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Introduction   

This  report  will  discuss  my  findings  as  I  implement  a  Newtonian                       
particle  simulation  program  in  parallel  Haskell.  The  simulation  consists  of                     
m  particles  (of  even  mass  and  size)  that  are  enclosed  in  a  rectangular  2-D                             
container,  the  particles  each  have  an  initial  position  and  velocity,  and  are                         
free  to  bounce  around  the  container  and  each  other.  Intuitively,  since                       
particle  motion  is  largely  independent  of  other  particles  (until  there  is  a                         
collision),   it   is   tempting   to   explore   the   extent   it   can   be   parallelized.   

Given  the  initial  conditions  for  each  particle,  this  program  will                     
generate  a  list  of  lists  (can  be  thought  of  as  a   n  x  m  matrix)  where  the                                   
rows  of  the  matrix  will  represent  the  state  of  each  particle  (position  and                           
velocity)  and  the  columns  of  the  matrix  will  represent  the  state  of  a                           
particle  at  each  step  that  the  simulation  was  run  for.  This  program  will                           
also  have  an  animation  component,  which  allows  the  user  to  have  a                         
tangible  understanding  of  the  data.  The  animation  feature  is  more  of  an                         
“add-on”  and  will  not  be  subject  to  parallel  optimizations  and                     
benchmarking.  Each  particle  will  adhere  to  basic  Newtonian  physics  and                     
will  be  influenced  by  gravitational  forces,  conservation  of  energy  and                     
conservation  of  linear  momentum,  friction  and  inelastic  energy  loss.                   
Factors  such  as  spin,  angular  momentum,  aerodynamic  drag  will  not  be                       
simulated   here.     

  

Numerical   Simulation   
The  simulation  technique  that  will  be  used  here  (albeit  not  an                       

extremely  sophisticated  one),  sees  similar  techniques  used  for  many  real                     
world  problems  in  computation.  These  techniques  form  the  basis  for                     
numerical  analysis,  which  models  real  world  phenomena  (particle  motion,                   
heat  transfer,  fluid  flow,  etc.)  by  iterating  their  governing  equations  to  best                         
approximate  its  behavior.  These  simulations  can  be  computationally                 
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intensive,  and  it  is  not  uncommon  to  see  real  world  numerical  simulations                         
run   for   hours   or   days.     

Simulations  similar  to  these  are  also  used  in  games  where  having                       
realistic  physics  is  required.  Games  also  need  this  simulation  process  to                       
be  performant  since  slow  implementations  can  lead  to  losing  valuable                     
framerate   and/or   latency   in   a   multiplayer   setting.     

  
Model   

This  section  will  discuss  the  governing  rules  that  are  required  to                       
simulate  this  system.  These  rules  mostly  follow  real  life  physics  but  are                         
not  completely  exact;  however,  these  approximations  are  enough  to  get                     
realistic  particle  motion.  This  model  also  isn’t  based  on  any  particular                       
algorithm,   just   my   recollection   of   college   Physics.     

Throughout  this  report,  I  will  define  the  “state”  of  a  particle  as  a                           
data  type  that  contains  following  four  floating  point  numbers:  x  velocity                       
( v x )  y  velocity  ( v y )  x  position  ( x )  y  position  ( y ),  which  is  represented  in                             
my  Haskell  program  as  the   ParticleState  record.  The  movement  of  the                       
particles  is  governed  by  fundamental  physics.  Let’s  discuss  the  3                     
computations   that   are   involved   in   this   simulation.     

  
Basic   Motion:   

The  following  are  the  equations  that  calculate  the  state  of  a  particle                         
at   step    n ,   written   in   terms   of   the   state   of   the   particle   at    n   -   1 :  

  

  
Where   g  is  the  acceleration  due  to  gravity.  The  above  logic  is                         
implemented   in   the   function    updateState .     

  
Wall   Collision:   

We  can  say  that  a  particle  has  collided  with  a  wall  if  one  of  the                               
following   is   satisfied:  
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- x (n)    =   x (n-1)    +   v x 
(n) Δt   

- y (n)    =   y (n-1)    +   v y 
(n) Δt   

- v x 
(n)    =   v x 

(n-1)   

- v y 
(n)    =   v y 

(n-1)    -g   Δt   



  
  
  

  
Where   r  is  the  radius  of  the  particle.  If  one  of  the  above  conditions  is                               
satisfied,   we   will   update   the   state   using   the   following   instructions:     

  

  
Where   0  <  𝛽  ≤  1  is  the  friction  loss  coefficient  and   0  <  𝛼  ≤  1  is  the  elastic                                         
coefficient.    adjustForWallBounce    implements   this   wall   bounce   logic.     

  
Particle   Collision:     

Finally,  the  last  case  that  can  happen  in  this  simulation  is  a                        
collision  between  two  particles.  Two  particles   A  and   B  are  colliding  if  the                           
distances  of  their  centers  is  less  than   2r .  The  calculations  of  this  case  are                             
similar  to  the  previous  wall  bounce  case,  except  with  the  extra                       
complication  of  momentum  transfer  between  the  particles.  Also  the                   
calculations  will  be  done  in  the  normal  and  tangential  basis  (instead  of  the                           
x  and   y  basis)  to  simplify  the  math.  First  define  the  new  basis  by  finding                               
the   normal   and   tangential   component     
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-   x   -   r   <    left   wall    x    position   
- x   +   r   >    right   wall    x    position   
- y   -   r   <    bottom   wall    y    position   
- y   +   r   >    top   wall    y    position   

- negate   the   velocity   normal   to   the   wall   and   multiply   by   𝛼   
- multiply   the   velocity   tangent   to   the   wall   by   𝛽   
- move   the   particle   back   into   the   box   by   shifting   its   position   into   

the   box   by   the   same   amount   of   distance   it   went   into   the   wall   

- getting   the   normal   vector:   This   is   the   unit   vector   that   is   in   the   
direction   of   the   line   that   connects   the   center   points   of   the   2   
colliding   particles.     

- getting   the   tangent   vector:   define   the   tangent   vector   as   the   
unit   vector   that   is   perpendicular   to   the   normal   vector   



The  directions  of  these  vectors  are  arbitrary,  just  be  sure  to  stick  with  it                             
for  the  remainder  of  the  calculation.  Now  update  the  states  of  the                         
colliding   particles    A    and    B .     

  

  
  

The   above   logic   for   particle   collisions   is   implemented   in    collision .   
  

Sequential   Implementation   
The  first  challenge  is  designing  a  robust  sequential  implementation                   

for  this  program.  One  of  the  most  powerful  things  about  Haskell  is  the                           
ease  of  parallelization  once  a  sequential  implementation  is  created.  To                     
begin,  an  initial  condition  is  fed  into  the  program’s  core  algorithm  (which                         
resides  in  Compute.hs)  which  is  of  type   [ ParticleState ] .  We  get  this                       
initial  condition  by  parsing  a  csv  file  whose  path  is  specified  as  an                           
argument  to  the  executable.  The  entry  point  to  the  algorithm  is                       
computeMatrix  or   compute  (the  latter  only  spits  out  a  list  of  the  final                           
states  of  each  particle  while  the  former  computes  the  entire   n  x  m  matrix).                             
The   following   is   the   core   algorithm:   

  
First   Attempt   at   Sequential   Algorithm:   
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- In   the   tangential   direction:   the   velocities   of   A   and   B   will   be   
scaled   by    𝛽 .   

- In   the   normal   direction:   the   velocities   of   A   and   B   will   be   
swapped,   then   scaled   by    𝛼 .    

1. For   each   particle:   
- update   the   state   of   the   particle   by   using   the   basic   motion   

equations   
2. For   each   particle:   

- if   wall   collision:   
- update   the   state   using   the   wall   collision   logic   

3. For   each   particle:   
- if   collided   with   another   particle:  

- update   the   state   of   the   colliding   particles   by   using   
the   particle   collision   logic   

4. Save   updated   state   
5. goto   (1.)   



  
As  the  program  runs,  we  are  accumulating  the  updated  state  at  each                         
step.     

During  my  first  implementation  of  this  algorithm,  I  ran  into                     
excessive  garbage  collecting  by  the  ghc  compiler.  The  below  figure                     
shows  the  threadscope  result  of  my  first  go  at  implementing  this                       
algorithm.     

  

  
Figure   1:   

Threadscope   Profile   of   First   Sequential   Implementation   
  

As  observed,  a  significant  amount  of  time  is  spent  garbage  collecting.  It                         
turns  out  that  the  reason  for  this  is  because  of  Haskell’s  laziness.  Since                           
we  don’t  actually  evaluate  the  output  of   computeMatrix  or   compute  until                       
the  very  end  of  the  program  (in  my  case,  I  print  the  result  of  the  particle’s                                 
final  states  to  force  evaluation),  we  basically  have  a  chain  of  thunks  that                           
are  evaluated  all  at  once  at  the  end  causing  significant  activity  by  the                           
garbage   collector   and   hereby   draining   system   resources.     

Forcing  the  algorithm  to  do  a  strict  evaluation  at  each  iteration  of                         
the  algorithm  is  critical  to  prevent  the  evaluation  of  the  thunk  chain  all  at                             
once.  There  is  a  convenient  function  in  the   Control .deepSeq  module                     
called   force  that  performs  a  strict  evaluation  of  the  arguments.  Now  we                         
can   rewrite   the   sequential   algorithm   as:   
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Updated   Sequential   Algorithm:   

  
Rewriting  this  algorithm  with  this  simple  change  caused  significant                   
speedup:   

  

  
Figure   2:   

Threadscope   Profile   of   Updated   Sequential   Impl   
  

Notice   that   this   implementation   now   runs   in   ~1.5s   as   opposed   to   ~65s   
before.   The   time   spent   garbage   collecting   is   now   negligible.     

  
When  implementing   force  into  the  algorithm,  the   ParticleState                 

record  had  to  be  updated  to  be  an  instance  of   NFData .  Doing  so  will                             
provide   force  with  instructions  on  how  to  strictly  evaluate                   
ParticleState .   
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1. For   each   particle:   
- update   the   state   of   the   particle   by   using   the   basic   motion   

equations   
2. For   each   particle:   

- if   wall   collision:   
- update   the   state   using   the   wall   collision   algorithm   

3. For   each   particle:   
- if   collided   with   another   particle:  

- update   the   state   of   the   colliding   particles   by   using   
the   particle   collision   algorithm   

4. Do   a   strict   evaluation   of   the   updated   state    then   save   
5. goto   (1.)   

  



  
The  following  are  the  performance  figures  of  the  sequential                  

algorithm   running   the   simulation   for    n   =   2700 .    
  

  
Figure   3:   

Runtime   of   Sequential   Impl   w/   Varying   Number   of   Particles   
  

Notice   that   the   plot   seems   to   run   in   polynomial   time   w.r.t   the   input   size.   
This   intuitively   makes   sense   since   step   3   of   the   sequential   algorithm   is   
essentially   a   “double   for   loop”   since   checking   for   collisions   involves   
checking   the   distance   to   each   individual.     

  

Parallel   Implementation   
In   the   source   code,   the   function   called    nextStep    is   what   runs   each   

step   of   our   sequential   algorithm.   
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data     ParticleState    =    ParticleState   
   {   xPos   ::   ! Float     

   ,   yPos   ::   ! Float     

   ,   xVel   ::   ! Float   

   ,   yVel   ::   ! Float   
   }    deriving     Show   

  

instance     NFData     ParticleState     where   

   rnf   ( ParticleState    x'   y'   vx'   vy')   =   
     rnf   x'   ̀seq`   rnf   y'   ̀seq`   rnf   vx'   ̀seq`   rnf   vy'   



  

  
Which  is  a  subroutine  of  the   compute  function  (which  gets  our  initial                         
states   as   an   argument).     

  

  
(Note   that   the   order   of   steps   1-3   in    nextStep    is   slightly   different   from   the   
order   in   the   pseudo   code   for   the   sequential   implementation.This   order   
doesn’t   actually   matter   too   much)   

  
In  this  section,  I  will  be  discussing  two  major  tests  I  did  to  parallelize  this                               
simulation  algorithm.  To  test  a  new  parallel  algorithm,  just  put  it  in  place                           
of    nextStep    inside   of   the    compute    function.     

  
First   Attempt   at   Parallelizing:   

The  first  thing  I  tried  to  parallelize  is  step  1  of  the  sequential                           
algorithm.  I  thought  this  was  an  obvious  place  to  parallelize  since  this                         
step  doesn’t  require  any  interactions  with  the  other  particles,  so  the                       
computations  for  the  state  updates  can  be  done  in  parallel.  I  created  a                           
new  function  called   nextStepChunkedDeep  which  is  a  chunked  parallel                   
version  of   nextStep  which  uses  the   rdeepseq  strategy  on  step  1.  I  then                           
put  this  function  in  place  of   nextStep .  Running  some  quick  benchmark                       
testing  on  it,  it  was  clear  that  this  was  slower  than  the  sequential                           
implementation.     
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nextStep    ::    Float    ->    Config    ->   [ ParticleState ]   ->    Int    ->   

[ ParticleState ]   
nextStep    dt   config   currStates   step   =   force   $   

adjustForWallBounce   stepped   config   

    where   

     postCollisions,   stepped   ::   [ ParticleState ]   
     postCollisions   =   adjustForCollisions   currStates   config   

     stepped   =   map   (updateState   dt   config)   postCollisions   

compute    ::   [ ParticleState ]   ->    Float    ->    Int    ->    Config    ->   
[ ParticleState ]   

compute    initial   dt   nSteps   config   =     

   foldl   (nextStepParCollision   dt   config   50)   initial   [1..nSteps]   



  
Figure   4:   

Benchmark   of   First   Parallel   Attempt   Compared   to   Sequential   
(Note:  the  chunk  size  for  this  parallel  tests  was  arbitrarily  fixed  to  (num                           
particles)/10,   the   number   of   cores   was   fixed   to   4)   

  
This  poor  parallel  performance  is  likely  due  to  the  overhead  of                       

creating  the  sparks  outweighing  the  cost  of  just  running  it  sequentially.                       
Since  step  1  is  a  pretty  lightweight  computation  in  its  own  right  (just                           
simple   arithmetic),   it   appears   to   be   cheaper   to    not    parallelize   it.     

  
A   Much   Better   Parallelizing   Attempt:     

I  decided  to  scrap  parallelizing  step  1  and  step  2  completely.  This                         
is  because  these  computations  are  inexpensive  and  it  is  clear  from  the                         
results  in  the  previous  step  that  there  is  negative  performance  gain  when                         
parallelizing  since  the  overhead  of  spark  creation  dominates.  However,                   
step  3  in  the  sequential  algorithm  could  potentially  be  parallelized.  Step  3                         
can  be  imagined  as  a  “double  for  loop”.  This  is  because  checking  for                           
particle  collisions  requires  us  to  loop  through  all  the  other  particles  and                        
check  if  there  is  another  particle  within  collision  range.  This  “inner  loop”                         
can  be  run  in  parallel  to  save  time;  however,  there  is  a  tradeoff  that  some                               
computations  might  be  done  more  than  once  (imagine  the  case  that  there                         
is  a  collision  between  2  particles,  the  computation  for  the  new  state  will                           
happen  twice  because  we  are  evaluating  in  parallel).  By  defining  a  new                         
function  called   nextStepParCollision ,  which  is  a  parallel  chunked                 
implementation  of  step  3  using  the   rdeepseq  strategy,  I  was  able  to                         
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benchmark  this  new  optimization  and  conclude  that  the  program  runs                     
significantly   faster   as   a   result.     

  

  
Figure   5:   

Benchmark   of   New   Parallel   Algorithm   Compared   to   Sequential   
(Note:  the  chunk  size  for  this  parallel  tests  was  arbitrarily  fixed  to  (num                           
particles)/10,   the   number   of   cores   was   fixed   to   4)   

  
It  is  clear  that  the  performance  of  this  new  parallel  optimization                       

makes  the  program  run  significantly  faster  compared  to  the  sequential                     
version.  It  also  seems  as  if  the  program  runs  in  essentially  linear  time,                           
which   follows   intuition   since   we   are   parallelizing   the   “inner   for   loop.”     
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Figure   6:   

Execution   Time   of   The   New   Parallel   Algorithm   vs.   Num   Cores.   Ran   w/   500   
Particles.     

  
On  my  machine  with  4  physical  cores  with  up  to  8  core  hyper                           

threading,  I  observed  that  at  as  low  as  10  chunks  (for  500  particles)  is                             
sufficient  enough  to  see  these  performance  gains  (see  figure  5).  In  the                         
case  of  4  cores,  500  particles  and  a  chunk  size  of  50,  around  95%  of  the                                 
sparks  were  converted.  Judging  from  the  threadscope  profile,  the  load                     
balancing  was  also  very  good.  Overall,  the  benchmarking  stats  of  this                       
new   parallel   algorithm   looks   healthy.     
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SPARKS:   135000   (129407   converted,   0   overflowed,   0   dud,   3205   
GC'd,   2388   fizzled)   



  
Figure   7:   

Threadscope   Profile   of   Better   Parallel   Attempt   
  

Conclusion   
Parallelization  does  indeed  give  significant  performance  gains  over                 

the  sequential  version.  It  is  seen  from  this  exercise  that  there  is  a  tradeoff                             
when  choosing  to  parallelize  a  part  of  a  program.  Additionally,  the  parts                         
that  seem  to  parallelize  well  at  first  inspection,  sometimes  don't  work  out                         
in  the  end,  so  it  is  crucial  to  benchmark  parallel  prototypes  to  justify  the                             
performance  gains  (if  any).  I  also  found  that  while  Haskell’s  laziness  is  one                           
of  the  best  features  of  the  language,  it  leads  to  detrimental  performance                         
losses   if   not   understood   properly.    

  
Source   Code   
Main.hs   
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module    Main    where   

  

import    System.Environment( getArgs ,    getProgName )   
import    System.Exit( die )   

import    Animate   

import    Compute   

import    Parse   
import    Types   

  

  

totalTime    ,steps,   maxSize   ::    Int   
totalTime    =   60   

steps    =   totalTime   *   fps   
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maxSize    =   7000000   
  

dt    ::    Float   

dt    =   1   /   (fromIntegral   fps)   

  
  

extractPosVectors    ::   [[ ParticleState ]]   ->   [[ PosVector ]]   

extractPosVectors    pSll   =   map   helper   pSll   

    where     
     helper   ::   [ ParticleState ]   ->   [ PosVector ]   

     helper   pSl   =   map   helper2   pSl   

     helper2   ::    ParticleState    ->    PosVector   

     helper2   pS   =    PosVector    (xPos   pS)   (yPos   pS)   
  

  

main    ::    IO    ()   

main    =     
    do     

     args   <-   getArgs   

     (filename,   configPath,   animate)   <-     

        case    args    of   
         [f,   c]   ->     

           return   (f,   c,    False )   

         [f,   c,    "-animate" ]   ->   

           return   (f,   c,    True )   
         _     ->     

            do     

             pn   <-   getProgName   

             die   $    "Usage:   " ++pn++ "   <filename>   <config>   
[-animate]"   

     contents   <-   readFile   filename   

     configContents   <-   readFile   configPath   

      let     
       config   =   extractConfig   configContents   

       preset   =   contentsToData   contents   

       m   =   length   preset   

      if    steps   *   m   >   maxSize    then   
       error    "exceeded   max   size"   

      else     if    animate    then   

       runAnimation   $   extractPosVectors   $   computeMatrix   preset   

dt   steps   config   
      else   
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       print   $   compute   preset   dt   steps   config   

module    Compute    where   

  
import    Types   

import    Control.Parallel.Strategies   

import    Control.DeepSeq   

  
  

getParticleData    ::    ParticleState    ->   ( Float ,    Float ,    Float ,   

Float )   

getParticleData    pS   =   (xPos   pS,   yPos   pS,   xVel   pS,   yVel   pS)   
  

  

getConfigData    ::    Config    ->   ( Float ,    Float ,    Float )   

getConfigData    cG   =   (g   cG,   alpha   cG,   beta   cG)   
  

  

updateState    ::     Float    ->    Config    ->    ParticleState    ->   

ParticleState   
updateState    dt   cG   prevState   =     

   prevState   {xPos   =   xPrev   +   vxPrev   *   dt,   yPos   =   yPrev   +   vyNew   *   

dt,   yVel   =   vyNew}   

    where     
     (xPrev,   yPrev,   vxPrev,   vyPrev)   =   getParticleData   prevState   

     vyNew   =   vyPrev   -   g   *   dt   

     (g,   _,   _)   =   getConfigData   cG   

  
  

inWall    ::    Float    ->    Float    ->    Maybe     Wall   

inWall    x   y   

   |   x   -   r   <   leftWallLoc     =    Just     LeftWall   
   |   x   +   r   >   rightWallLoc    =    Just     RightWall   

   |   y   +   r   >   topWallLoc      =    Just     TopWall   

   |   y   -   r   <   bottomWallLoc   =    Just     BottomWall   

   |   otherwise   =    Nothing   
    where    r   =   (fromIntegral   radius)   ::    Float   

  

  

adjustForWallBounce    ::   [ ParticleState ]   ->    Config    ->   
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[ ParticleState ]   
adjustForWallBounce    pSl   cG   =   map   bounce   pSl   

    where     

     bounce   ::    ParticleState    ->    ParticleState   

     bounce   pS   =   
        case    inWall   x   y    of   

          Just     LeftWall      ->     

            ParticleState    (x+2*(leftWallLoc-x+r))   y  

(alpha*(negate   vx))   (beta*vy)   
          Just     RightWall     ->   

            ParticleState    (x-2*(x+r-rightWallLoc))   y   

(alpha*(negate   vx))   (beta*vy)   

          Just     TopWall       ->   
            ParticleState    x   (y-2*(y+r-topWallLoc))   (beta*vx)   

(alpha*(negate   vy))   

          Just     BottomWall    ->   

            ParticleState    x   (y+2*(bottomWallLoc-y+r))   (beta*vx)   
(alpha*(negate   vy))   

          Nothing            ->   pS   

        where   

       (x,   y,   vx,   vy)   =   getParticleData   pS   
       (_,   alpha,   beta)   =   getConfigData   cG   

       r   =   (fromIntegral   radius)   ::    Float   

  

  
collision    ::    ParticleState    ->    ParticleState    ->    Config    ->   

( ParticleState ,    ParticleState )   

collision    pS1   pS2   cG   

   |   d   >=   2   *   r   =   (pS1,   pS2)   
   |   otherwise   =   (new1,   new2)   

    where   

     (_,   alpha,   beta)   =   getConfigData   cG   

     r   =   (fromIntegral   radius)   ::    Float   
     d   =   sqrt   $   (x2-x1)^2   +   (y2-y1)^2   

     (x1,y1,vx1,vy1)   =   getParticleData   pS1   

     (x2,y2,vx2,vy2)   =   getParticleData   pS2   

     nx   =   x2   -   x1   
     ny   =   y2   -   y1   

     thetaN   =   posAtan2   ny   nx   

     theta1   =   posAtan2   vy1   vx1   

     theta2   =   posAtan2   vy2   vx2   
     phi1   =   theta1   -   thetaN   
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     phi2   =   theta2   -   thetaN   
     mag1   =   sqrt   $   vx1^2   +   vy1^2   

     mag2   =   sqrt   $   vx2^2   +   vy2^2   

     vn1   =   mag1   *   (cos   phi1)     

     vt1   =   mag1   *   (sin   phi1)   
     vn2   =   mag2   *   (cos   phi2)   

     vt2   =   mag2   *   (sin   phi2)   

     vt2'   =   beta   *   vt2   

     vt1'   =   beta   *   vt1   
     vn1'   =   alpha   *   vn2   

     vn2'   =   alpha   *   vn1   

     mag1'   =   sqrt   $   vn1'^2   +   vt1'^2   

     mag2'   =   sqrt   $   vn2'^2   +   vt2'^2   
     phi1'   =   posAtan2   vt1'   vn1'   

     phi2'   =   posAtan2   vt2'   vn2'   

     theta1'   =   thetaN   +   phi1'   

     theta2'   =   thetaN   +   phi2'   
     angle   =   posAtan2   ny   nx   

     pen   =   2   *   r   -   d   

     new1   =    ParticleState    x1   y1   (mag1'   *   (cos   theta1'))   (mag1'   *   

(sin   theta1'))   
     new2   =    ParticleState    (x2   +   pen   *   cos   angle)   (y2   +   pen   *   sin   

angle)   (mag2'   *   (cos   theta2'))   (mag2'   *   (sin   theta2'))   

     posAtan2   ::    Float    ->    Float    ->    Float   

     posAtan2   y   x   
       |   res   <   0     =   2   *   pi   +   res   

       |   otherwise   =   res   

        where    res   =   atan2   y   x   

  
  

split    ::    Int    ->   [a]   ->   [[a]]   

split    numChunks   xs   =   chunk   (length   xs   ̀quot`   numChunks)   xs   

    
  

chunk    ::    Int    ->   [a]   ->   [[a]]     

chunk    n   []   =   []   

chunk    n   xs   =    as    :   chunk   n   bs   
    where    ( as ,bs)   =   splitAt   n   xs   

  

  

adjustForCollisions    ::   [ ParticleState ]   ->    Config    ->   
[ ParticleState ]   
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adjustForCollisions    []   _           =   []   
adjustForCollisions    (pS1:[])    _    =   [pS1]   

adjustForCollisions    (pS1:rem)   cG   =   pS1New:(adjustForCollisions   

remNew   cG)   

    where   
     (pS1New,   remNew)   =   helper   pS1   rem   

     helper   ::    ParticleState    ->   [ ParticleState ]   ->   

( ParticleState ,   [ ParticleState ])   

     helper   pS   []   =   (pS,   [])   
     helper   pS   (x:xs)   =   (a,   newX   :   r)   

        where   

         (newPS,   newX)   =   collision   pS   x   cG   

         (a,   r)   =   helper   newPS   xs   
  

  

adjustForCollisions2    ::   [ ParticleState ]   ->    Config    ->   

[ ParticleState ]   
adjustForCollisions2    pSl   cG   =   map   helper   pSl   

    where   

     helper   ::    ParticleState    ->    ParticleState   

     helper   pS   =   foldl   helper2   pS   pSl   
        where   

         helper2   ::    ParticleState    ->    ParticleState    ->   

ParticleState   

         helper2   s   e   
           |   e   ==   pS       =   s   

           |   first   ==   pS   =   s   

           |   otherwise     =   first   

              where    (first,   _)   =   collision   pS   e   cG   
  

  

adjustForCollisions2Chunked    ::   [ ParticleState ]   ->    Config    ->    Int   

->   [ ParticleState ]   
adjustForCollisions2Chunked    pSl   cG   numChunks   =   concat   (map   (map   

helper)   splitted   ̀using`   parList   rdeepseq)   

    where   

     splitted   =   split   numChunks   pSl   
     helper   ::    ParticleState    ->    ParticleState   

     helper   pS   =   foldl   helper2   pS   pSl   

        where   

         helper2   ::    ParticleState    ->    ParticleState    ->   
ParticleState   
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         helper2   s   e   
           |   e   ==   pS       =   s   

           |   first   ==   pS   =   s   

           |   otherwise     =   first   

              where    (first,   _)   =   collision   pS   e   cG   
  

  

nextStep    ::    Float    ->    Config    ->   [ ParticleState ]   ->    Int    ->   

[ ParticleState ]   
nextStep    dt   config   currStates   step   =   force   $   

adjustForWallBounce   stepped   config   

    where   

     postCollisions,   stepped   ::   [ ParticleState ]   
     postCollisions   =   adjustForCollisions   currStates   config   

     stepped   =   map   (updateState   dt   config)   postCollisions   

  

  
nextStepChunkedForce    ::    Float    ->    Config    ->    Int    ->   

[ ParticleState ]   ->    Int    ->   [ ParticleState ]   

nextStepChunkedForce    dt   config   numChunks   currStates   step   =     

   force   $   adjustForWallBounce   stepped   config   
      where   

       postCollisions,   stepped   ::   [ ParticleState ]   

       postCollisions   =   adjustForCollisions   currStates   config   

       splitted   =   split   numChunks   postCollisions   
       stepped   =   concat   (map   (map   (updateState   dt   config))   

splitted   ̀using`   parList   rseq)   

  

  
nextStepChunkedDeep    ::    Float    ->    Config    ->    Int    ->   

[ ParticleState ]   ->    Int    ->   [ ParticleState ]   

nextStepChunkedDeep    dt   config   numChunks   currStates   step   =     

   adjustForWallBounce   stepped   config   
      where   

       postCollisions,   stepped   ::   [ ParticleState ]   

       postCollisions   =   adjustForCollisions   currStates   config   

       splitted   =   split   numChunks   postCollisions   
       stepped   =   concat   (map   (map   (updateState   dt   config))   

splitted   ̀using`   parList   rdeepseq)   

  

  
nextStepParCollision    ::    Float    ->    Config    ->    Int    ->   
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[ ParticleState ]   ->    Int    ->   [ ParticleState ]   
nextStepParCollision    dt   config   numChunks   currStates   step   =   

force   $   adjustForWallBounce   stepped   config   

    where   

     postCollisions,   stepped   ::   [ ParticleState ]   
     postCollisions   =   adjustForCollisions2Chunked   currStates   

config   numChunks   

     stepped   =   map   (updateState   dt   config)   postCollisions   

    
  

compute    ::   [ ParticleState ]   ->    Float    ->    Int    ->    Config    ->   

[ ParticleState ]   

compute    initial   dt   nSteps   config   =     
   foldl   (nextStep   dt   config)   initial   [1..nSteps]   

  

  

computeMatrix    ::   [ ParticleState ]   ->    Float    ->    Int    ->    Config    ->   
[[ ParticleState ]]   

computeMatrix    initial   dt   nSteps   config   =     

   reverse   $   foldl   helper   [initial]   [1..nSteps]   

      where   
       helper   ::   [[ ParticleState ]]   ->    Int    ->   [[ ParticleState ]]   

       helper   matrix@(front:_)   step   =   (nextStep   dt   config   front   

step)   :   matrix   

       helper   _   _   =   error    "computeMatrix   helper   error"  
  

module    Types    where   
import    Control.DeepSeq   

  

  

data     ParticleState    =    ParticleState   
   {   xPos   ::   ! Float     

   ,   yPos   ::   ! Float     

   ,   xVel   ::   ! Float   

   ,   yVel   ::   ! Float   
   }    deriving     Show   

  

  

instance     NFData     ParticleState     where   
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   rnf   ( ParticleState    x'   y'   vx'   vy')   =   
     rnf   x'   ̀seq`   rnf   y'   ̀seq`   rnf   vx'   ̀seq`   rnf   vy'   

  

  

instance     Eq     ParticleState     where   
   pS1   ==   pS2   =     

     (xPos   pS1   ==   xPos   pS2)   &&   

     (yPos   pS1   ==   yPos   pS2)   &&   

     (xVel   pS1   ==   xVel   pS2)   &&   
     (yVel   pS1   ==   yVel   pS2)   

  

  

data     PosVector    =    PosVector   
   {   xComp   ::   ! Float   

   ,   yComp   ::   ! Float   

   }    deriving     Show   

  
  

data     Wall    =     

      LeftWall   

   |    RightWall   
   |    TopWall   

   |    BottomWall   

    deriving     Show   

  
  

data     Config    =    Config  

   {   g       ::   ! Float   

   ,   alpha   ::   ! Float   
   ,   beta    ::   ! Float   

   }    deriving     Show   

  

  
defaultConfig    ::    Config   

defaultConfig    =     

    Config    {   g   =   9.81,   alpha   =   0.93,   beta   =   0.98   }   

  
  

fps ,   width,   height,   radius   ::    Int   

fps    =   45   

width    =   740   
height    =   740   
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radius    =   3   
  

  

rightWallLoc ,   leftWallLoc,   topWallLoc,   bottomWallLoc   ::    Float   

rightWallLoc    =   fromIntegral   $   width   ̀div`   2   
leftWallLoc    =   negate   rightWallLoc   

topWallLoc    =   fromIntegral   $   height   ̀div`   2   

bottomWallLoc    =   negate   topWallLoc   

module    Parse    where   

  

import    Data.List   
import    Types   

  

  

splitComma    ::    String    ->   [ String ]   
splitComma    s   =     

    case    span   (/=   ',')   s    of   

     (start   ,    "" )        ->   [start]   

     (start   ,   ',':rem)   ->   start:(splitComma   rem)   
     _                   ->   error    "parse   error   in   splitComma"   

  

  

listToParticleState    ::   [ String ]   ->    ParticleState   
listToParticleState    (x:y:vx:vy:[])   =     

    ParticleState    (read   x)   (read   y)   (read   vx)   (read   vy)  

listToParticleState    _   =   error    "mismatched   dimensions   in   data   

file"   
  

  

contentsToData    ::    String    ->   [ ParticleState ]   

contentsToData    contents   =   
   map   (listToParticleState   .   splitComma)   $   words   contents   

  

  

extractConfig    ::    String    ->    Config   
extractConfig    contents   =     

   foldl   helper   defaultConfig   $   splitComma   contents   

    where   

     helper   ::    Config    ->    String    ->    Config   
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     helper   c   s   
       |   isPrefixOf    "g="    s       =     

         c   {   g   =   stripPrefixFloat    "g="    s   }   

       |   isPrefixOf    "alpha="    s   =     

         c   {   alpha   =   stripPrefixFloat    "alpha="    s   }   
       |   isPrefixOf    "beta="     s   =     

         c   {   beta   =   stripPrefixFloat    "beta="    s   }   

       |   otherwise   =   error    "invalid   config   file"   

     stripPrefixFloat   ::    String    ->    String    ->    Float   
     stripPrefixFloat   prefix   s=     

        case    stripPrefix   prefix   s    of     

          Just    post   ->   read   post   

          Nothing      ->   error    "invalid   config   file"   

module    Animate    where   

  
import    Graphics.Gloss   

import    Graphics.Gloss.Data.ViewPort   

import    Types   

  
  

offset    ::    Int   

offset    =   100   

  
  

window    ::    Display   

window    =    InWindow     "Particles"    (width,   height)   (offset,   offset)   

  
  

background    ::    Color   

background    =   black   

  
  

update    ::    ViewPort    ->    Float    ->   [[ PosVector ]]   ->   [[ PosVector ]]   

update    _   _   []       =   []   

update    _   _   (_:ps)   =   ps   
  

  

render    ::   [[ PosVector ]]   ->    Picture   

render    []      =   blank      --   when   the   simulation   is   done,   show   a   



  
  

The   source   code   can   also   be   found   on:   
github.com/nathanjcuevas/Newtonian-Particles   
I   will   be   tagging   my   submission   on   github   as   well   so   it   can   easily   be  
reverted   to   if   needed.     
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blank   screen   
render    (p:_)   =     

   pictures   $   map   getTranslation   p   

    where     

     getTranslation   ::    PosVector    ->    Picture   
     getTranslation   state   =     

       translate   x   y   $   c   $   circleSolid   $   fromIntegral   radius   

          where     

           x   =   xComp   state   
           y   =   yComp   state   

           c   =   color   red   

  

  
runAnimation    ::   [[ PosVector ]]   ->    IO    ()   

runAnimation    ds   =   simulate   window   background   fps   ds   render   

update   

https://github.com/nathanjcuevas/Newtonian-Particles

