StringMatch: Parallel Rabin-Karp Algorithm for Exact String
Matching

Project Report - COMS 4995 Parallel Functional Programming

Eumin Hong (eh2890@columbia.edu)
ABSTRACT

This report presents a parallel Rabin-Karp algorithm implemented
in Haskell for the exact string matching problem. We provide mul-
tiple versions for single-pattern matching, and evaluate each im-
plementation’s performance on the DNA exact substring matching
problem on a reference human genome.

1 INTRODUCTION

String matching algorithms locate occurrences of a specific pattern
within a larger string or text file. The exact string matching problem
is an extensively studied problem in computer science, finding
applications in numerous areas such as bioinformatics, network
security, database systems, and document matching.

We focus on the exact string matching problem (as opposed to
approximate); locating exact matches of a search pattern within
a larger text file. In particular, we study the parallelization of the
Rabin-Karp algorithm [4], a popular string matching algorithm that
finds exact matches in O(n) expected runtime.

2 BACKGROUND
2.1 Naive String Matching Algorithm

To understand the underlying reason of the expected linear runtime
of the Rabin-Karp algorithm, we first note the naive (brute-force)
string matching algorithm.

An intuitive brute-force method is as followed: Let w be the
search space string where |w| = n and p be the desired pattern
string where |p| = k. Then for each substring s € w where |s| = m,
check if s = p character-wise. If the substring and desired pattern
match, then record the position of the substring. Once all substrings
of length m in w are considered, return all the recorded positions.

While seemingly efficient, this algorithm has the worst-case
running time of O(nk) as there are O(n) substrings to consider and
the naive method of checking if two strings s and p are equal takes
O(k) time.

2.2 The Rabin-Karp Algorithm

We now discuss the Rabin-Karp Algorithm in more detail. Suppose
we seek to find matches of a pattern p of length k in a larger text.
The algorithm uses a hash function to perform a initial comparison
of strings. Since a substring does not match the pattern if their hash
values disagree, comparing the hash values, an O(1) operation,
allows avoid the O(k) time character-wise string comparison for
such obvious non-matches.

As such, the core of the algorithm is the efficient computation
of the hash values of each successive substrings. In particular, the

COMS 4995: Parallel Functional Programming,
2021.

Chris Yoon (cjy2129@columbia.edu)

hash function for an encoded string s = sg - - - sp_; of length k is
given by the Rabin fingerprint, given by the polynomial function

RF(s) = sobF T+ s bK 2 4t Sk—1

where b is usually a prime, and all arithmetic is done in modulo ¢
for some large prime q. Instead of computing the polynomial for
every successive substring, Rabin-Karp computes the hash value
in a sliding-window fashion, where given RF(s), we can compute
the hash value of the next substring RF(s” = s; - - - s;.) using only
constant number of operations, via

RF(s") = (RF(s) — s - bkil) b +sp

In particular, after the hash value computation of the very first
substring, every successive computation will take O(1) time. Using
this rolling hash scheme, the Rabin-Karp algorithm can be outlined
as followed:

Algorithm 1 (Sequential) Rabin-Karp Algorithm

1: Input: Pattern p (|p| = k) and string S (|S| = N) to be searched.
2: Initialize: empty list L to store indices of matches

3: Compute hash value hy, of pattern p

4: fori=0... N-1-kdo

5. Compute hash value of substring hg = RF(s = s; - * Sj1f—1)
6: if hy = hy, then

7 if s = p character-wise then

8 add i to output list L.

9: Output L

Since we only need to compare the hash values to rule out obvious
non-matches, this scheme significantly cuts down the text com-
parisons the algorithm must perform. Consequently, although the
worst-case runtime is still O(nk), a good hash function (one that is
unlikely to produce false positives) reduces the expected runtime
to O(n).

3 PARALLELIZATION

Consider contiguous partitions Py, . . ., P, of the input text in which
the input pattern to be searched. Clearly, each partition can be
thought of as an independent string. In that sense, the rolling hash
computation on a partition is not dependent on that of any other
partition. This gives a natural way of parallelizing the Rabin-Karp
algorithm, where the rolling hash computation on every partition
can be done in parallel.

However, one issue we must resolve is that such naive partition-
ing excludes instances of the pattern string that cross the border
between two partitions; for instance, the window (of length k = |p|)
starting at the last character of a partition will not have its hash
value computed. To remedy this, we extend each partition to have

COMS 4995: Parallel Functional Programming,

access to the first k — 1 characters of the next partition (hence
allowing the partitions to overlap).

Rolling hash sliding windows

A "partition”;
has access up to (k-1)th character of the next partition
T

n equal length partitions of input text

L

Figure 1: Overlapping partitions

Using this partitioning scheme, we can perform a full search of
the input text in parallel, by chunks. We defer the actual Haskell
implementation of this scheme to section 4.2.

4 HASKELL IMPLEMENTATION
4.1 Sequential Algorithm Implementation

Our base (sequential) implementation for the Rabin-Karp algorithm
follows the pseudocode in Algortihm 1, but with a slight modifi-
cation to simplify the code logic: as we perform the rolling hash,
we first collect all substrings whose hash value matches that of the
pattern before comparing them character-wise with the pattern.
We then identify exact matches after all hash-value matches are
collected. We made this choice since a good enough hash function
would theoretically make the memory overhead associated with
storing the matches negligible.

To that end, we first implemented the function rabinKarpRoll,
which performs a rolling-hash on the input text and outputs a list
of all substrings with there indices whose hash value matches that
of the pattern:

rabinKarpRoll :: String -> Hashvalue -> Int -> [(Int, String)]

rabinKarpRoll text targetHash ws = roll text "" 0 @
where

roll [] subStr hashC idx
| targetHash == hashC = [(idx, subStr)
| otherwise =[]

roll (x:xs) subStr hashC idx
| isShorter = roll xs (subStr ++ [x]) hashC' idx
| isMatch = (idx, subStr) : roll xs (ss ++ [x]) hashR (idx + 1)
| otherwise = roll xs (ss ++ [x]) hashR (idx + 1)
where

isShorter = length subStr < ws

isMatch = length subStr == ws && targetHash == hashC

hashC' = modM $ ex + modM (hashC % b)

hashR = modM $ ex + modM ((hashC - es * (modExp b (ws — 1) m)) * b)
modM val = val ‘mod’ m

(s:ss) = subStr

(ex, es) = (DC.ord x, DC.ord s)

(b, m) = (31, 100003)

Then, we implement the function rabinKarpMatch to identify exact
matches in the collected substrings,

rabinKarpMatch :: String -> [(Int, String)Il-> [Int]

rabinKarpMatch pattern candidates = DL.map (\(idx, _) -> idx) matches
where

matches = DL.filter (\(_, str) -> str == pattern) candidates

and used the two functions the to implement the full rabinkKarp
function:

Eumin Hong (eh2890@columbia.edu)

Chris Yoon (cjy2129@columbia.edu)

rabinKarp :: String -> String -> [Int]
rabinKarp pattern text = rabinKarpMatch pattern candidates
where
candidates = rabinKarpRoll text patternHash patternLength
patternHash = polyHash 31 100003 pattern

patternLength = length pattern

4.2 Parallel Algorithm Implementation

As described in section 3, our approach for parallelization relies on
efficiently reading partitions of the input text. Inspired by the Hip-
gRap project [3] from PFP 2019, we also use the POSIX way of file
reading in Haskell. In particular, we use the fdPread function from
System.Posix.I0.ByteString.Lazy which calls the pread function
in the C programming language via foreign import ccall safe [5];
it takes the number of bytes to read and the offset from the start of
the string. Using this functionality and its laziness, we were able to
partition and read from the input text at different locations without
having to read the entire file:

readPartition :: FilePath -> Int -> Int -> Int -> IO DBLC.ByteString
readPartition filePath numParts patternLength partNum = do
fileSize <- getFileSize filePath
let fileMode = Just (CMode 0440)
partSize = fileSize ‘div’ (fromIntegral numParts)
partOffset = partSize * (fromIntegral partNum)
readSize = if partNum == (numParts - 1)
then partSize
else partSize + fromIntegral (patternLength - 1)
readSizeB = (fromIntegral readSize) :: ByteCount
fd <- PIO.openFd filePath PIO.ReadOnly fileMode PIO.defaultFileFlags
chunk <- PIOB.fdPread fd readSizeB partOffset
return chunk

With this function, we load P partitions of the input text to a list,
and map a curried rabinkKarp function on each partition. Naturally,
use the parlList strategy with rdeepseq to completely evaluate the
list of rabinKarp tasks in parallel. After all results are evaluated,
we perform necessary post-processing (such as offset correction
for each partition) and return the indices of exact-matches. This
parallelization is implemented as followed:

parRabinKarpN :: String -> String -> Int -> I0 [Int]

parRabinKarpN pattern filePath n = do
fileSize <- getFileSize filePath
partitions <- mapM (readPartition filePath n (length pattern)) [@..(n-1)1]
let partsB = map DBL.unpack partitions
matches = runEval $ do
let ms = (map (rabinKarp pattern) partsB) ‘using’ parList rdeepseq

return ms
let indicesByPart = zip [0..(n-1)] $ map (map fromIntegral) matches
partSize = (fromIntegral fileSize) ‘div' n
applyOffset (np, idcs) = map (np * partSize +) idcs
offsetCorrected = map applyOffset indicesByPart

return $ concat offsetCorrected

5 EVALUATION
5.1 Benchmark Set

As written earlier, the various implementations of the Rabin-Karp
exact string matching algorithm were tested on the human refer-
ence genome in FASTA format [1], which is roughly 3.1 GB of the
four base pairs: “A”, “T”, “C”, and “G” along with “N”, which is a
placeholder for an unknown base pair. The specific pattern searched
for while testing was the sequence “CTAGATTTGAT”.

StringMatch: Parallel Rabin-Karp Algorithm for Exact String Matching

1,200 T T T
1,100
1,000 -
900 -
800 -
700 -
600 -
500 -
400 |-
300 B
200 B
100 |- B
0 | | | | | | | |

Runtime (s)

Cores

Figure 2: Runtime evaluations for various different runs.

Cores 2 3 4 5 6 7 8
Speedup || 1.37 | 1.67 | 1.85 | 2.08 | 2.33 | 2.30 | 2.22

Figure 3: Average speedup for N cores relative to N = 1.

5.2 Results

All results in this paper were obtained using a 2021 MacBook Pro
with a Apple M1 Max chip and 10 cores (8 performance and 2
efficiency), but only up to 8 cores were used during testing. The
runtime of each instance (an implementation with a specific number
of cores N and number of partitions P) was measured by taking the
minimum runtime from three iterations, as the lowest value better
approximates the fastest possible runtime for the given instance [2].
For parRabinKarpN, with N threads, P € {N, 2N, 3N, 4N} partitions
of the search string were tested.

As the number of threads increases from N =1 — N = 2, the
performance significantly increases (a speed up of 1.37 times on
average). However, as the number of cores increases, the speedup
does not increase as much, as adding another core results in dimin-
ishing returns in speedup. Figure 3 contains the average speedups
for N cores, and the best-case speedup is observed when N = 6 for
a speedup of 2.33 times. Furthermore, there seems to be no statisti-
cally significant difference between the number of partitions.

The threadscope analysis in Figure 4 of running parRabinKarpN
with N = 8 and P = 24 partitions indicates that the workload is
evenly distributed amongst the four cores.

For the parallel Rabin-Karp Haskell implementation proposed,
each spark, which represents a partition of the original search
string, is deeply evaluated using rdeepseq. As a result, most sparks
are converted, as seen in Figure 5.

5.3 Amdahl’s Law

Amdahl’s law is used to measure the theoretical maximum amount
of speedup achievable through parallelism. To do this, the paral-

lelizable fraction of the task from the equation § = —1—— was
(1-P)+x

COMS 4995: Parallel Functional Programming,

o

Figure 4: Threadscope analysis of the parallel algorithm with
N = 8 threads and P = 24 partitions.

l Total [Converted [Overflowed [Dud [GCd [Fizzled ‘
[24] 23 [0 [o[o | 1]

Figure 5: Spark results for the parallel algorithm with N =8
threads and P = 24 partitions.

empircally determined to be approximately 0.62. Therefore, the
theoretical maximum speedup was found to be limy_,6 S = 2.63
times.

6 CONCLUSION

We implemented both sequential and parallel versions of the Rabin-
Karp algorithm in Haskell for the exact string matching problem. We
evaluated our implementation on DNA substring matching, finding
a 10-character long pattern in a human reference genome FASTA
file of 3.1 GB. While Amdahl’s law reveals a theoretical maximum
speedup of 2.63 times, with N = 6 cores, our implementation was
able achieve a speedup of 2.33 times.

We include the source code of our project in the appendix below.
We include detailed instructions on how to run the program with
sample data in the README.md file of our code submission. While
we have also implemented the Rabin-Karp algorithm for (fixed-
length) multiple-pattern matching, we have focused on single pat-
tern matching for this report. Future work may include rigorously
investigating and optimizing process utilization of our program.
Moreover, we may also explore approximate matching or matching
with wild-cards.

REFERENCES

[1] 1000GenomesProject. 2008. “Humanreferencegenome”. ftp://ftp-trace.ncbinih.
gov/1000genomes/ftp/technical/reference/humangikv37.fasta.gz

[2] Wonhyuk Choi and Andrew de Soler. 2020. SAT: Parallel SAT Solver with DPLL -
Report. http://www.cs.columbia.edu/~sedwards/classes/2020/4995-fall/reports/
SAT.pdf

[3] Bicheng Gao and Gangwei Lin. 2019. HipgRap - Report. http://www.cs.columbia.
edu/~sedwards/classes/2019/4995-fall/reports/HipgRap.pdf

[4] Richard M. Karp and Michael O. Rabin. 1987. Efficient randomized pattern-
matching algorithms.

[5] Wren G. Romano. 2010. System.Posix.IO.ByteString. https://hackage.haskell.org/
package/unix-bytestring-0.3.7.6/docs/System-Posix-10-ByteString.html#g:2

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/ reference/human g1k v37.fasta.gz
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/ reference/human g1k v37.fasta.gz
http://www.cs.columbia.edu/~sedwards/classes/2020/4995-fall/reports/SAT.pdf
http://www.cs.columbia.edu/~sedwards/classes/2020/4995-fall/reports/SAT.pdf
http://www.cs.columbia.edu/~sedwards/classes/2019/4995-fall/reports/HipgRap.pdf
http://www.cs.columbia.edu/~sedwards/classes/2019/4995-fall/reports/HipgRap.pdf
https://hackage.haskell.org/package/unix-bytestring-0.3.7.6/docs/System-Posix-IO-ByteString.html#g:2
https://hackage.haskell.org/package/unix-bytestring-0.3.7.6/docs/System-Posix-IO-ByteString.html#g:2

COMS 4995: Parallel Functional Programming, Eumin Hong (eh2890@columbia.edu) Chris Yoon (cjy2129@columbia.edu)

CODE LISTING

We give a brief overview of the project source code structure:

o StringMatch/RabinKarp.hs: Contains the base (sequential) Rabin-Karp algorithm detailed in section 4.1.

o StringMatch/Parallel.hs: Contains the parallelization of the implemented rabinKarp function, as detailed in section 4.2.

e StringMatch/FileReader.hs: Implements readPartition, which allows to lazy (hence efficient) reading of partitions of an input text.
o StringMatch/Match.hs: Contains high-level functions that users would use.

e app/Main.hs: Main file for running StringMatch.

We also provide example usages to illustrate how to run the program. The general usage is:
stack run ["pf"] [pattern or path_to_pattern] [path_to_search_space_text] [num_partitions]
a) To run a sequential StringMatch where the pattern is given as a string, do
stack run pattern path_to_text
b) To run a parallel StringMatch where the pattern is given as a string, do
stack run p pattern path_to_text num_partitions
c) To run a sequential StringMatch where the pattern is in a file, do
stack run f path_to_pattern path_to_text
d) To run a sequential StringMatch where the pattern is in a file, do
stack run pf path_to_pattern path_to_text num_partitions

For more detailed instruction on how to use the code with a sample data included in the code submission, please read the README . md file in

the submission.
All code is available on GitHub: https://github.com/cyoon1729/StringMatch.

StringMatch/RabinKarp.hs

module StringMatch.RabinKarp
(
rabinKarp
, rabinKarpMulti
) where

import qualified Data.Char as DC
import qualified Data.List as DL
import qualified Data.Set as DS
import qualified Data.Map as DM
import qualified Data.Bits as DB

type HashValue = Int

modExp :: Int -> Int -> Int -> Int
modExp b @ m = 1
modExp b e m = t * modExp ((b * b) “mod™ m) (DB.shiftR e 1) m “mod™ m
where
t = if DB.testBit e @ then b “mod™ m else 1

polyHash :: Int -> Int -> String -> HashValue
polyHash b m str = foldl (\acc ¢ -> polyMod c acc) @ str
where
polyMod ¢ acc = modM $ (DC.ord c) + modM (acc * b)

https://github.com/cyoon1729/StringMatch

40

41

42

43

44

45

46

47

48

80

81

82

83

84

85

88

89

90

91

92

93

94

95

96

StringMatch: Parallel Rabin-Karp Algorithm for Exact String Matching

modM val = val “mod™ m

rabinKarpRoll :: String -> HashValue -> Int -> [(Int, String)]
rabinKarpRoll text targetHash ws = roll text "" @ @
where
roll [] subStr hashC idx
| targetHash == hashC = [(idx, subStr)]
| otherwise =[]
roll (x:xs) subStr hashC idx
| isShorter = roll xs (subStr ++ [x]) hashC' idx
| isMatch = (idx, subStr) : roll xs (ss ++ [x]) hashR (idx + 1)
| otherwise = roll xs (ss ++ [x]) hashR (idx + 1)
where
isShorter = length subStr < ws
isMatch = length subStr == ws && targetHash == hashC

hashC' = modM $ ex + modM (hashC * b)

hashR = modM $ ex + modM ((hashC - es * (modExp b (ws - 1) m)) * b)
modM val = val “mod™ m

(s:ss) = subStr

(ex, es) = (DC.ord x, DC.ord s)

(b, m) = (31, 100003)

rabinKarpMatch :: String -> [(Int, String)]-> [Int]
rabinKarpMatch pattern candidates = DL.map (\(idx, _) -> idx) matches
where
matches = DL.filter (\(_, str) -> str == pattern) candidates

rabinKarp :: String -> String -> [Int]
rabinKarp pattern text = rabinKarpMatch pattern candidates
where
candidates = rabinKarpRoll text patternHash patternLength
patternHash = polyHash 31 100003 pattern
patternLength = length pattern

rabinKarpRollMulti :: String -> DS.Set HashValue -> Int -> [(Int, String)]
rabinKarpRollMulti text targets ws = roll text "" @ @
where
roll [] subStr hashC idx
| DS.member hashC targets = [(idx, subStr)]
| otherwise =[]
roll (x:xs) subStr hashC idx
| length subStr < ws = roll xs (subStr ++ [x]) hashC' idx

| isMatch = (idx, subStr) : roll xs (ss ++ [x]) hashR (idx + 1)
| otherwise = roll xs (ss ++ [x]) hashR (idx + 1)
where

isMatch = length subStr == ws && DS.member hashC targets

hashC' = modM $ ex + modM (hashC x b)

hashR = modM $ ex + modM ((hashC - es * (mExp b (ws - 1))) * b)
modM val = val “mod™ m

mExp p g = modExp p g m

COMS 4995: Parallel Functional Programming,

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

119

COMS 4995: Parallel Functional Programming, Eumin Hong (eh2890@columbia.edu)

(s:ss) = subStr
(ex, es) = (DC.ord x, DC.ord s)
(b, m) = (31, 100003)

rabinKarpMatchMulti :: DS.Set String -> [(Int, String)] -> [(String, [Int])]
rabinKarpMatchMulti patterns candidates = sortlIdxs matches

where
sortIdxs = DL.map (\(patt, idxs) -> (patt, DL.sort idxs))
matches = DL.filter (\(a, _) -> DS.member a patterns) candidateIdxs

candidateIdxs = DM.toList $ DM.fromListWith (++) flipPadded
flipPadded = DL.map (\(idx, str) -> (str, [idx])) candidates

rabinKarpMulti :: [String] -> String -> [(String, [Int]1)]
rabinKarpMulti patterns text = rabinKarpMatchMulti patternSet candidates
where
patternSet = DS.fromList patterns
candidates = rabinKarpRollMulti text patternHashes patternLength
patternHashes = DS.fromList $ DL.map (polyHash 31 100003) patterns
patternLength = length (head patterns)

Chris Yoon (cjy2129@columbia.edu)

StringMatch/Parallel.hs

module StringMatch.Parallel
(
parRabinKarpN
) where

import qualified Data.ByteString.Lazy.Char8 as DBL
import Control.Parallel.Strategies (using, parList, runEval, rseq, rdeepseq)
import Control.DeepSeq

import StringMatch.RabinKarp (rabinKarp)
import StringMatch.FileReader (getFileSize, readPartition)

parRabinKarpN :: String -> String -> Int -> I0 [Int]
parRabinKarpN pattern filePath n = do
fileSize <- getFileSize filePath
partitions <- mapM (readPartition filePath n (length pattern)) [0..(n-1)]
let partsB = map DBL.unpack partitions
matches = runEval $ do
let ms = (map (rabinKarp pattern) partsB) “using™ parlList rdeepseq

return ms
let indicesByPart = zip [0..(n-1)] $ map (map fromIntegral) matches
partSize = (fromIntegral fileSize) ~div™ n

applyOffset (np, idcs) = map (np * partSize +) idcs
offsetCorrected = map applyOffset indicesByPart
return $ concat offsetCorrected

StringMatch/Match.hs

39

40

41

42

43

44

45

StringMatch: Parallel Rabin-Karp Algorithm for Exact String Matching

{,
- Implements utilities to parse program arguments and
perform match
-}
module StringMatch.Match
(
doMatch
) where

import System.IO
import StringMatch.Parallel (parRabinKarpN)
import StringMatch.RabinKarp (rabinKarp)

usage :: [String]

usage = [
"Usage:"
, "= To match non-parallel, where input pattern is given as string:"
, " stack run pattern path_to_text"
, "= To match parallel, where input pattern is given as a string:"
, " stack run p pattern path_to_text num_partitions"
, "= To match non-parallel, where input pattern is given as a file path:"
, " stack run f path_to_pattern path_to_text"
, "= To match parallel, where input pattern is given as a file path:"
, " stack run pf path_to_pattern path_to_text"
]

foundPattern :: String -> String
foundPattern pattern = "Found \"" ++ pattern ++ "\" in locations:"

-- | Match in sequential, where pattern is given as a string
matchStr :: String -> String -> I0 [Int]
matchStr pattern filePath = do

text <- readFile filePath

return $ rabinKarp pattern text

-- | Match in parallel, where pattern in given as a string
matchStrPar :: String -> String -> Int -> I0 [Int]
matchStrPar pattern filePath numPartitions = do
matches <- parRabinKarpN pattern filePath numPartitions
return matches

-- | Match in sequential, where pattern is given as a file
matchFile :: String -> String -> I0 [Int]
matchFile patternPath filePath = do

text <- readFile filePath

patternRaw <- readFile patternPath

let pattern = filter (/='\n') patternRaw

return $ rabinKarp pattern text

-- | Match in parallel, where pattern is given as a file
matchFilePar :: String -> String -> Int -> IO [Int]
matchFilePar patternPath filePath numPartitions = do

text <- readFile filePath

patternRaw <- readFile patternPath

let pattern = filter (/='\n') patternRaw

matches <- parRabinKarpN pattern filePath numPartitions

COMS 4995: Parallel Functional Programming,

82

83

84

85

86

87

88

89

COMS 4995: Parallel Functional Programming, Eumin Hong (eh2890@columbia.edu)

return matches

doMatch :: [String]l -> I0 [()]
doMatch args = do
case args of
[pattern, fPath] -> do
matches <- matchStr pattern fPath
putStrLn $ foundPattern pattern
mapM putStrLn $ map show matches
["p", pattern, filePath, numPartitions] -> do
let numParts = read numPartitions :: Int
matches <- matchStrPar pattern filePath numParts
putStrLn $ foundPattern pattern
mapM putStrLn $ map show matches
["f", pattPath, filePath] -> do
patternRaw <- readFile pattPath
let pattern = filter (/='\n') patternRaw
matches <- matchFile pattPath filePath
putStrLn $ foundPattern pattern
mapM putStrLn $ map show matches
["pf", pattPath, filePath, numPartitions] -> do
patternRaw <- readFile pattPath
let pattern = filter (/='\n') patternRaw
numParts = read numPartitions :: Int
matches <- matchFilePar pattPath filePath numParts
putStrLn $ foundPattern pattern
mapM putStrLn $ map show matches
_ > do
mapM putStrLn usage

Chris Yoon (cjy2129@columbia.edu)

app/Main.hs

module Main where

import System.IO
import System.Environment (getArgs)
import Lib (doMatch)

main :: I0 [()]
main = do
args <- getArgs
doMatch args

	Abstract
	1 Introduction
	2 Background
	2.1 Naive String Matching Algorithm
	2.2 The Rabin-Karp Algorithm

	3 Parallelization
	4 Haskell Implementation
	4.1 Sequential Algorithm Implementation
	4.2 Parallel Algorithm Implementation

	5 Evaluation
	5.1 Benchmark Set
	5.2 Results
	5.3 Amdahl's Law

	6 Conclusion
	References

