
COMS 4995 Project Report

Parallelized Particle Swarm Optimization

Xijiao Li (xl2950)
Chen Chen (cc4351)

December 23, 2021

Abstract

In this report, we explore the magic of parallel computation in the pure func-
tional language - Haskell. We present a parallelized version of Particle Swarm
Optimization implementation in Haskell and examine the improvement on run-
time performance. Its implementation is then manifested in a 10-dimensional
Shekel Function with 10 minima. We have also tried different parallelization
strategies and showed how each of them can improve the performance.

1 Introduction

Haskell1 is an advanced, purely functional programming language invented in 1987
by a group of programming language researchers. Like other pure functional lan-
guages, Haskell is based on the lambda calculus, a formal mathematical system
for expressing the notion of computation, invented by Turing’s professor Alonzo
Church. At a high-level, a Haskell program is just a function composed of many
smaller functions.

Particle Swarm Optimization2 (PSO) has been proven to be effective at solving
complicated optimization problems, and has been successfully applied in a wide
range of practical tasks. It is a nature-inspired computational method, in which a
swarm of particles work together to practical problems, with each trying to improve
his individual solution through the interaction with his neighbors. Since PSO does
not use the gradient of the problem being optimized, it can be applied on non-
smooth and non-convex functions as they are derivative-free and produce results
independent of the initial model. Besides, there are very few hyperparameters,
which are also simple to understand. For the same hyperparameters, PSO will work
on a very wide variety of tasks, which makes it very powerful and flexible.

1https://www.haskell.org/
2https://en.wikipedia.org/wiki/Particle_swarm_optimization.

1

https://www.haskell.org/
https://en.wikipedia.org/wiki/Particle_swarm_optimization

One caveat of particle swarm optimization algorithms is premature stagnation: the
swarm may converge to a non-optimal solution. This can be caused by the fact that
the step length is too large (so the particles ignorantly jump over the global optima),
or the the number of particles is too small. However, if we set a tiny step length, the
total number of iterations needed for the particles to converge will increase, leading
to a longer running time.

2 Background

In the context of PSO, there are a number of particles moving through the search
space in search of the best solution. Every particle position represents a poten-
tial solution and the goodness/fitness of that solution is measured by an objective
function (the function being optimized).

Upon initialization, each particle is randomly assigned to a random position and
with a random initial velocity. At each time step, every particle first updates its
velocity and then the position:

Vi,t+1 = wVi,t + c1r1(Oi,t − Pi,t) + c2r2(Ot − Pi,t)

Pi,t+1 = Pi,t + Vi,t+1

where

• Vi,t := the velocity of particle i at time t

• Pi,t := the position of particle i at time t

• Oi,t := the position with min cost ever visited by particle i at time t

• Ot := the position with min cost ever visited by any particle at time t

• r1, r2, w, c1, c2: different weight parameters for each term

One can see from the equation that the movement of the particles is governed by
three factors: the inertia weight component (Vi,t), the cognitive component (Oi,t −
Pi,t) and the social component (Ot − Pi,t). The inertia weight component allows a
particle to maintain some momentum between iterations. The cognitive component
allows the particle’s movement to be influenced by its memory of good positions
that it has found in earlier iterations. The social component will cause the good
positions found by other particles of the swarm to influence the given particle’s
movement.

Overall the logic of PSO can be found in the pseudo code:

2

Algorithm 1: PSO algorithm

1 begin
2 Initialize N particles on the search space;
3 for time step t← 0 to max iter do

// update all particles

4 for every particle i do
5 Update velocity to Vi,t;
6 Make next movement to position to Pi,t;
7 Calculate function value at its current position Pi,t;
8 Find and update Oi,t;

9 end
10 Find and update Ot;

11 end

12 end

3 Haskell Implementation

In this section, we will explain how we implement the parallelized PSO in Haskell.

3.1 Particle

Each particle is Particle type with some type parameters, which are the states of
particle that we need to keep track of:

data Particle = Particle

{ velocity :: [Double] -- ^ Velocity at time i

, posCurr :: [Double] -- ^ Position at time i

, posBest :: [Double] -- ^ Best position upon time i

, valCurr :: Double -- ^ Current value at time i

, valMin :: Double -- ^ Minimal value upon time i

}

The function update updates the Particle passed in. Basically, it calculates the
new velocity and new position for the particle, calculate the new value of the new
position using the cost function, and update the parameters.

update

:: ([Double] -> Double) -- ^ Cost function

-> [(Double, Double)] -- ^ Cost function domain

-> [Double] -- ^ Current global optimal position

-> Double -- ^ Weight parameter

-> Particle -- ^ Particle to update

-> Particle

3

update fn domain posGOpt weight part = Particle { ... }

where

... -- calculate new parameters

3.2 PSO State

We implement the PSO algorithm using a state monad in order to keep track of the
states for each iteration.

data PSOState = PSOState

{ swarm :: [Particle] -- ^ Particle swarm

, swarmSize :: Int -- ^ Size of Particle swarm

, costFn :: [Double] -> Double -- ^ Cost function

, searchDomain :: [(Double, Double)] -- ^ Cost function domain

, currOptima :: [Double] -- ^ Current global optima

, trueOptima :: [Double] -- ^ Real optima

, timestamp :: Int -- ^ Current timestamp

, weight :: Double -- ^ Weight parameter

, psoLog :: [String] -- ^ Trace log

}

We use the function runPSO to run a whole session of PSO. The parameter n is the
number of iterations to run. This function will recursively call itself until n hits 0;
every time, it calls step to iterate one step (i.e. update each particle in the swarm,
find the new global optima so far, and write it to the logs).

runPSO :: Int -> State PSOState ()

runPSO 0 = return ()

runPSO n = do

step

runPSO n-1 -- go to next iteration

step :: State PSOState ()

step = do

... -- get sw, fn, domain, currOpt, w from state

let s'@(p:ps) = map (Particle.update fn domain currOpt w) s

newOpt = Particle.posBest $ foldr minPart p ps

modify $ \st -> st { swarm = s'

, currOptima = newOpt

, timestamp = timestamp st + 1

, psoLog = show (timestamp st, newOpt) : psoLog st }

return ()

4

3.3 Cost Function

In order to test and experiment with the parallelized version of PSO implementation,
we implement several cost functions in Haskell as well. Each function is in a separate
module, which has implemented three things: function, domain, and minima. Below
is an example of a 10-dimensional Shekel function with 30 local minima:

{- cVec and aVec are some constants for this function.

-}

function :: [Double] -> Double

function = (* (-1)) . inv . inner

where

inv x = sum \$ fmap (** (-1)) (zipWith (+) x cVec)

inner p = map ((sum . map (** 2)) . zipWith (-) p) aVec

domain :: [(Double, Double)]

domain = replicate 10 (0, 10)

minima :: [Double]

minima = [...]

3.4 Main

Inside Main.hs, we take in several parameters from the command line, initialize the
initial PSO state, and kick off the iterations by calling runPSO. In order to assign
each particle a random position and a random velocity when initializing the state,
we use the randomRIO from System.Random.

ps <- replicateM s $ mapM randomRIO Shekel.domain -- initial positions

vs <- replicateM s $ mapM randomRIO Shekel.domain -- initial velocities

4 Parallelization

We have attempted several strategies to parallelize our PSO implementation, specif-
ically the update step (lines 4 - 9 in the pseudocode of PSO Algorithm, with imple-
mentation details explained in §3). The general idea is to break up the computation
at each update step into multiple chunks and create a spark for each chunk that will
subsequently submit the computation to a thread pool to execute the computation
in parallel.

4.1 parList rdeepseq

We started with a simple parList rdeepseq strategy, where we create 1 spark for
each particle in each iteration to evaluate each particle to NFData form. We have

5

made the following code change to test this strategy:

let s'@(p:ps) = map (C.update currOpt fn domain w) s

`using` parList rdeepseq

-- To allow our Particle type to be fully evaluated

instance NFData Particle where

rnf (Particle v pC pB vC vMin) = rnf v `deepseq`

rnf pC `deepseq`

rnf pB `deepseq`

rnf vC `deepseq`

rnf vMin

We expect to see some speed up with parList strategy but also significant overhead
caused by creating a lot of sparks. The reason is that the computation for updating
one single particle inside one iteration does not cost that much time, so it is wasteful
to create a separate spark for that.

This effect is actually more severe when we use a simple cost function (e.g., a 2-
D Shekel function with only 3 minima), which takes even less time to compute.
Therefore, we use the 10-D Shekel function with only 30 minima to make it a better
candidate for parallelization.

4.2 Vanilla rpar rseq

The second strategy we have tried is the vanilla rpar rseq strategy, where we split the
entire particle list into equal-sized chunks, and call rpar on each of the chunks. Then
we call rpar on each chunk, waiting for the computation to finish and concatenate
the result. We choose this strategy to avoid spark pool overflow problem encountered
in §4.1 The strategy requires the following code change:

let s'@(p:ps) = runEval $ do

let subSwarms = splitN chunksize s

subSwarms' <- mapM (rparUpdate fn domain currOpt w) subSwarms

mapM_ rseq subSwarms'

return $ concat subSwarms'

where

rparUpdate fn domain currOpt w subSwarm =

rpar $ deep $ map (P.update fn domain currOpt w) subSwarm

We expect this strategy to work reasonably well to distribute workload across cores

6

with low overhead, since we typically split it up into 1 - 16 chunks to avoid creating
too many sparks.

4.3 parListChunk rdeepseq

The last strategy we have tried is parListChunk rdeepseq, which works similarly as
the vanilla rpar rseq strategy in §4.3. It can help to keep the load well-balanced
across threads.

let s'@(p:ps) = map (P.update fn domain currOpt w) s

`using` parListChunk chunksize rdeepseq

We expect to see the best performance using this strategy after some fine-tuning on
chunk size.

5 Evaluation

5.1 Performance Metric and Evaluation Setup

To evaluate the four strategies we have used to run PSO, we have written a Python
script to run our PSO executable with the aforementioned strategies using 1, 2,
4, 6, 8, 10, 12, 14, 16 software threads (through -N). For the rpar rseq and the
parListChunk strategies, we run 1, 2, 4, 8, 12, 16, 20, 25, 35, 45, 60, 75, 100,
150, 200, 250, 333, 400, 500 number of chunks for each thread configuration. All
experiment configuration statistics are averaged over 5 iterations and run using 500
particles for 1000 iterations. All data points are collected on an M1 chip Mac Mini
with 8 CPU threads.

The key performance metric is the runtime of the program, collected using Thread-
scope and the bash time utility program. We have also included the HEC traces
generated from Threadscope to understand the load-balancing across cores. Aside
from the runtime, we have also included qualitative analyses on performance stabil-
ity, the distribution of workload across cores, and the distribution of spark creation
events across time and core.

5.2 Sequential

The sequential implementation using -N1 averages 9.9422 ± 0.039 seconds. See
Figure 1 for a Threadscope trace.

7

Figure 1: Sequential implementation Threadscope trace

Figure 2: Spark pool overflow with 500 particles using parList rdeepseq on 4 cores.

5.3 parList

The parList rdeepseq strategy provides ∼ 2.58x speedup compared with the se-
quential implementation when running with -N6 (best performance). The main
problem with this strategy is that we create N sparks in each iteration, where N is
the number of particles. It is necessary to have a large number of particles for PSO
to fully explore the cost function domain to find the global minimum. As expected,
we observe spark pool overflow with a large number of particles. See Figure 2 for
details. We have also noticed more garbage collection and noticeable hiccups in the
workload, suggesting significant overhead caused by the overwhelming number of
sparks. Figure 2 also indicates that the load is not well-balanced, as HEC3 have the
majority of the converted sparks.

See Figure 3 for performance analysis when running the parList strategy using
different number of threads.

There are two observations. The first is that we see acceleration as we increase the
number of threads running the workload up to 6 threads, which is as expected since
we will have more threads to do the same amount of computation. Threadscope
trace in 4 with workload distributed across cores also confirms our understanding.
We also note that there is no performance increase, or even worsened performance,
as we keep increasing the number of threads. We think the overhead from 1) kernel
multiplexing more software threads than hardware threads (we only have 8); 2)
distribute workload across many software threads are the main contributors to the
worsened performance.

The second point is that the error bar is very noticeable, which is a result of occa-

8

Figure 3: parList runtime over core: some speedup with increase of cores, signifi-
cant fluctuations in performance.

Figure 4: parList threadscope trace with -N4

9

Figure 5: Better balanced workload, 16 chunks evaluated using rpar rseq on 4 cores.

Figure 6: Vanilla rpar rseq: performance generally has minimal speed up after 16
chunks, plateaus at around 100 chunks with slight worse performance afterwards.

sional hiccup that causes a significant delay, usually in 1 out of the 5 iterations we
run. The large standard deviations indicate that the parList strategy also has per-
formance stability issues. The instability is likely a result of more garbage collection
activities in the background as a result of the large overhead.

5.4 Vanilla rpar rseq

This strategy works reasonably well, providing ∼3.18x speedup when compared
against the baseline. We see from Figure 5 that it generates a relatively balanced
workload across cores, which explains the increase in speedup. However, there
remains a noticeable difference between the number of sparks converted by HEC 0
& 2 and HEC 1 & 3. We have also noticed a considerable number of sparks garbage
collected and fizzled.

See Figure 6 for performance analysis when running the vanilla strategy using dif-
ferent number of threads and varying number of chunks. The first observation is

10

Figure 7: Vanilla strategy spark creation events are spread out to the entire runtime.

Figure 8: parListChunk: good load-balancing across four cores with –chunk 16

that as we increase the number of cores up till 8 and the number of chunks up till
100 chunks, the greater the speedup. This is as expected. The second observa-
tion is that the standard deviation is significantly smaller than the data we have
for the parList strategy in Figure 3. The small standard deviations indicate that
spreading the spark creation across the entire duration helps to stabilize perfor-
mance. Threadscope spark creation trace also confirms this observation in Figure
(7. The third observation is that the performance worsens as the number of chunks
goes beyond 100 due to the increased overhead brought by the increased number of
threads.

5.5 parListChunk

The parListChunk strategy parallelizes the workload in a well-balanced way as well,
as we could see from Figure 8 that 1) the spark conversion is well spread out across
four cores; 2) the number of garbaged collected and fizzled sparks have decreased
when compared with the vanilla strategy (Figure 5).

See Figure 9 for a performance analysis. Generally, the performance we get from
using module parListChunk is very similar to that of the vanilla rpar rseq strategy.
Overall, parListChunk is slightly better than the vanilla strategy in terms of speed
up. See Figure 10 for a direct comparison.

11

Figure 9: parListChunk: performance generally has minimal decrease after 16
chunks, plateaus at around 100 chunks with slight worse performance afterwards.

5.6 Strategies Comparison

Figure 10: Comparing vanilla and parListChunk at -N8: parListChunk has better
performance across configurations.

12

Figure 11: Best achieved performance for N = 500 particles, I = 1000 iteration

We conclude the evaluation section by comparing performance across strategies. We
see that parListChunk has the overall best speed up, followed by vanilla strategy. As
we increase the number of threads, we move further away from the ideal performance
due to the sequential part of our implementation. It is also interesting that even
though the experiment is run on a computer with only 8 hardware threads, we could
still get performance increase as we increase from 8 software threads to 16 software
threads. This indicates that the CPUs are idle part of the time when running with
-N8 and there is room for multiplexing.

13

6 Conclusion

Haskell’s robust runtime enables us to parallelize the PSO implementation by chang-
ing only several lines of the sequential version of PSO. From the last section, we
can see that the performance of the algorithm greatly increases as expected. The
parListChunk provided a very clean way to achieve the parallelization. Beside, the
monad enables us to not worry about the side effects and put our focus on the
algorithm itself. All of these contribute to our elegant and clean codes.

References

[1] J. Kennedy and R. Eberhart, Particle swarm optimization. IEEE International
Conference on Neural Networks, vol. 4, pp. 1942–1948, December 1995.

[2] M. Millonas, Swarms, phase transitions and collective intelligence. Artificial life
III, C. Langton, Ed., pp. 417–445, Addison-Wesley, Reading, Mass, USA, 1994.

[3] I. M. Yassin, M. N. Taib, R. Adnan, M. K. M. Salleh, and M. K. Hamzah,
Effect of swarm size parameter on Binary Particle Swarm optimization-based
NARX structure selection. Proceedings of the IEEE Symposium on Industrial
Electronics and Applications (ISIEA ’12), pp. 219–223, Bandung City West Java,
Indonesia, September 2012.

[4] S, Katare. and D.H, West, Optimal complex networks spontaneously emerge
when information transfer is maximized at least expense: A design perspective.
doi:10.1002/cplx.20119, 2006

[5] Arion de Campos, Aurora T.R. Pozo, Elias P. Duarte, Parallel multi-swarm PSO
strategies for solving many objective optimization problems. Journal of Parallel
and Distributed Computing, Volume 126, 2019, Pages 13-33, ISSN 0743-7315.

14

A Main.hs

module Main where

import qualified Data.Map as M

import qualified Data.Set as S

import qualified Particle as P

import PSO

import System.Console.GetOpt

import Control.Monad

import Control.Monad.State

import Control.DeepSeq

import System.IO

import System.Exit

import System.Environment

import System.Random

import Data.List(unfoldr)

import qualified Shekel

import qualified Rastrigin

data Options = Options { optVerbose :: Bool

, optHelp :: Bool

, optSwarmSize :: Int

, optMaxIteration :: Int

, optChunkNumber :: Int

, optStrategy :: Int

}

defaultOptions :: Options

defaultOptions = Options { optVerbose = False

, optHelp = False

, optSwarmSize = 500

, optMaxIteration = 1000

, optChunkNumber = 10

, optStrategy = 2

}

options :: [OptDescr (Options -> Options)]

options =

15

[Option "h" ["help"]

(NoArg $ \opt -> opt { optHelp = True })

"show help"

, Option "v" ["verbose"]

(NoArg $ \opt -> opt { optVerbose = True })

"verbose"

, Option "s" ["size"]

(ReqArg (\str opt ->

opt { optSwarmSize = read str }) "SWARM_SIZE")

"size of swarm"

, Option "i" ["iteration"]

(ReqArg (\str opt ->

opt { optMaxIteration = read str }) "MAX_ITERATION")

"number of max iteration to run"

, Option "c" ["chunk"]

(ReqArg (\str opt ->

opt {optChunkNumber = read str}) "CHUNK_NUMBER")

"number of chunks to run each iteration in"

, Option "p" ["parallel"]

(ReqArg (\str opt ->

opt {optStrategy = read str}) "PARALLEL_STRATEGY")

"parallel strategies"

]

main :: IO ()

main = do

args <- getArgs

-- Parse options, getting a list of option actions

let (actions, nonOptions, errors) = getOpt RequireOrder options args

-- Here we thread startOptions through all supplied option actions

opts = foldl (flip id) defaultOptions actions

Options { optVerbose = v

, optHelp = h

, optSwarmSize = s

, optMaxIteration = i

, optChunkNumber = c

, optStrategy = p } = opts

if h || length errors /= 0 || p < 0 || p > 3 then usage

else putStrLn $ "Running with " ++ (show s) ++ " particles, "

++ (show i) ++ " iterations, " ++ (show c) ++ " chunks " ++

", strategy " ++ case p of

16

0 -> "sequential..."

1 -> "vanilla..."

2 -> "parList rdeepseq..."

_ -> "parListChunk rdeepseq..."

ps <- replicateM s $ mapM randomRIO Shekel.domain

vs <- replicateM s $ mapM randomRIO Shekel.domain

let sw = P.initSwarm Shekel.function ps vs

chunksz = (s + c - 1) `div` c

(_, b) = runState (runPSO p chunksz i) PSOState

{ swarm = sw

, swarmSize = s

, costFn = Shekel.function

, searchDomain = Shekel.domain

, trueOptima = Shekel.minima

, currOptima = map (const 0.0) Shekel.minima

, timestamp = 0

, weight = 0.5

, psoLog = [] }

putStrLn $ unlines (take 1 (psoLog b))

usage :: IO ()

usage = do pn <- getProgName

die $ "Usage: " ++ pn ++

" [-hv] [-n <number particles>] [-i <number iterations>]" ++

" [-c <number of chunks>]" ++

" [-p <parallel strategy: " ++

" {0:sequential, 1:vanilla, 2:parList, 3:parListChunk}>]"

B Particle.hs

module Particle

(Particle(..)

, initSwarm

, update

) where

import Control.DeepSeq

data Particle = Particle

{ velocity :: [Double] -- ^ Velocity at time i

, posCurr :: [Double] -- ^ Position at time i

17

, posBest :: [Double] -- ^ Best position upon time i

, valCurr :: Double -- ^ Current value at time i

, valMin :: Double -- ^ Minival value upon time i

} deriving (Show)

instance NFData Particle where

rnf (Particle v pC pB vC vMin) = rnf v `deepseq`

rnf pC `deepseq`

rnf pB `deepseq`

rnf vC `deepseq`

rnf vMin

initSwarm :: ([Double] -> Double) -> [[Double]] -> [[Double]] -> [Particle]

initSwarm fn = zipWith (\ p v ->

Particle { velocity = v

, posCurr = p

, posBest = p

, valCurr = fn p

, valMin = fn p })

update

:: ([Double] -> Double) -- ^ Cost function

-> [(Double, Double)] -- ^ Cost function domain

-> [Double] -- ^ Current global optimal position

-> Double -- ^ Weight parameter

-> Particle -- ^ Particle to update

-> Particle

update fn domain posGOpt weight part = Particle { velocity = v'

, posCurr = p''

, posBest = pb'

, valCurr = val

, valMin = min' }

where

[r1, r2] = [0.5, 0.5]

c1 = 4.1 * weight

c2 = 4.1 * (1-weight)

d1 = map (*(c1*r1)) $ zipWith (-) (posBest part) (posCurr part) --cognitive

d2 = map (*(c2*r2)) $ zipWith (-) posGOpt (posCurr part) --social

wV = velocity part --inertia

v' = zipWith3 (\x y z -> x + y + z) wV d1 d2

18

p' = zipWith (+) v' $ posCurr part

p'' = zipWith (\xi (lower, upper) -> min (max xi lower) upper) p' domain

val = fn p''

pb' = if val < valMin part then p'' else posBest part

min' = if val < valMin part then val else valMin part

C PSO.hs

module PSO

(PSOState(..)

, runPSO

) where

import Control.Monad.State

import Control.Parallel.Strategies

import Control.DeepSeq (deepseq)

import Particle as P

data PSOState = PSOState

{ swarm :: [Particle] -- ^ Particle swarm

, swarmSize :: Int -- ^ Size of Particle swarm

, costFn :: [Double] -> Double -- ^ Cost function

, searchDomain :: [(Double, Double)] -- ^ Cost function domain

, currOptima :: [Double] -- ^ Current global optima

, trueOptima :: [Double] -- ^ Real optima

, timestamp :: Int -- ^ Current timestamp

, weight :: Double -- ^ Weight parameter

, psoLog :: [String] -- ^ Trace log

}

{- `runPSO strat chunksize n` runs the `step` loop using the given strategy

@strat@ and chunk size @chunksize@ for @n@ iterations.

-}

runPSO :: Int -> Int -> Int -> State PSOState ()

runPSO _ _ 0 = return ()

runPSO strat chunksize n = do

step strat chunksize

-- go to next iteration

runPSO strat chunksize $ n-1

{- `step strat chunksize` runs one `step`. @strat@ is the index of the

19

parallelization strategy to use and @chunksize@ is the number of particles

that will be updated in parallel.

-}

step :: Int -> Int -> State PSOState ()

step strat chunksize = do

s <- gets swarm

fn <- gets costFn

domain <- gets searchDomain

currOpt <- gets currOptima

w <- gets weight

let s'@(p:ps) =

-- three ways to parallelize

case strat of

{- vanilla split w/ rpar + rseq -}

1 -> runEval $ do

let subSwarms = splitN chunksize s

subSwarms' <- mapM (rparUpdate fn domain currOpt w) subSwarms

mapM_ rseq subSwarms'

return $ concat subSwarms'

{- parList -}

2 -> map (P.update fn domain currOpt w) s

`using` parList rdeepseq

{- parListChunk -}

3 -> map (P.update fn domain currOpt w) s

`using` parListChunk chunksize rdeepseq

{- sequential -}

_ -> map (P.update fn domain currOpt w) s

-- after we update all the particles, we find the new global optima

newOpt = P.posBest $ foldr minParticle p ps

-- update the PSO state

modify $ \st -> st { swarm = s'

, currOptima = newOpt

, timestamp = timestamp st + 1

, psoLog = show (timestamp st, newOpt) : psoLog st }

return ()

where

rparUpdate fn domain currOpt w subSwarm =

rpar $ deep $ map (P.update fn domain currOpt w) subSwarm

-- `minParticle p1 p2` compares two Particles and return the one with smaller valMin

minParticle :: Particle -> Particle -> Particle

minParticle p1 p2

20

| P.valMin p1 < P.valMin p2 = p1

| otherwise = p2

deep :: NFData a => a -> a

deep a = deepseq a a

splitN :: Int -> [Particle] -> [[Particle]]

splitN chunksize ps

| chunksize >= length ps = [ps]

| otherwise = ps1:splitN chunksize ps2

where (ps1, ps2) = splitAt chunksize ps

D Shekel.hs

{- | Shekel function

See <https://en.wikipedia.org/wiki/Shekel_function>

Global minimum: shekel(0.5,0.5) = -594.960255

Bounds: -1 <= xi <= 1

-}

module Shekel

(function

, domain

, minima) where

-- 30 local maxima.

aVec :: [[Double]]

aVec =

[[9.681, 0.667, 4.783, 9.095, 3.517, 9.325, 6.544, 0.211, 5.122, 2.020],

[9.400, 2.041, 3.788, 7.931, 2.882, 2.672, 3.568, 1.284, 7.033, 7.374],

[8.025, 9.152, 5.114, 7.621, 4.564, 4.711, 2.996, 6.126, 0.734, 4.982],

[2.196, 0.415, 5.649, 6.979, 9.510, 9.166, 6.304, 6.054, 9.377, 1.426],

[8.074, 8.777, 3.467, 1.863, 6.708, 6.349, 4.534, 0.276, 7.633, 1.567],

[7.650, 5.658, 0.720, 2.764, 3.278, 5.283, 7.474, 6.274, 1.409, 8.208],

[1.256, 3.605, 8.623, 6.905, 0.584, 8.133, 6.071, 6.888, 4.187, 5.448],

[8.314, 2.261, 4.224, 1.781, 4.124, 0.932, 8.129, 8.658, 1.208, 5.762],

[0.226, 8.858, 1.420, 0.945, 1.622, 4.698, 6.228, 9.096, 0.972, 7.637],

[7.305, 2.228, 1.242, 5.928, 9.133, 1.826, 4.060, 5.204, 8.713, 8.247],

[0.652, 7.027, 0.508, 4.876, 8.807, 4.632, 5.808, 6.937, 3.291, 7.016],

[2.699, 3.516, 5.874, 4.119, 4.461, 7.496, 8.817, 0.690, 6.593, 9.789],

21

[8.327, 3.897, 2.017, 9.570, 9.825, 1.150, 1.395, 3.885, 6.354, 0.109],

[2.132, 7.006, 7.136, 2.641, 1.882, 5.943, 7.273, 7.691, 2.880, 0.564],

[4.707, 5.579, 4.080, 0.581, 9.698, 8.542, 8.077, 8.515, 9.231, 4.670],

[8.304, 7.559, 8.567, 0.322, 7.128, 8.392, 1.472, 8.524, 2.277, 7.826],

[8.632, 4.409, 4.832, 5.768, 7.050, 6.715, 1.711, 4.323, 4.405, 4.591],

[4.887, 9.112, 0.170, 8.967, 9.693, 9.867, 7.508, 7.770, 8.382, 6.740],

[2.440, 6.686, 4.299, 1.007, 7.008, 1.427, 9.398, 8.480, 9.950, 1.675],

[6.306, 8.583, 6.084, 1.138, 4.350, 3.134, 7.853, 6.061, 7.457, 2.258],

[0.652, 2.343, 1.370, 0.821, 1.310, 1.063, 0.689, 8.819, 8.833, 9.070],

[5.558, 1.272, 5.756, 9.857, 2.279, 2.764, 1.284, 1.677, 1.244, 1.234],

[3.352, 7.549, 9.817, 9.437, 8.687, 4.167, 2.570, 6.540, 0.228, 0.027],

[8.798, 0.880, 2.370, 0.168, 1.701, 3.680, 1.231, 2.390, 2.499, 0.064],

[1.460, 8.057, 1.336, 7.217, 7.914, 3.615, 9.981, 9.198, 5.292, 1.224],

[0.432, 8.645, 8.774, 0.249, 8.081, 7.461, 4.416, 0.652, 4.002, 4.644],

[0.679, 2.800, 5.523, 3.049, 2.968, 7.225, 6.730, 4.199, 9.614, 9.229],

[4.263, 1.074, 7.286, 5.599, 8.291, 5.200, 9.214, 8.272, 4.398, 4.506],

[9.496, 4.830, 3.150, 8.270, 5.079, 1.231, 5.731, 9.494, 1.883, 9.732],

[4.138, 2.562, 2.532, 9.661, 5.611, 5.500, 6.886, 2.341, 9.699, 6.500]

]

cVec :: [Double]

cVec =

[0.806,

0.517,

0.1,

0.908,

0.965,

0.669,

0.524,

0.902,

0.531,

0.876,

0.462,

0.491,

0.463,

0.714,

0.352,

0.869,

0.813,

0.811,

0.828,

0.964,

22

0.789,

0.360,

0.369,

0.992,

0.332,

0.817,

0.632,

0.883,

0.608,

0.326

]

function :: [Double] -> Double

function = (* (-1)) . inv . inner

where

inv x = sum $ fmap (** (-1)) (zipWith (+) x cVec)

inner p = map ((sum . map (** 2)) . zipWith (-) p) aVec

domain :: [(Double, Double)]

domain = replicate 10 (0, 10)

minima :: [Double]

minima = [8.025, 9.152, 5.114, 7.621, 4.564, 4.711, 2.996, 6.126, 0.734, 4.982]

E Rastrigin.hs

* This is another objective function that can be used to test the PPSO.

module Rastrigin

(function

, domain) where

{- | Rastrigin's function

See <https://en.wikipedia.org/wiki/Rastrigin_function>

Global minimum: rastrigin(0, 0) = 0

Bounds: -5.12 <= xi <= 5.12

-}

function :: [Double] -> Double

function p = 10 * n + sum inner

23

where

n = fromIntegral $ length p

inner = map (\x -> x**2 - 10 * cos (2 * pi * x)) p

domain :: [(Double, Double)]

domain = [(-5.12, 5.12), (-5.12, 5.12)]

24

	Introduction
	Background
	Haskell Implementation
	Particle
	PSO State
	Cost Function
	Main

	Parallelization
	parList rdeepseq
	Vanilla rpar rseq
	parListChunk rdeepseq

	Evaluation
	Performance Metric and Evaluation Setup
	Sequential
	parList
	Vanilla rpar rseq
	parListChunk
	Strategies Comparison

	Conclusion
	Main.hs
	Particle.hs
	PSO.hs
	Shekel.hs
	Rastrigin.hs

