

DPLL
DPLL is essentially a depth-first search, which alternates between three strategies. At any stage
of the search, there are partial assignments (that is, assigning values ​​to a certain subset of
variables) and a set of undecided clauses (that is, unsatisfied clauses).
(1) The first strategy is pure literal elimination: if an unassigned variable x only appears in a set
of unsubscribing sentences in its positive form (that is, the literal ~x does not appear anywhere),
then we can use it in our assignment Add x = true and satisfy all clauses containing the literal x
(again, if x only appears in the negative form, ~x, we can add x = false to our assignment).
(2) The second strategy is unit propagation: if all literals except one literal in the undecided
sentence are false, the remaining literals must be true. If the remaining text is x, we add x = true
to our assignment; if the remaining text is ~x, we add x = false to our assignment. This
distribution can bring more opportunities for unit communication.
(3) The third strategy is to simply select an unassigned variable x and branch the search: try x =
true on one side and x = false on the other side.

Parallelizing DPLL
I try to parallelize the Boolean guessing process. Every time a free variable is guessed, the guess
is divided into two branches, a true branch and a false branch. Each branch requires additional
work by guessing additional variables, and for each recursive call to the process, the work is
parallelized to one thread. Although the sequential DPLL algorithm usually traverses the
decision tree through depth-first search, the idea of ​​parallelization is to traverse all paths in
parallel.

Using divide-and-conquer idea, which incrementally divides the search space into subspaces,
successively allocated to sequential CDCL workers. Workers cooperate through some
load-balancing strategy, which performs the dynamic transfer of subspaces to idle workers, and
through the exchange of conflict clauses.

Result
I used Virtual Machining online using a 2.3 GHz Intel Xeon CPU, processor with 4 cores to
generate DIMACS Benchmark Instances online settings, but found that there is no obvious and
surprising difference in the running time of sequential and parallel algorithms. This is
unexpected.

Sequential Algorithm Parallel Algorithm

Runtime increasement for DPLL Parallel Algorithm Under different cores

Future Plan
I think I should try to parallelize sequential algorithms from different aspects to get better
performance. (For example, simplification of expressions:Parallelizing the expression
simplification led to far too great of spark creation with the vast majority being garbage
collected, unit propagation: too much synchronization between threads is required.)
Also, try the algorithm remotely on different machine for a fair amount of time.

Reference
1. M. B¨ohm and E. Speckenmeyer. A Fast Parallel SAT-Solver - Efficient Workload

Balancing. Ann. Math. Artif. Intell., 17(3-4):381–400, 1996.
2. https://www.cs.ubc.ca/∼hoos/SATLIB/benchm.html
3. https://en.wikipedia.org/wiki/DPLL algorithm
4. https://hackage. haskell.org/package/parse-dimacs/.

Code

ParallelSATSolver.hs
module ParallelSATSolver where

import Library

import Control.Parallel.Strategies(Strategy, using, rpar)

import Control.DeepSeq(NFData)

PPS :: (NFData a) => Strategy [a]

PPS [a,b] = do

a' <- rpar a

b' <- rpar b

return [a', b']

PPS _ = undefined

Depthfix :: Int

Depthfix = 50

Sat :: Expr -> Bool

Sat (Const b) = b

Sat orExpr@(Or _ _) = SatDPLL orExpr

Sat (And x y) = and ([SatDPLL x, SatDPLL y]

`using` PPS)

Sat _ = undefined

SatDPLL :: Expr -> Bool

SatDPLL = SG1 PPS Depthfix

SatDPLLS :: Expr -> Bool

SatDPLLS expr =

case FV expr' of

Nothing -> unC $ SPY expr'

Just v ->

let true1 = SPY (VarG v True expr')

Gfail = SPY (VarG v False expr')

in SatDPLLS true1 || SatDPLLS Gfail

where

expr' = litE $ fNeg $ unitPropagation expr

SG1 :: Strategy [Bool] -> Int -> Expr -> Bool

SG1 _ 0 expr = SatDPLLS expr

SG1 strat depth expr =

case FV expr' of

Nothing -> unC $ SPY expr'

Just v ->

let true1 = SG1 strat depth' $ SPY (VarG v True expr')

Gfail = SG1 strat depth' $ SPY (VarG v False expr')

in or ([true1, Gfail] `using` strat)

where

depth' = depth - 1

expr' = litE $ fNeg $ unitPropagation expr

Library.hs
module Library where

import Control.Applicative ((<|>))

import Data.Set (Set)

import qualified Data.Set as Set

import Data.Maybe (mapMaybe, catMaybes)

data Expr = Var String

| And Expr Expr

| Or Expr Expr

| Not Expr

| Const Bool

deriving (Show, Eq)

litE :: Expr -> Expr

litE e =

let ls = Set.toList (lits e)

ps = map (litP e) ls

exP :: String -> Maybe Polarity -> Maybe (String, Bool)

exP v (Just Positive) = Just (v, True)

exP v (Just Negative) = Just (v, False)

exP _ _ = Nothing

works :: [(String, Bool)]

works = catMaybes $ zipWith exP ls ps

substitutes :: [Expr -> Expr]

substitutes = map (uncurry VarG) works

suball :: Expr -> Expr

suball = foldl (.) id substitutes

in suball e

SPY :: Expr -> Expr

SPY (Const b) = Const b

SPY (Var v) = Var v

SPY (Not expr) =

case SPY expr of

Const b -> Const (not b)

expr' -> Not expr'

SPY (Or x y) =

let es = filter (/= Const False) [SPY x, SPY y] in

if Const True `elem` es

then Const True

else

case es of

[] -> Const False

[e] -> e

[e1, e2] -> Or e1 e2

_ -> error "Should never happen."

SPY (And x y) =

let es = filter (/= Const True) [SPY x, SPY y] in

if Const False `elem` es

then Const False

else

case es of

[] -> Const True

[e] ->e

[e1, e2] -> And e1 e2

_ -> error "Should never happen."

unC :: Expr -> Bool

unC (Const b) = b

unC _ = error "Not Const"

FV :: Expr -> Maybe String

FV (Const _) = Nothing

FV (Var v) = Just v

FV (Not e) = FV e

FV (Or x y) = FV x <|> FV y

FV (And x y) = FV x <|> FV y

VarG :: String -> Bool -> Expr -> Expr

VarG var val expr =

case expr of

Var v -> if v == var

then Const val

else Var v

Not expr' -> Not (guess expr')

Or x y -> Or (guess x) (guess y)

And x y -> And (guess x) (guess y)

Const b -> Const b

where guess = VarG var val

lits :: Expr -> Set String

lits (Var v) = Set.singleton v

lits (Not e) = lits e

lits (And x y) = Set.union (lits x) (lits y)

lits (Or x y) = Set.union (lits x) (lits y)

lits _ = Set.empty

data Polarity = Positive | Negative | Mixed deriving (Show, Eq)

litP :: Expr -> String -> Maybe Polarity

litP (Var v) v'

| v == v' = Just Positive

| otherwise = Nothing

| v == v' = Just Negative

| otherwise = Nothing

fNeg :: Expr -> Expr

fNeg expr =

case expr of

Not (Not x) -> fNeg x

Not (And x y) -> Or (fNeg $ Not x) (fNeg $ Not y)

Not (Or x y) -> And (fNeg $ Not x) (fNeg $ Not y)

Not (Const b) -> Const (not b)

Not x -> Not (fNeg x)

And x y -> And (fNeg x) (fNeg y)

Or x y -> Or (fNeg x) (fNeg y)

x -> x

litP expr v =

case expr of

And x y -> comP [x, y]

Or x y -> comP [x, y]

Not x -> error $ "Not in CNF: negation of a non-literal: " ++ show x

Const _ -> Nothing

_ -> error "Should never happen."

where

comP es =

let POL = mapMaybe (flip litP v) es

in case POL of

[] -> Nothing

ps -> if all (== Positive) ps

then Just Positive

else if all (== Negative) ps

then Just Negative

else Just Mixed

CLA :: Expr -> [Expr]

CLA (And x y) = CLA x ++ CLA y

CLA expr = [expr]

oneC :: Expr -> Maybe (String, Bool)

oneC (Var v) = Just (v, True)

oneC (Not (Var v)) = Just (v, False)

oneC _ = Nothing

oneP:: Expr -> Expr

oneP expr = suball expr

where

works :: [(String, Bool)]

works = allCLA expr

suball :: Expr -> Expr

suball = foldl (.) id (map (uncurry VarG) works)

allCLA :: Expr -> [(String, Bool)]

allCLA = mapMaybe oneC . CLA

ParseIO.hs
module ParseIO where

import Library(Expr(..))

import Data.Array.Unboxed

import Language.CNF.Parse.ParseDIMACS

import Language.Haskell.Exts

CtoE :: CNF -> Expr

CtoE cnf = Cla list1

where

list1 = map uAtoE $ CLA cnf

Cla :: [Expr] -> Expr

Cla [] = Const True

Cla [x] = x

Cla [x,y,z] = And (And x y) z

Cla xs = And (Cla ft) (Cla bk)

where (ft, bk) = splitAt ((length xs + 1) `div` 2) xs

LFF :: FilePath -> IO (Either String Expr)

LFF fileName = do

cnf <- parseFile fileName

case cnf of

LT _ -> return $ LT "Parse Error"

RT cnf -> return $ RT $ CtoE cnf

uAtoE :: UArray Int Int -> Expr

uAtoE = Lit . (map ItoE) . elems

where

ItoE :: Int -> Expr

ItoE n | n > 0 = Var $ show n

ItoE n =Not $ Var $ show $ abs n

Lit :: [Expr] -> Expr

Lit = foldr1 (\x acc -> Or x acc)

Main.hs
module Main where

import ParallelSATSolver

import ParseIO

import System.Exit(die)

import System.Environment(getArgs, getProgName)

main :: IO ()

main = do

param <- getArgs

case param of

[file] -> do

cnf<- loadFile file

case cnf of

LT err -> putStrLn err

RT cnf' -> case SatDPLL cnf' of

True -> putStrLn $ file ++

" is Satisfiable"

_ -> putStrLn $ file ++

" is UnSatisfiable"

_ -> do

pn <- getProgName

die $ "Usage: " ++ pn ++ " <filename>"

