
Flow Free Solver

Deji Oyerinde(oko2107) and Kidus Mulu(km3533)

The Problem

Flow free is a video game for mobile that is based on the Number Link puzzle. To begin, there is

a grid with pairs of different colors in different boxes. The objective of the game is to connect all

the pairs to each other in flows. A flow is an uninterrupted path from one colored dot to the other

dot of the same color. A flow can move in any of the four directions within the grid but it cannot

cross another flow and it cannot go into a box occupied by another dot of a different color.

For example, one starting grid is shown in the following table along with a solution:

Start grid Solution

Our program, flow-solver, takes the initial grid in the form of a text file and produces a solution to

the flow-free game represented by that text file.

https://en.wikipedia.org/wiki/Numberlink

Problem representation

We represented the problem board as a text file with a matrix of lower case letters and zeros.

Each empty cell would be represented by a ‘0’ and each color dot would be represented by a

lower-case letter.

In the solved board, the flows are represented by a continuous flow of uppercase letters:

Another run of the algorithm on a 9x9 board.

Other Possible Solutions

Before we produced our solution, there were multiple approaches that we considered for solving

the game. The first was to use an A* graph search algorithm. Given a graph and start node, The

A* algorithm determines the next possible node to search by trying to minimize a function

, where is the cost to get to node n and is the heuristic function used to𝑔(𝑛) + ℎ(𝑛) 𝑔(𝑛) ℎ(𝑛)

determine the best possible selection of the next node. In the case of Flow Free, you could

determine h(n) to be the number of remaining unoccupied cells on the board and each possible

state would be a possible node of the graph. We decided not to use A* search even though it is

asymptotically faster than our solution because it did not have an embarrassingly parallel aspect

to it.

The second approach we considered was to use a satisfiability solver (SAT solver) by

representing the Flow Free starting board as a Conjunctive Normal Form (CNF) formula. After

this conversion, we would input that formula into a SAT solver and if solvable, receive a solution

that satisfies all constraints. However, we decided against this approach after learning that it

would require 1000+ clauses and 100+ variables just to represent the simplest 5x5 board.

Our Solution

Ultimately, we decided to use a heuristic based Best First Search algorithm to solve the

board. The heuristic used is to move the color (or dot) that has the smallest possible moves at

each iteration.

The algorithm generally works as follows:

1. On the problem board, find the color with the smallest number of possible moves

2. Make produce a board with each of those possible moves and solve the generated

boards recursively

As an example, consider the following progressions of the algorithm:

In the first board, there are a few dots with only one move to make. We choose the yellow dot in

the top right corner and produce the board in the middle. The algorithm then goes again and

scans the board, finding that the green at top-center only has one move to make. It makes that

move and continues like that until the entire board is solved.

In the 5x5 example above, at each iteration there will always be a color with only one move to

make, so the algorithm proceeds fairly sequentially. However, consider the following board after

the first move:

In the top board, each dot has at least two valid moves. We select the orange in the top right

with only two possible moves as our next color to advance. Then, we produce two children

boards as shown by advancing the orange dot in the two possible ways. After producing the two

sub-problems, we call the solving routine recursively on both. The algorithm continues like this,

at each step checking if the board is solved or not. Once it discovers that a board is solved, it

returns the solution to the caller.

Parallel Strategies

Each call has to look at it’s board to figure out if it is solved and, if it isn’t, figure out which

subproblems it needs to solve. This step in the algorithm is not easily parallelizable since the

tasks are linked in ways that would make a parallel algorithm too complicated. After these

checks, though, a call has to solve its children recursively. Since the children are completely

independent problems, the calls are embarrassingly parallel and can each be computed

simultaneously.

We explored 3 strategies of how a parent call can evaluate its children as we discuss below.

The Naive Parent

The first and simplest solution that we had is the naive approach: parallelize everything. At

every stage in the recursion tree, any parent which has to execute two or more children will

spark computation for them in parallel.

Theoretically, if there was no overhead for the management of sparks, this is the best solution

since the processors will be completely busy until all the work is finished. In practice, however,

this strategy is wasteful and performs poorly.

Results

Type Run Time Speedup()𝑆𝑒𝑞
𝑃𝑎𝑟

Seq 2m:49s

1.34x

Par (-N4) 2m:06s

When tested on a 9x9 game board, as the results above indicate, out of almost 22 million

sparks created, only 192 end up being converted. The CPU utilization is good however, since no

CPU will be idle at any time as long as there are multiple problems being solved. In the end,

however, the overhead dominated the runtime and the algorithm achieved only a 1.34x speedup

from the sequential solution.

The Strictly Fair Parent

The problem with the naive strategy is that there are more sparks created that could ever be

evaluated by the processors. To remedy this, we introduced the concept of depth. The depth is

a parameter to a solve function call that indicates the total number of sparks that may be

created by that call and all its children. If a call is given a positive depth, then it may use that

depth and pass it to its children as it wishes. If a call is not given a positive depth, then it must

execute itself and all its children sequentially.

The strictly fair parent strategy uses the depth it is given to spark computation for all of its

children, and then equally divides what’s left among the children it sparked. As an illustration,

take the following scenario:

The parent is given a depth allotment of 7. Since it has 3 children, it sparks computation of the

three children (using 3 of its 7 depth) and divides the remaining 4 equally among the children,

which continue to do the same thing. The grandchildren, who will not be given any depth, must

execute completely sequentially. Notice how the total number of sparks created by the sub-tree

rooted at the parent is limited by the depth (with some wiggle-room). By controlling the depth

passed to the first call, the total number of sparks created in the entire program can be

controlled.

In our experiments and testing on the strictly fair parent strategy, we found one issue to be that

the sub problems created by a parent may not need all the parallelizing power equally. For

instance, in the above example, if C1 is immediately found to be unsolvable, it will never use the

1 depth value that it is passed, which C2 and C3 might have needed more. Because this

strategy does not distinguish between the sub-problems, there can be imbalances created.

On average though, we found this strategy to be adequately performant and certainly an

improvement on the naive approach.

Results

Type Run Time Speedup()𝑆𝑒𝑞
𝑃𝑎𝑟

Seq 1m:49s

2.53x

Par (-N4) 0m:43

As seen in the results, there was a much greater utilization of sparks due to the depth limit, and
the overall performance is also better.

The Forward-Thinking Parent

The problem with the strictly fair strategy is that the parent doesn’t know which child will need

the finite sparking power more than the others. Thus, the forward-thinking parent strategy tries

to remedy this by computing the number of next possible moves that each child can make and

assigns the most sparking power (parent’s sparking power - 1) to the child with the most

possible next moves. The rest of the children will then evaluate sequentially. This selected child

will always be the same across executions because our algorithm is deterministic given the

same board.

The following graphic shows a parent P with a depth allotment of 7. The parent P calculates the

number of next possible moves (represented by S) that each of its children can make. C1 can

make 4 possible moves, C2 can make 2 possible moves and C3 can only make one possible

move. C1 has the higher number of next possible moves out of all the children so P sparks

computation of C1 and gives it depth 6. The remaining children C2 and C3 are not given

anything and must evaluate sequentially.

In our experiments and testing on the forward-thinking parent strategy, it was found to be heavily

board-dependent. For example, if C1 takes all the sparking power and ends up unsolvable a few

moves later, then we’ve wasted all the parallel computation and the overall computation

becomes sequential. This is even worse if we make a wrong selection early in the execution,

which will make our program devolve to sequential execution.

Results

Type Run Time Speedup()𝑆𝑒𝑞
𝑃𝑎𝑟

Seq 1m:51s

2.27x

Par (-N4) 0m:49s

Future Work

There are several ways that our current implementation can be further improved:

● We can return early if any subproblem finishes without waiting for the rest since one

solution is all that is required.

● We could strengthen our searching algorithm by implementing more restrictive heuristics

to narrow down the possible sub-moves at each position.

● We can add a more robust testing architecture both for correctness and easy

comparisons for performance.

● The current lookahead strategy (the forward-thinking parent) does duplicate work

because the parent calculates the next move for the children only for the children to do

the same calculations so they could make their moves. This can be eliminated by the

parent passing the work it did to the children so they can use that instead.

● We can devise a more balanced strategy that calculates the children’s possibilities but

then splits the depth among the children weighted on how much they are expected to

need it

Resources

● Initial proposal:
http://www.cs.columbia.edu/~sedwards/classes/2021/4995-fall/proposals/ParallelFlow.pd
f

● Github: https://github.com/deji725/PFP-FlowSolver
● Test Cases from {https://github.com/mzucker/flow_solver/tree/master/puzzles}

http://www.cs.columbia.edu/~sedwards/classes/2021/4995-fall/proposals/ParallelFlow.pdf
http://www.cs.columbia.edu/~sedwards/classes/2021/4995-fall/proposals/ParallelFlow.pdf
https://github.com/deji725/PFP-FlowSolver
https://github.com/mzucker/flow_solver/tree/master/puzzles

1 Main.hs

module Main where

import Lib

import System.Environment(getArgs)

import System.Exit(die)

import qualified Data.Vector as V

import qualified Data.Map.Strict as M

import qualified Data.Set as S

main :: IO ()

main = do

args <- getArgs

(filename, parallelize, depth) <-

case args of

[fn, p] -> return (fn,p,10) -- default depth of 10

[fn, p, d] -> return (fn,p, read d :: Int)

_ -> die "Usage: flow-solver [filename] [par|seq]"

let solver = if parallelize == "par" then par_solver depth else seq_solver

contents <- readFile filename

let ls = lines contents

let matrix = V.fromList $ map V.fromList ls

let colors = S.delete '0' $ S.fromList $ concat ls

let ends = M.delete '0' $ getEnds matrix

let sol = solver matrix colors ends

case sol of

Nothing -> putStrLn "The board does not have a solution"

Just s -> putStrLn $ myShow s

1

2 Naive Parent Strategy

module Lib

where

import System.Environment(getArgs)

import System.Exit(die)

import Data.Maybe

import Data.List

import Data.Char(isUpper, toUpper)

import Data.Vector((!?),(!), (//))

import Control.Parallel.Strategies(using, parList, rseq)

import qualified Data.Vector as V

import qualified Data.Map.Strict as M

import qualified Data.Set as S

type Board = (V.Vector (V.Vector Char))

type Fronts = M.Map Char [Pos]

type Ends = Fronts

type Pos = (Int,Int)

myShow :: Board -> String

myShow board = concat $ intersperse "\n" $ V.toList $ V.map (V.toList) board

seq_solver :: Board -> S.Set Char -> M.Map Char [Pos] -> Maybe Board

seq_solver board colors ends = helper board ends

where

helper cur_board fronts

| isSolved cur_board colors ends = Just cur_board

| M.size nextMoves == 0 = Nothing

| length moves == 0 = helper (makeMove cur_board best_pos best_pos)

(M.delete best_char fronts)

| otherwise = case filter isJust sub_sols of

[] -> Nothing

(s:_) -> s

where

nextMoves = getNextMoves cur_board fronts

(best_pos@(i,j), moves) = getShortestMove nextMoves

best_char = cur_board ! i ! j

sub_problems = map (\nxt -> ((makeMove cur_board best_pos nxt),

(advanceFront fronts best_char

best_pos nxt))

) moves

sub_sols = map (\(nxt_move, nxt_fronts) ->

helper nxt_move nxt_fronts) sub_problems

2

par_solver :: Board -> S.Set Char -> M.Map Char [Pos] -> Maybe Board

par_solver board colors ends = helper board ends

where

helper cur_board fronts

| isSolved cur_board colors ends = Just cur_board

| M.size nextMoves == 0 = Nothing

| length moves == 0 = helper (makeMove cur_board best_pos best_pos)

(M.delete best_char fronts)

| otherwise = case filter isJust sub_sols of

[] -> Nothing

(s:_) -> s

where

nextMoves = getNextMoves cur_board fronts

(best_pos@(i,j), moves) = getShortestMove nextMoves

best_char = cur_board ! i ! j

sub_problems = map (\nxt -> ((makeMove cur_board best_pos nxt),

(advanceFront fronts best_char

best_pos nxt)))

moves

sub_sols = map (\(nxt_move, nxt_fronts) ->

helper nxt_move nxt_fronts)

sub_problems `using` parList rseq

advanceFront :: Fronts -> Char -> Pos -> Pos -> Fronts

advanceFront fronts c old new =

M.insert c (new:(filter ((/=) old) $ fronts M.! c)) fronts

makeMove :: Board -> Pos -> Pos -> Board

makeMove board (b1,b2) (a1,a2) = replaceBoard (b1,b2) tmp (toUpper cur_char)

where cur_char = board ! b1 ! b2

replaceBoard (i,j) brd value = brd // [(i, brd ! i // [(j, value)])]

tmp = replaceBoard (a1,a2) board cur_char

getShortestMove :: M.Map Pos [Pos] -> (Pos, [Pos])

getShortestMove all_moves =

M.foldlWithKey getMinMoves ((0,0), replicate 5 (-1,-1)) all_moves

where getMinMoves cur_min@(_, min_moves) cur_pos cur_moves =

if length min_moves > length cur_moves then (cur_pos, cur_moves)

else cur_min

-- Gets all the possible moves on the board

3

getNextMoves :: Board -> Fronts -> M.Map Pos [Pos]

getNextMoves board fronts =

M.foldl helper M.empty fronts

where getMoves (i,j) = map fst $ --getMoves :: Pos -> [(Pos,Char)]

filter (\(_, ch) -> (ch == '0' || ch == cur_char))

$ neighbors_idxs (i,j) board

where cur_char = board ! i ! j

helper m l = if all ((==) (head l)) l then M.insert (head l) [] m

else foldl (\m' pos -> M.insert pos (getMoves pos) m') m l

isSolved :: Board -> S.Set Char -> M.Map Char [Pos] -> Bool

isSolved board colors ends

| V.any (\v -> V.any (not . isUpper) v) board = False -- all places filled

| otherwise = all color_has_path colors

where color_has_path c = validPath board strt end

where (strt:end:_) = ends M.! c

getEnds :: Board -> M.Map Char [Pos]

getEnds board = foldl (helper) M.empty [0.. (V.length $ board)-1]

where helper boardMap i = foldl (helper2) boardMap

[0.. V.length (board ! i) - 1]

where helper2 m j =

if is_end then

M.insertWith (++) (board ! i ! j) [(i,j)] m

else

m

where

is_end = (length $ filter ((==) (board ! i !? j))

(neighbors (i,j) board)) <= 1

validPath :: Board -> Pos -> Pos -> Bool

validPath board (i,j) end = helper (fst $ head first_step) (i,j)

where

cur_char = board ! i ! j

first_step = filter (\(_,c) -> c == cur_char)

(neighbors_idxs (i,j) board)

helper cur_pos p

| cur_pos == end = True

| length nextStep /= 1 = False

| otherwise = helper (fst $ head nextStep) cur_pos

where nextStep =

filter (\(idx, c) -> (c == cur_char) && idx /= p)

(neighbors_idxs cur_pos board)

4

neighbors_idxs :: Pos -> Board -> [(Pos, Char)]

neighbors_idxs (i,j) board = map (\(p,m) -> (p, fromJust m)) $

filter (\a -> isJust (snd a)) tmp

where tmp = zip ([(i, j-1), (i-1, j), (i,j+1), (i+1,j)])

(neighbors (i,j) board)

-- returns the neigbors of the color at (i,j)

neighbors :: Pos -> Board -> [Maybe Char]

neighbors (i,j) board = [left, up, right, down]

where left = board ! i !? (j-1)

right = board ! i !? (j+1)

up = case board !? (i-1) of

Nothing -> Nothing

Just row -> row !? j

down = case board !? (i+1) of

Nothing -> Nothing

Just row -> row !? j

5

3 Strictly Fair Parent Strategy

module Lib where

import System.Environment(getArgs)

import System.Exit(die)

import Data.Maybe

import Data.List

import Data.Char(isUpper, toUpper)

import Data.Vector((!?),(!), (//))

import Control.Parallel.Strategies(using, parList, rseq)

import qualified Data.Vector as V

import qualified Data.Map.Strict as M

import qualified Data.Set as S

type Board = (V.Vector (V.Vector Char))

type Fronts = M.Map Char [Pos]

type Ends = Fronts

type Pos = (Int,Int)

myShow :: Board -> String

myShow board = concat $ intersperse "\n" $ V.toList $ V.map (V.toList) board

seq_solver :: Board -> S.Set Char -> M.Map Char [Pos] -> Maybe Board

seq_solver board colors ends = helper board ends

where

helper cur_board fronts

| isSolved cur_board colors ends = Just cur_board

| M.size nextMoves == 0 = Nothing

| length moves == 0 = helper (makeMove cur_board best_pos best_pos)

(M.delete best_char fronts)

| otherwise = case filter isJust sub_sols of

[] -> Nothing

(s:_) -> s

where

nextMoves = getNextMoves cur_board fronts

(best_pos@(i,j), moves) = getShortestMove nextMoves

best_char = cur_board ! i ! j

sub_problems = map (\nxt -> ((makeMove cur_board best_pos nxt),

(advanceFront fronts

best_char best_pos nxt))

) moves

sub_sols = map (\(nxt_move, nxt_fronts) ->

helper nxt_move nxt_fronts) sub_problems

par_solver :: Int -> Board -> S.Set Char -> M.Map Char [Pos] -> Maybe Board

6

par_solver depth board colors ends = helper board ends depth

where

helper cur_board fronts dpth

| isSolved cur_board colors ends = Just cur_board

| length sub_problems == 0 = Nothing

| length sub_problems == 1 = let (b,f) = head sub_problems

in helper b f dpth

| otherwise = case filter isJust sub_sols of

[] -> Nothing

(s:_) -> s

where

sub_problems = getSubProblems cur_board fronts

sub_sols =

if dpth > 0 then

map helper_recurse sub_problems `using` parList rseq

else

map helper_recurse sub_problems

helper_recurse (nxt_move,nxt_fronts) =

helper nxt_move nxt_fronts (dpth `quot` (length sub_problems))

-- maybe give back the length of all possible moves in the board if we make this

-- move

getSubSubProblemsSize :: [(Board, Fronts)] -> [Int]

getSubSubProblemsSize sub_problems =

map (\(b,f) -> foldl (\s l -> s + (length l)) 0 (getNextMoves b f))

sub_problems

-- map (\(b,f) -> length £ getSubProblems b f) sub_problems

getSubProblems :: Board -> Fronts -> [(Board, Fronts)]

getSubProblems board fronts

| length nextMoves == 0 = []

| length moves == 0 = [(makeMove board best_pos best_pos,

M.delete best_char fronts)]

| otherwise = map (\nxt -> ((makeMove board best_pos nxt),

(advanceFront fronts best_char best_pos nxt)))

moves

where nextMoves = getNextMoves board fronts

(best_pos@(i,j), moves) = getShortestMove nextMoves

best_char = board ! i ! j

advanceFront :: Fronts -> Char -> Pos -> Pos -> Fronts

advanceFront fronts c old new =

M.insert c (new:(filter ((/=) old) $ fronts M.! c)) fronts

7

makeMove :: Board -> Pos -> Pos -> Board

makeMove board (b1,b2) (a1,a2) = replaceBoard (b1,b2) tmp (toUpper cur_char)

where cur_char = board ! b1 ! b2

replaceBoard (i,j) brd value = brd // [(i, brd ! i // [(j, value)])]

tmp = replaceBoard (a1,a2) board cur_char

getShortestMove :: M.Map Pos [Pos] -> (Pos, [Pos])

getShortestMove all_moves =

M.foldlWithKey getMinMoves ((0,0), replicate 5 (-1,-1)) all_moves

where getMinMoves cur_min@(_, min_moves) cur_pos cur_moves =

if length min_moves > length cur_moves then (cur_pos, cur_moves)

else cur_min

-- Gets all the possible moves on the board

getNextMoves :: Board -> Fronts -> M.Map Pos [Pos]

getNextMoves board fronts =

M.foldl helper M.empty fronts

where getMoves (i,j) = map fst $ --getMoves :: Pos -> [(Pos,Char)]

filter (\(_, ch) -> (ch == '0' || ch == cur_char))

$ neighbors_idxs (i,j) board

where cur_char = board ! i ! j

helper m l = if all ((==) (head l)) l then M.insert (head l) [] m

else foldl (\m' pos -> M.insert pos (getMoves pos) m') m l

isSolved :: Board -> S.Set Char -> M.Map Char [Pos] -> Bool

isSolved board colors ends

| V.any (\v -> V.any (not . isUpper) v) board = False -- all places filled

| otherwise = all color_has_path colors

where color_has_path c = validPath board strt end

where (strt:end:_) = ends M.! c

getEnds :: Board -> M.Map Char [Pos]

getEnds board = foldl (helper) M.empty [0.. (V.length $ board)-1]

where helper boardMap i = foldl (helper2) boardMap

[0.. V.length (board ! i) - 1]

where helper2 m j =

if is_end then

M.insertWith (++) (board ! i ! j) [(i,j)] m

else

m

where

is_end = (length $ filter ((==) (board ! i !? j))

(neighbors (i,j) board)) <= 1

8

validPath :: Board -> Pos -> Pos -> Bool

validPath board (i,j) end = helper (fst $ head first_step) (i,j)

where

cur_char = board ! i ! j

first_step = filter (\(_,c) -> c == cur_char)

(neighbors_idxs (i,j) board)

helper cur_pos p

| cur_pos == end = True

| length nextStep /= 1 = False

| otherwise = helper (fst $ head nextStep) cur_pos

where nextStep =

filter (\(idx, c) -> (c == cur_char) && idx /= p)

(neighbors_idxs cur_pos board)

neighbors_idxs :: Pos -> Board -> [(Pos, Char)]

neighbors_idxs (i,j) board = map (\(p,m) -> (p, fromJust m)) $

filter (\a -> isJust (snd a)) tmp

where tmp =

zip ([(i, j-1), (i-1, j), (i,j+1), (i+1,j)]) (neighbors (i,j) board)

-- returns the neigbors of the color at (i,j)

neighbors :: Pos -> Board -> [Maybe Char]

neighbors (i,j) board = [left, up, right, down]

where left = board ! i !? (j-1)

right = board ! i !? (j+1)

up = case board !? (i-1) of

Nothing -> Nothing

Just row -> row !? j

down = case board !? (i+1) of

Nothing -> Nothing

Just row -> row !? j

9

4 Forward Think Parent Strategy

module Lib where

import System.Environment(getArgs)

import System.Exit(die)

import Data.Maybe

import Data.List

import Data.Char(isUpper, toUpper)

import Data.Vector((!?),(!), (//))

import Control.Parallel.Strategies(using, parListNth, rseq)

import Data.Function(on)

import qualified Data.Vector as V

import qualified Data.Map.Strict as M

import qualified Data.Set as S

type Board = (V.Vector (V.Vector Char))

type Fronts = M.Map Char [Pos]

type Ends = Fronts

type Pos = (Int,Int)

myShow :: Board -> String

myShow board = concat $ intersperse "\n" $ V.toList $ V.map (V.toList) board

seq_solver :: Board -> S.Set Char -> M.Map Char [Pos] -> Maybe Board

seq_solver board colors ends = helper board ends

where

helper cur_board fronts

| isSolved cur_board colors ends = Just cur_board

| M.size nextMoves == 0 = Nothing

| length moves == 0 = helper (makeMove cur_board best_pos best_pos)

(M.delete best_char fronts)

| otherwise = case filter isJust sub_sols of

[] -> Nothing

(s:_) -> s

where

nextMoves = getNextMoves cur_board fronts

(best_pos@(i,j), moves) = getShortestMove nextMoves

best_char = cur_board ! i ! j

sub_problems = map (\nxt -> ((makeMove cur_board best_pos nxt),

(advanceFront fronts best_char

best_pos nxt))

) moves

sub_sols = map (\(nxt_move, nxt_fronts) ->

helper nxt_move nxt_fronts) sub_problems

10

par_solver :: Int -> Board -> S.Set Char -> M.Map Char [Pos] -> Maybe Board

par_solver depth board colors ends = helper board ends depth

where

helper cur_board fronts dpth

| isSolved cur_board colors ends = Just cur_board

| length sub_problems == 0 = Nothing

| length sub_problems == 1 = let (b,f) = head sub_problems

in helper b f dpth

| otherwise = case filter isJust sub_sols of

[] -> Nothing

(s:_) -> s

where

sub_problems = getSubProblems cur_board fronts

subSubProblemsSizes = getSubSubProblemsSize sub_problems

-- numOfChildren :: [((Board,Front), Int, n)]

numOfChildren = sortBy (compare `on` (\(_,a,_)->a)) $

zip3 sub_problems subSubProblemsSizes [1..]

sub_sols =

if dpth > 0 then

map helper_recurse numOfChildren

`using` parListNth ((length numOfChildren) - 1) rseq

else

map helper_recurse numOfChildren

helper_recurse ((nxt_move,nxt_fronts),_,n) = helper nxt_move

nxt_fronts

(if n == length numOfChildren then dpth-1 else 0)

-- maybe give back the length of all possible moves in the board if we make this

-- move

getSubSubProblemsSize :: [(Board, Fronts)] -> [Int]

getSubSubProblemsSize sub_problems =

map (\(b,f) -> foldl (\s l -> s + (length l)) 0 (getNextMoves b f))

sub_problems

-- map (\(b,f) -> length £ getSubProblems b f) sub_problems

getSubProblems :: Board -> Fronts -> [(Board, Fronts)]

getSubProblems board fronts

| length nextMoves == 0 = []

| length moves == 0 = [(makeMove board best_pos best_pos,

M.delete best_char fronts)]

| otherwise = map (\nxt -> ((makeMove board best_pos nxt),

(advanceFront fronts best_char best_pos nxt)))

moves

where nextMoves = getNextMoves board fronts

(best_pos@(i,j), moves) = getShortestMove nextMoves

11

best_char = board ! i ! j

advanceFront :: Fronts -> Char -> Pos -> Pos -> Fronts

advanceFront fronts c old new =

M.insert c (new:(filter ((/=) old) $ fronts M.! c)) fronts

makeMove :: Board -> Pos -> Pos -> Board

makeMove board (b1,b2) (a1,a2) = replaceBoard (b1,b2) tmp (toUpper cur_char)

where cur_char = board ! b1 ! b2

replaceBoard (i,j) brd value = brd // [(i, brd ! i // [(j, value)])]

tmp = replaceBoard (a1,a2) board cur_char

getShortestMove :: M.Map Pos [Pos] -> (Pos, [Pos])

getShortestMove all_moves =

M.foldlWithKey getMinMoves ((0,0), replicate 5 (-1,-1)) all_moves

where getMinMoves cur_min@(_, min_moves) cur_pos cur_moves =

if length min_moves > length cur_moves then (cur_pos, cur_moves)

else cur_min

-- Gets all the possible moves on the board

getNextMoves :: Board -> Fronts -> M.Map Pos [Pos]

getNextMoves board fronts =

M.foldl helper M.empty fronts

where getMoves (i,j) = map fst $ --getMoves :: Pos -> [(Pos,Char)]

filter (\(_, ch) -> (ch == '0' || ch == cur_char))

$ neighbors_idxs (i,j) board

where cur_char = board ! i ! j

helper m l = if all ((==) (head l)) l then M.insert (head l) [] m

else foldl (\m' pos -> M.insert pos (getMoves pos) m') m l

isSolved :: Board -> S.Set Char -> M.Map Char [Pos] -> Bool

isSolved board colors ends

| V.any (\v -> V.any (not . isUpper) v) board = False -- all places filled

| otherwise = all color_has_path colors

where color_has_path c = validPath board strt end

where (strt:end:_) = ends M.! c

getEnds :: Board -> M.Map Char [Pos]

getEnds board = foldl (helper) M.empty [0.. (V.length $ board)-1]

where helper boardMap i = foldl (helper2) boardMap

[0.. V.length (board ! i) - 1]

where helper2 m j =

if is_end then

12

M.insertWith (++) (board ! i ! j) [(i,j)] m

else

m

where

is_end = (length $ filter ((==) (board ! i !? j))

(neighbors (i,j) board)) <= 1

validPath :: Board -> Pos -> Pos -> Bool

validPath board (i,j) end = helper (fst $ head first_step) (i,j)

where

cur_char = board ! i ! j

first_step = filter (\(_,c) -> c == cur_char)

(neighbors_idxs (i,j) board)

helper cur_pos p

| cur_pos == end = True

| length nextStep /= 1 = False

| otherwise = helper (fst $ head nextStep) cur_pos

where nextStep =

filter (\(idx, c) -> (c == cur_char) && idx /= p)

(neighbors_idxs cur_pos board)

neighbors_idxs :: Pos -> Board -> [(Pos, Char)]

neighbors_idxs (i,j) board = map (\(p,m) -> (p, fromJust m)) $

filter (\a -> isJust (snd a)) tmp

where tmp = zip ([(i, j-1), (i-1, j), (i,j+1), (i+1,j)])

(neighbors (i,j) board)

-- returns the neigbors of the color at (i,j)

neighbors :: Pos -> Board -> [Maybe Char]

neighbors (i,j) board = [left, up, right, down]

where left = board ! i !? (j-1)

right = board ! i !? (j+1)

up = case board !? (i-1) of

Nothing -> Nothing

Just row -> row !? j

down = case board !? (i+1) of

Nothing -> Nothing

Just row -> row !? j

13

	oko2107 and km3533 PFP report without code
	4995-code

