
StringMatch: Parallel Rabin-Karp Algorithm for Exact String
Matching

Project Report - COMS 4995 Parallel Functional Programming

Eumin Hong (eh2890@columbia.edu) Chris Yoon (cjy2129@columbia.edu)

ABSTRACT
This report presents a parallel Rabin-Karp algorithm implemented
in Haskell for the exact string matching problem. We provide mul-
tiple versions for single-pattern matching, and evaluate each im-
plementation’s performance on the DNA exact substring matching
problem on a reference human genome.

1 INTRODUCTION
String matching algorithms locate occurrences of a specific pattern
within a larger string or text file. The exact string matching problem
is an extensively studied problem in computer science, finding
applications in numerous areas such as bioinformatics, network
security, database systems, and document matching.

We focus on the exact string matching problem (as opposed to
approximate); locating exact matches of a search pattern within
a larger text file. In particular, we study the parallelization of the
Rabin-Karp algorithm [4], a popular string matching algorithm that
finds exact matches in 𝑂 (𝑛) expected runtime.

2 BACKGROUND
2.1 Naive String Matching Algorithm
To understand the underlying reason of the expected linear runtime
of the Rabin-Karp algorithm, we first note the naive (brute-force)
string matching algorithm.

An intuitive brute-force method is as followed: Let 𝑤 be the
search space string where |𝑤 | = 𝑛 and 𝑝 be the desired pattern
string where |𝑝 | = 𝑘 . Then for each substring 𝑠 ∈ 𝑤 where |𝑠 | =𝑚,
check if 𝑠 = 𝑝 character-wise. If the substring and desired pattern
match, then record the position of the substring. Once all substrings
of length𝑚 in𝑤 are considered, return all the recorded positions.

While seemingly efficient, this algorithm has the worst-case
running time of𝑂 (𝑛𝑘) as there are𝑂 (𝑛) substrings to consider and
the naive method of checking if two strings 𝑠 and 𝑝 are equal takes
𝑂 (𝑘) time.

2.2 The Rabin-Karp Algorithm
We now discuss the Rabin-Karp Algorithm in more detail. Suppose
we seek to find matches of a pattern 𝑝 of length 𝑘 in a larger text.
The algorithm uses a hash function to perform a initial comparison
of strings. Since a substring does not match the pattern if their hash
values disagree, comparing the hash values, an 𝑂 (1) operation,
allows avoid the 𝑂 (𝑘) time character-wise string comparison for
such obvious non-matches.

As such, the core of the algorithm is the efficient computation
of the hash values of each successive substrings. In particular, the

COMS 4995: Parallel Functional Programming,
2021.

hash function for an encoded string 𝑠 = 𝑠0 · · · 𝑠𝑘−1 of length 𝑘 is
given by the Rabin fingerprint, given by the polynomial function

𝑅𝐹 (𝑠) = 𝑠0𝑏
𝑘−1 + 𝑠1𝑏𝑘−2 + · · · + 𝑠𝑘−1

where 𝑏 is usually a prime, and all arithmetic is done in modulo 𝑞
for some large prime 𝑞. Instead of computing the polynomial for
every successive substring, Rabin-Karp computes the hash value
in a sliding-window fashion, where given 𝑅𝐹 (𝑠), we can compute
the hash value of the next substring 𝑅𝐹 (𝑠 ′ = 𝑠1 · · · 𝑠𝑘) using only
constant number of operations, via

𝑅𝐹 (𝑠 ′) =
(
𝑅𝐹 (𝑠) − 𝑠0 · 𝑏𝑘−1

)
· 𝑏 + 𝑠𝑘

In particular, after the hash value computation of the very first
substring, every successive computation will take𝑂 (1) time. Using
this rolling hash scheme, the Rabin-Karp algorithm can be outlined
as followed:

Algorithm 1 (Sequential) Rabin-Karp Algorithm

1: Input: Pattern 𝑝 (|𝑝 | = 𝑘) and string 𝑆 (|𝑆 | = 𝑁) to be searched.
2: Initialize: empty list 𝐿 to store indices of matches
3: Compute hash value ℎ𝑝 of pattern 𝑝

4: for 𝑖 = 0 . . . , 𝑁 − 1 − 𝑘 do
5: Compute hash value of substring ℎ𝑠 = 𝑅𝐹 (𝑠 = 𝑠𝑖 · · · 𝑠𝑖+𝑘−1)
6: if ℎ𝑠 = ℎ𝑝 then
7: if 𝑠 = 𝑝 character-wise then
8: add 𝑖 to output list 𝐿.
9: Output 𝐿

Since we only need to compare the hash values to rule out obvious
non-matches, this scheme significantly cuts down the text com-
parisons the algorithm must perform. Consequently, although the
worst-case runtime is still 𝑂 (𝑛𝑘), a good hash function (one that is
unlikely to produce false positives) reduces the expected runtime
to 𝑂 (𝑛).

3 PARALLELIZATION
Consider contiguous partitions 𝑃1, . . . , 𝑃𝑛 of the input text in which
the input pattern to be searched. Clearly, each partition can be
thought of as an independent string. In that sense, the rolling hash
computation on a partition is not dependent on that of any other
partition. This gives a natural way of parallelizing the Rabin-Karp
algorithm, where the rolling hash computation on every partition
can be done in parallel.

However, one issue we must resolve is that such naive partition-
ing excludes instances of the pattern string that cross the border
between two partitions; for instance, the window (of length 𝑘 = |𝑝 |)
starting at the last character of a partition will not have its hash
value computed. To remedy this, we extend each partition to have

1

COMS 4995: Parallel Functional Programming, Eumin Hong (eh2890@columbia.edu) Chris Yoon (cjy2129@columbia.edu)

access to the first 𝑘 − 1 characters of the next partition (hence
allowing the partitions to overlap).

Figure 1: Overlapping partitions

Using this partitioning scheme, we can perform a full search of
the input text in parallel, by chunks. We defer the actual Haskell
implementation of this scheme to section 4.2.

4 HASKELL IMPLEMENTATION
4.1 Sequential Algorithm Implementation
Our base (sequential) implementation for the Rabin-Karp algorithm
follows the pseudocode in Algortihm 1, but with a slight modifi-
cation to simplify the code logic: as we perform the rolling hash,
we first collect all substrings whose hash value matches that of the
pattern before comparing them character-wise with the pattern.
We then identify exact matches after all hash-value matches are
collected. We made this choice since a good enough hash function
would theoretically make the memory overhead associated with
storing the matches negligible.

To that end, we first implemented the function rabinKarpRoll,
which performs a rolling-hash on the input text and outputs a list
of all substrings with there indices whose hash value matches that
of the pattern:

Then, we implement the function rabinKarpMatch to identify exact
matches in the collected substrings,

and used the two functions the to implement the full rabinKarp
function:

4.2 Parallel Algorithm Implementation
As described in section 3, our approach for parallelization relies on
efficiently reading partitions of the input text. Inspired by the Hip-
gRap project [3] from PFP 2019, we also use the POSIX way of file
reading in Haskell. In particular, we use the fdPread function from
System.Posix.IO.ByteString.Lazy which calls the pread function
in the C programming language via foreign import ccall safe [5];
it takes the number of bytes to read and the offset from the start of
the string. Using this functionality and its laziness, we were able to
partition and read from the input text at different locations without
having to read the entire file:

With this function, we load 𝑃 partitions of the input text to a list,
and map a curried rabinKarp function on each partition. Naturally,
use the parList strategy with rdeepseq to completely evaluate the
list of rabinKarp tasks in parallel. After all results are evaluated,
we perform necessary post-processing (such as offset correction
for each partition) and return the indices of exact-matches. This
parallelization is implemented as followed:

5 EVALUATION
5.1 Benchmark Set
As written earlier, the various implementations of the Rabin-Karp
exact string matching algorithm were tested on the human refer-
ence genome in FASTA format [1], which is roughly 3.1 GB of the
four base pairs: “A”, “T”, “C”, and “G” along with “N”, which is a
placeholder for an unknown base pair. The specific pattern searched
for while testing was the sequence “CTAGATTTGAT”.

2

StringMatch: Parallel Rabin-Karp Algorithm for Exact String Matching COMS 4995: Parallel Functional Programming,

1 2 3 4 5 6 7 8
0

100
200
300
400
500
600
700
800
900

1,000
1,100
1,200

Cores

Ru
nt
im

e
(s
)

𝑃 = 𝑁

𝑃 = 2𝑁
𝑃 = 3𝑁
𝑃 = 4𝑁

Figure 2: Runtime evaluations for various different runs.

Cores 2 3 4 5 6 7 8
Speedup 1.37 1.67 1.85 2.08 2.33 2.30 2.22

Figure 3: Average speedup for 𝑁 cores relative to 𝑁 = 1.

5.2 Results
All results in this paper were obtained using a 2021 MacBook Pro
with a Apple M1 Max chip and 10 cores (8 performance and 2
efficiency), but only up to 8 cores were used during testing. The
runtime of each instance (an implementation with a specific number
of cores 𝑁 and number of partitions 𝑃) was measured by taking the
minimum runtime from three iterations, as the lowest value better
approximates the fastest possible runtime for the given instance [2].
For parRabinKarpN, with 𝑁 threads, 𝑃 ∈ {𝑁, 2𝑁, 3𝑁, 4𝑁 } partitions
of the search string were tested.

As the number of threads increases from 𝑁 = 1 → 𝑁 = 2, the
performance significantly increases (a speed up of 1.37 times on
average). However, as the number of cores increases, the speedup
does not increase as much, as adding another core results in dimin-
ishing returns in speedup. Figure 3 contains the average speedups
for 𝑁 cores, and the best-case speedup is observed when 𝑁 = 6 for
a speedup of 2.33 times. Furthermore, there seems to be no statisti-
cally significant difference between the number of partitions.

The threadscope analysis in Figure 4 of running parRabinKarpN

with 𝑁 = 8 and 𝑃 = 24 partitions indicates that the workload is
evenly distributed amongst the four cores.

For the parallel Rabin-Karp Haskell implementation proposed,
each spark, which represents a partition of the original search
string, is deeply evaluated using rdeepseq. As a result, most sparks
are converted, as seen in Figure 5.

5.3 Amdahl’s Law
Amdahl’s law is used to measure the theoretical maximum amount
of speedup achievable through parallelism. To do this, the paral-
lelizable fraction of the task from the equation 𝑆 = 1

(1−𝑃)+ 𝑃
𝑁

was

Figure 4: Threadscope analysis of the parallel algorithmwith
𝑁 = 8 threads and 𝑃 = 24 partitions.

Total Converted Overflowed Dud GC’d Fizzled
24 23 0 0 0 1

Figure 5: Spark results for the parallel algorithm with 𝑁 = 8
threads and 𝑃 = 24 partitions.

empircally determined to be approximately 0.62. Therefore, the
theoretical maximum speedup was found to be lim𝑁→∞ 𝑆 = 2.63
times.

6 CONCLUSION
We implemented both sequential and parallel versions of the Rabin-
Karp algorithm inHaskell for the exact stringmatching problem.We
evaluated our implementation on DNA substring matching, finding
a 10-character long pattern in a human reference genome FASTA
file of 3.1 GB. While Amdahl’s law reveals a theoretical maximum
speedup of 2.63 times, with 𝑁 = 6 cores, our implementation was
able achieve a speedup of 2.33 times.

We include the source code of our project in the appendix below.
We include detailed instructions on how to run the program with
sample data in the README.md file of our code submission. While
we have also implemented the Rabin-Karp algorithm for (fixed-
length) multiple-pattern matching, we have focused on single pat-
tern matching for this report. Future work may include rigorously
investigating and optimizing process utilization of our program.
Moreover, we may also explore approximate matching or matching
with wild-cards.

REFERENCES
[1] 1000GenomesProject. 2008. “Humanreferencegenome”. ftp://ftp-trace.ncbi.nih.

gov/1000genomes/ftp/technical/reference/humang1kv37.fasta.gz
[2] Wonhyuk Choi and Andrew de Soler. 2020. SAT: Parallel SAT Solver with DPLL -

Report. http://www.cs.columbia.edu/~sedwards/classes/2020/4995-fall/reports/
SAT.pdf

[3] Bicheng Gao and Gangwei Lin. 2019. HipgRap - Report. http://www.cs.columbia.
edu/~sedwards/classes/2019/4995-fall/reports/HipgRap.pdf

[4] Richard M. Karp and Michael O. Rabin. 1987. Efficient randomized pattern-
matching algorithms.

[5] Wren G. Romano. 2010. System.Posix.IO.ByteString. https://hackage.haskell.org/
package/unix-bytestring-0.3.7.6/docs/System-Posix-IO-ByteString.html#g:2

3

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/ reference/human g1k v37.fasta.gz
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/ reference/human g1k v37.fasta.gz
http://www.cs.columbia.edu/~sedwards/classes/2020/4995-fall/reports/SAT.pdf
http://www.cs.columbia.edu/~sedwards/classes/2020/4995-fall/reports/SAT.pdf
http://www.cs.columbia.edu/~sedwards/classes/2019/4995-fall/reports/HipgRap.pdf
http://www.cs.columbia.edu/~sedwards/classes/2019/4995-fall/reports/HipgRap.pdf
https://hackage.haskell.org/package/unix-bytestring-0.3.7.6/docs/System-Posix-IO-ByteString.html#g:2
https://hackage.haskell.org/package/unix-bytestring-0.3.7.6/docs/System-Posix-IO-ByteString.html#g:2

COMS 4995: Parallel Functional Programming, Eumin Hong (eh2890@columbia.edu) Chris Yoon (cjy2129@columbia.edu)

CODE LISTING
We give a brief overview of the project source code structure:

• StringMatch/RabinKarp.hs: Contains the base (sequential) Rabin-Karp algorithm detailed in section 4.1.
• StringMatch/Parallel.hs: Contains the parallelization of the implemented rabinKarp function, as detailed in section 4.2.
• StringMatch/FileReader.hs: Implements readPartition, which allows to lazy (hence efficient) reading of partitions of an input text.
• StringMatch/Match.hs: Contains high-level functions that users would use.
• app/Main.hs: Main file for running StringMatch.

We also provide example usages to illustrate how to run the program. The general usage is:
stack run ["pf"] [pattern or path_to_pattern] [path_to_search_space_text] [num_partitions]

a) To run a sequential StringMatch where the pattern is given as a string, do
stack run pattern path_to_text

b) To run a parallel StringMatch where the pattern is given as a string, do
stack run p pattern path_to_text num_partitions

c) To run a sequential StringMatch where the pattern is in a file, do
stack run f path_to_pattern path_to_text

d) To run a sequential StringMatch where the pattern is in a file, do
stack run pf path_to_pattern path_to_text num_partitions

For more detailed instruction on how to use the code with a sample data included in the code submission, please read the README.md file in
the submission.
All code is available on GitHub: https://github.com/cyoon1729/StringMatch.

StringMatch/RabinKarp.hs

1 {-
2 - Implements the Rabin-Karp algorithm for single and multiple
3 pattern matching
4 -}
5 module StringMatch.RabinKarp
6 (
7 rabinKarp
8 , rabinKarpMulti
9) where
10

11

12 import qualified Data.Char as DC
13 import qualified Data.List as DL
14 import qualified Data.Set as DS
15 import qualified Data.Map as DM
16 import qualified Data.Bits as DB
17

18

19 type HashValue = Int
20

21

22 -- | Modular exponentiation, taken from https://gist.github.com/trevordixon/6788535
23 modExp :: Int -> Int -> Int -> Int
24 modExp b 0 m = 1
25 modExp b e m = t * modExp ((b * b) `mod` m) (DB.shiftR e 1) m `mod` m
26 where
27 t = if DB.testBit e 0 then b `mod` m else 1
28

29

30 -- | polynomial hash for rabin-karp hashing pattern
31 polyHash :: Int -> Int -> String -> HashValue
32 polyHash b m str = foldl (\acc c -> polyMod c acc) 0 str
33 where
34 polyMod c acc = modM $ (DC.ord c) + modM (acc * b)

4

https://github.com/cyoon1729/StringMatch

StringMatch: Parallel Rabin-Karp Algorithm for Exact String Matching COMS 4995: Parallel Functional Programming,

35 modM val = val `mod` m
36

37

38 {- Modules for single-pattern Rabin-Karp String Matching -}
39

40 -- | Internal Rabin-Karp rolling hash function helper that discards non-matches.
41 rabinKarpRoll :: String -> HashValue -> Int -> [(Int, String)]
42 rabinKarpRoll text targetHash ws = roll text "" 0 0
43 where
44 roll [] subStr hashC idx
45 | targetHash == hashC = [(idx, subStr)]
46 | otherwise = []
47 roll (x:xs) subStr hashC idx
48 | isShorter = roll xs (subStr ++ [x]) hashC' idx
49 | isMatch = (idx, subStr) : roll xs (ss ++ [x]) hashR (idx + 1)
50 | otherwise = roll xs (ss ++ [x]) hashR (idx + 1)
51 where
52 isShorter = length subStr < ws
53 isMatch = length subStr == ws && targetHash == hashC
54 hashC' = modM $ ex + modM (hashC * b)
55 hashR = modM $ ex + modM ((hashC - es * (modExp b (ws - 1) m)) * b)
56 modM val = val `mod` m
57 (s:ss) = subStr
58 (ex, es) = (DC.ord x, DC.ord s)
59 (b, m) = (31, 100003)
60

61

62 -- | Outputs indices that match pattern.
63 rabinKarpMatch :: String -> [(Int, String)]-> [Int]
64 rabinKarpMatch pattern candidates = DL.map (\(idx, _) -> idx) matches
65 where
66 matches = DL.filter (\(_, str) -> str == pattern) candidates
67

68

69 -- | Rabin-Karp with decoupled candidate selection and matching.
70 rabinKarp :: String -> String -> [Int]
71 rabinKarp pattern text = rabinKarpMatch pattern candidates
72 where
73 candidates = rabinKarpRoll text patternHash patternLength
74 patternHash = polyHash 31 100003 pattern
75 patternLength = length pattern
76

77

78 {- Modules for multi-pattern Rabin-Karp string matching -}
79

80 -- | Internal Rabin-Karp rolling hash function helper that discards non-matches.
81 rabinKarpRollMulti :: String -> DS.Set HashValue -> Int -> [(Int, String)]
82 rabinKarpRollMulti text targets ws = roll text "" 0 0
83 where
84 roll [] subStr hashC idx
85 | DS.member hashC targets = [(idx, subStr)]
86 | otherwise = []
87 roll (x:xs) subStr hashC idx
88 | length subStr < ws = roll xs (subStr ++ [x]) hashC' idx
89 | isMatch = (idx, subStr) : roll xs (ss ++ [x]) hashR (idx + 1)
90 | otherwise = roll xs (ss ++ [x]) hashR (idx + 1)
91 where
92 isMatch = length subStr == ws && DS.member hashC targets
93 hashC' = modM $ ex + modM (hashC * b)
94 hashR = modM $ ex + modM ((hashC - es * (mExp b (ws - 1))) * b)
95 modM val = val `mod` m
96 mExp p q = modExp p q m

5

COMS 4995: Parallel Functional Programming, Eumin Hong (eh2890@columbia.edu) Chris Yoon (cjy2129@columbia.edu)

97 (s:ss) = subStr
98 (ex, es) = (DC.ord x, DC.ord s)
99 (b, m) = (31, 100003)
100

101

102 -- | Outputs indices that match patterns.
103 rabinKarpMatchMulti :: DS.Set String -> [(Int, String)] -> [(String, [Int])]
104 rabinKarpMatchMulti patterns candidates = sortIdxs matches
105 where
106 sortIdxs = DL.map (\(patt, idxs) -> (patt, DL.sort idxs))
107 matches = DL.filter (\(a, _) -> DS.member a patterns) candidateIdxs
108 candidateIdxs = DM.toList $ DM.fromListWith (++) flipPadded
109 flipPadded = DL.map (\(idx, str) -> (str, [idx])) candidates
110

111

112 -- | Performs fixed-length multi-pattern rabin-karp matching.
113 rabinKarpMulti :: [String] -> String -> [(String, [Int])]
114 rabinKarpMulti patterns text = rabinKarpMatchMulti patternSet candidates
115 where
116 patternSet = DS.fromList patterns
117 candidates = rabinKarpRollMulti text patternHashes patternLength
118 patternHashes = DS.fromList $ DL.map (polyHash 31 100003) patterns
119 patternLength = length (head patterns)

StringMatch/Parallel.hs

1 {-
2 - Implements parallelization of the Rabin-Karp algorithm
3 -}
4 module StringMatch.Parallel
5 (
6 parRabinKarpN
7) where
8

9 import qualified Data.ByteString.Lazy.Char8 as DBL
10 import Control.Parallel.Strategies (using, parList, runEval, rseq, rdeepseq)
11 import Control.DeepSeq
12

13 import StringMatch.RabinKarp (rabinKarp)
14 import StringMatch.FileReader (getFileSize, readPartition)
15

16

17 -- | Run Rabin Karp in parallel, splitting text into n partitions.
18 parRabinKarpN :: String -> String -> Int -> IO [Int]
19 parRabinKarpN pattern filePath n = do
20 fileSize <- getFileSize filePath
21 partitions <- mapM (readPartition filePath n (length pattern)) [0..(n-1)]
22 let partsB = map DBL.unpack partitions
23 matches = runEval $ do
24 let ms = (map (rabinKarp pattern) partsB) `using` parList rdeepseq
25 return ms
26 let indicesByPart = zip [0..(n-1)] $ map (map fromIntegral) matches
27 partSize = (fromIntegral fileSize) `div` n
28 applyOffset (np, idcs) = map (np * partSize +) idcs
29 offsetCorrected = map applyOffset indicesByPart
30 return $ concat offsetCorrected

StringMatch/Match.hs

6

StringMatch: Parallel Rabin-Karp Algorithm for Exact String Matching COMS 4995: Parallel Functional Programming,

1 {-
2 - Implements utilities to parse program arguments and
3 perform match
4 -}
5 module StringMatch.Match
6 (
7 doMatch
8) where
9

10

11 import System.IO
12 import StringMatch.Parallel (parRabinKarpN)
13 import StringMatch.RabinKarp (rabinKarp)
14

15

16 usage :: [String]
17 usage = [
18 "Usage:"
19 , "- To match non-parallel, where input pattern is given as string:"
20 , " stack run pattern path_to_text"
21 , "- To match parallel, where input pattern is given as a string:"
22 , " stack run p pattern path_to_text num_partitions"
23 , "- To match non-parallel, where input pattern is given as a file path:"
24 , " stack run f path_to_pattern path_to_text"
25 , "- To match parallel, where input pattern is given as a file path:"
26 , " stack run pf path_to_pattern path_to_text"
27]
28

29 foundPattern :: String -> String
30 foundPattern pattern = "Found \"" ++ pattern ++ "\" in locations:"
31

32

33 -- | Match in sequential, where pattern is given as a string
34 matchStr :: String -> String -> IO [Int]
35 matchStr pattern filePath = do
36 text <- readFile filePath
37 return $ rabinKarp pattern text
38

39

40 -- | Match in parallel, where pattern in given as a string
41 matchStrPar :: String -> String -> Int -> IO [Int]
42 matchStrPar pattern filePath numPartitions = do
43 matches <- parRabinKarpN pattern filePath numPartitions
44 return matches
45

46

47 -- | Match in sequential, where pattern is given as a file
48 matchFile :: String -> String -> IO [Int]
49 matchFile patternPath filePath = do
50 text <- readFile filePath
51 patternRaw <- readFile patternPath
52 let pattern = filter (/='\n') patternRaw
53 return $ rabinKarp pattern text
54

55

56 -- | Match in parallel, where pattern is given as a file
57 matchFilePar :: String -> String -> Int -> IO [Int]
58 matchFilePar patternPath filePath numPartitions = do
59 text <- readFile filePath
60 patternRaw <- readFile patternPath
61 let pattern = filter (/='\n') patternRaw
62 matches <- parRabinKarpN pattern filePath numPartitions

7

COMS 4995: Parallel Functional Programming, Eumin Hong (eh2890@columbia.edu) Chris Yoon (cjy2129@columbia.edu)

63 return matches
64

65

66 -- | Parse program arguments and perform specified match
67 doMatch :: [String] -> IO [()]
68 doMatch args = do
69 case args of
70 [pattern, fPath] -> do
71 matches <- matchStr pattern fPath
72 putStrLn $ foundPattern pattern
73 mapM putStrLn $ map show matches
74 ["p", pattern, filePath, numPartitions] -> do
75 let numParts = read numPartitions :: Int
76 matches <- matchStrPar pattern filePath numParts
77 putStrLn $ foundPattern pattern
78 mapM putStrLn $ map show matches
79 ["f", pattPath, filePath] -> do
80 patternRaw <- readFile pattPath
81 let pattern = filter (/='\n') patternRaw
82 matches <- matchFile pattPath filePath
83 putStrLn $ foundPattern pattern
84 mapM putStrLn $ map show matches
85 ["pf", pattPath, filePath, numPartitions] -> do
86 patternRaw <- readFile pattPath
87 let pattern = filter (/='\n') patternRaw
88 numParts = read numPartitions :: Int
89 matches <- matchFilePar pattPath filePath numParts
90 putStrLn $ foundPattern pattern
91 mapM putStrLn $ map show matches
92 _ -> do
93 mapM putStrLn usage

app/Main.hs

1 module Main where
2

3 import System.IO
4 import System.Environment (getArgs)
5 import Lib (doMatch)
6

7

8 main :: IO [()]
9 main = do
10 args <- getArgs
11 doMatch args

8

	Abstract
	1 Introduction
	2 Background
	2.1 Naive String Matching Algorithm
	2.2 The Rabin-Karp Algorithm

	3 Parallelization
	4 Haskell Implementation
	4.1 Sequential Algorithm Implementation
	4.2 Parallel Algorithm Implementation

	5 Evaluation
	5.1 Benchmark Set
	5.2 Results
	5.3 Amdahl's Law

	6 Conclusion
	References

