
Report on Parallel Betweenness Centrality Algorithm
(ParBC)

Rui Qiu (rq2170), Hao Zhou (hz2754)

Dec 2021

1 Introduction

Currently, there is a boosting trend of users size in social applications because of
the popularization of personal smart devise. This constructs huge social networks
containing considerably large quantities of interactions among those users, which is
worth further investigation for more accurate and intelligent future functionality. One
task is to measure how significant, within a graph, a vertex is. Many algorithms are
reported including Betweenness Centrality which our project focuses on.

However, in reality, the network is highly likely vast in size. This could be changing
to apply Betweenness Centrality algorithm on those real-world data. Therefore, the
project aims to provide a parallel implementation of Betweenness Centrality Algorithm
to make the it efficient to perform centrality analysis in real-world social network.

2 Problem Definition

Betweenness Centrality is formulated by Freeman [1] as shown below.

Betweenness(k) =
∑

i ̸=k ̸=j

(
σi,j(k)

σi,j
)

Where σi,j(k) is the number of shortest path between i, j containing the node k and σi,j

is the total number of shortest path between i, j. This could, to some extend, reflect
the centrality of a node within a network. That is because a node on the shortest

1

could be regarded as a bridge connecting those two vertices and its significance should
be proportional to the total number of shortest path passing through it. For example,
with regards to social network, a node at the center of the whole network or some
major components or a node acting like a gateway between two major groups will have
higher betweenness centrality.

3 Implementation and Algorithm Design

3.1 Notation

3.1.1 Graph Presentation

To take advantage of the sparse nature of social networks, instead of using adjacent
matrix, adjacent lists are used. It is implemented by Map in Haskell, presenting like:

{source : [neighbour1, neighbour2, ...]}

where the key source is an integer identifying a node and the value is a list of integers
identifying all its neighbours.

3.1.2 Algorithm Design

We started with the original algorithm we proposed at the beginning. The algorithm
is divided into two steps. First step is calculating pair-wise shortest distances and the
second is quantifying the times of occurrence of a node on those shortest paths. The
heavy calculation inside each function can be implemented in a parallel fashion while
two steps should be strictly sequential to ensure correctness of algorithm.

We are targeting at analyzing the betweenness centrality of github network which is
inherently a unweighted and undirected graph with our ParBC algorithm in the end.
We get insights from Breath-First Search for calculating the pair-wise shortest path.
Every BFS-like shortest path calculation can be applied to a single node which provides
great feasibility of parallelizing. To acquire the betweenness for each node, the most
heavily computational part is calculating the number of shortest path passing through
a particular node. It’s really expensive if we trying to record every path and extract
betweenness from that. Instead, we gain insights from Floyd–Warshall algorithm [2].
More explicitly, for a node v, if the summation of shortest path length from i to
v and shortest path length from v to j is equal to the shortest path length from i
to j, then we can conclude the shortest path from i to j pass through v. However,

2

there might be two major limitation. First, not all things can be fully parallelized.
The execution of betweenness calculation is depend on the result from shortest path
length calculation. This forces the threads to be synchronised and wait in this loop.
Second, its complexity is O(n3) where n is the number of nodes. However, in reality,
social network is edge-sparse but the algorithm could not take a good advantage of this
feature. Therefore, we turn to Brandes’ algorithm [3], which utilizes sparsity of social
network quite well. Comparing to O(n3) for original proposal, it has O(nm), where m
is the number of edges in the graph (where n << m)

To quantify the times of occurrence of a node on those shortest paths, we could use
map-and-reduce fashion to perform this calculation in a parallel manner where, node
id is the key and count is the value. This could make a good use of parallelism to
calculate the final betweenness centrality for all the nodes in a networks.

3.1.3 Brandes’ Algorithm

To describe Brandes’ Algorithm [3] and our further adjustment, its notation and pre-
cisely formulation would be shown in the following two paragraphs.

First, we follow the notation from the definition of Betweenness Centrality where
σi,j(k) is the number of shortest path between i, j containing the node k and σi,j is the
total number of shortest path between i, j. In addition, predecessor nodes is defined
as:

preds(v) = {w ∈ V |{w, v} ∈ E, d(s, v) = d(s, w) + ω(w, v)}

Given that the graph is unweighted, ω(w, v) = 1. Therefore, as mentioned in Section
3.1.2, BFS could be utilized to calculate σi,j with preds(v) as shown below:

σi,j =
∑

w∈predi(j)

σi,w

In addition, preds(v) helps in calculating betweenness. To simplify the formulation, it
denotes the number of shortest path from s to t passing through node v and edge v, w
is σs,t(v, {v, w}) and:

δs,t(v, {v, w}) =
σs,t(v, {v, w})

σs,t

δs(v) =
∑
t∈V

∑
w∈Preds(v)

δs,t(v, {v, w}) =
∑

w∈Preds(v)

∑
t∈V

δs,t(v, {v, w})

3

so if w ̸= t

δs,t(v, {v, w}) =
σs,v

σs,w

σs,t(w)

σs,t

if w = t
δs,t(v, {v, w}) =

σs,v

σs,w

Therefore

δs(v) =
∑

w∈Preds(v)

∑
t∈V

δs,t(v, {v, w}) =
∑

w∈Preds(v)

(
σs,v

σs,w
+

∑
t∈V,t̸=w

σs,v

σs,w

σs,t(w)

σs,t
) =

∑
w∈Preds(v)

σs,v

σs,w
(1+δs(w))

Betweenness(v) =
∑
s∈V

δs(v)

As demonstrated above, rather than do a nested loop to calculate σs,t(v) for Betwee-
ness (which costs O(n2) for a single node s), preds(v) helps in calculating betweenness
by propagating δs(v) (which costs O(m) for a single node s where m is the number of
edges in the graph which is small given the network is edge-sparsed)

Therefore, it helps to reduce the time complexity from O(n3) to O(nm)

3.2 Sequential Solution

According to the formulation above the sequential version of the algorithm could be
drafted as Algorithm 1.

3.3 Algorithm Adjustment and Parallel Solution

To make the algorithm fit for Parallelism, the global variable Betweenness is divided
by nodes as:

Betweenness(v) =
∑
s∈V

Betweennesss(v)

Therefore, it could perform in a map-reduce manner, where map the calcualtion of
Betweennesss(v) to the whole list of nodes and reduce all the Betweennesss(v) by sum-
ming up by keys. With this approach, we eliminate the strong step-wise independence
of the previous algorithm and implement it a virtually pure parallel fashion.

In addition, to reduce the memory cost for each thread, the BFS is calibrated into

4

a layer-base implementation. Therefore, the distances are not needed to be tracked
within a thread and this memory could be saved for its Betweennesss(v). Moreover,
by deploying layer-based BFS, each branch could be further divided into more thread
which make it even suitable for parallelism. However, It turns out that the granularity
is so small that the overhead of this further parallelism overwhelm the benefit of itself

Algorithm 1 Sequential Style Implementation
0: G← the graph
0: Betweenness← {n : 0|∀n ∈ G}
0: for s in G do
0: pred← {n : []|∀n ∈ G}; dist← {n : −1|∀n ∈ G}; sigma← {n : 0|∀n ∈ G}; S ← []
0: dist[s] = 0; sigma[s] = 1
0: queue← [s]
0: while queue is not empty do
0: v = queue.get()
0: S.append(v)
0: for w in G.neighbours(v) do
0: if dist[w] == −1 then
0: dist[w] = dist[v] + 1
0: queue.put(w)
0: end if
0: if dist[w] == dist[v] + 1 then
0: sigma[w]+ = sigma[v]
0: pred[w].append(v)
0: end if
0: end for
0: delta← {n : 0|∀n ∈ G}
0: for w in reverse(S) do
0: for v in pred[w] do
0: delta[v]+ = sigma[v]/sigma[w] ∗ (1 + delta[w])
0: if w ̸= s then
0: Betweenness[w]+ = delta[w]/2

5

4 Evaluation

4.1 Setting

Experiments are performed on Dell G3 with CPU (8th Gen) i7-8750H Hexa-core
2.20GHz and 16GB DDR4 RAM

4.2 Benchmark

The project focuses on undirected and unweighted social network. To be more spe-
cific, It would target on the networks listed in SNAP [4]. It should solve the github
network [5] where there are 37,700 nodes and 289,003 edges. Each node denotes a
github developer who have at least 10 repositories. Between two nodes, an edge exists
if there is a mutual follower. According to our observation, this graph is too large
for the sequential implementation. Typically, it would take about 4 days to calculate
the result. However, the parallel implementation could solve it in 10 hours which is
considerably comparable to a professional network analysis library called NetworkX [6]
which is based on a python library SciPy [7] on top of NumPy [8] and C++.

In addition, to incur sequential implementation into the comparison, two edge-spars
social networks, Simulate1000 and Simulate 2000 are randomly generated for simula-
tion testing.

4.3 Test Result

To assure the correctness of our implementation, we tested different simulation net-
work with a relatively small size (n = 10, 50, 100, 500) against the NetworkX library [6],
The sum of the differences is lower than 10−13

Table 1: Correctness Testing Graph Set
Graph Name Number of Nodes Number of Edges
Simulate20 20 96
Simulate50 50 389
Simulate100 100 884
Simulate200 200 1878
Simulate500 500 4870

For performance, we performed both sequential and parallel version of the algorithm

6

with 3 medium and large size graphs.

Table 2: Performance Testing Graph Set
Graph Name Number of Nodes Number of Edges
Simulate1000 1000 9859
Simulate2000 2000 19844
SNAP 37700 289003

Table 3: Experiment Results for Simulate1000
N time(s) converted gc’d fizzled total Speedup
seq 6.012 N/A N/A N/A N/A N/A
2 3.620 1998 1 1 2000 X1.66
3 2.590 1998 1 1 2000 X2.32
4 2.110 1998 1 1 2000 X2.85
5 1.920 1998 1 1 2000 X3.13
6 1.780 1998 1 1 2000 X3.38

Table 4: Experiment Results for Simulate2000
N time(s) converted gc’d fizzled total Speedup
seq 54.10 N/A N/A N/A N/A N/A
2 33.62 3998 1 1 4000 X1.61
3 27.76 3998 1 1 4000 X2.06
4 23.36 3998 1 1 4000 X2.32
5 21.07 3998 1 1 4000 X2.49
6 20.23 3998 1 1 4000 X2.67

Table 5: Experiment Results for SNAP
Method time Speedup
seq 44h 43 mins N/A
ParBC-N6 18h 38 mins X2.40
NetworkX 16h 23 mins X2.73

4.4 Performance Analysis

From the results, we can conclude is much more faster than the sequential version and
fairly comparable to NetworkX.

We can also observe that when N = 6, which is equal to the number of cores, the
performance of ParBC is the best, about 3.38 times . If N is set to be larger, we can

7

definitely get better performance since the adjusted version of algorithm can be im-
plemented in a pure parallel manner. Additionally, the computation for each sparks is
growing heavier as the size of the graph grows, and when we target at social networks
which are inherently large graphs(most of them are even larger than SNAP [4]), the
performance improvement of ParBC are guaranteed on those input since the compu-
tation heaviness grow faster than parallel overhead .

Figure 1: Eventlog for ParBC-N6 experiment with Simulate1000

8

5 Future work

Figure 2: Sequential solution heap usage with Simulate2000

Figure 3: ParBC-N6 heap usage with Simulate2000

During the performance test, we found that our ParBC algorithm reach a bottleneck
for performance improvement. We expect better performance speedup as scale of the
graph grows, however, it becomes worse when we start to test with Simulate2000 and
bigger graphs. After the investigation with heap usage, we found memory size become
a major restriction as the figure showed.As the figures suggest, Sequential solution
have larger heap space than ParBC-N6 with regarding to available memory per-core
wise.

Therefore, for the future work, we will try to investigate and optimize the memory us-
age with library we covered in the lecture and all other memory-optimization libraries
to deal with the obstacle. Hopefully, we can get good performance as expected.

6 Conclusion

In conclusion, ParBC provides a parallel betweenness centrality calculation tool. It
calibrates and hence makes itself more suitable for parallelism by deploying layer-wise
BFS, dividing total BC into independent sub-BC with regards to different source
nodes. This considerably speeds up the sequential implementation and even could
be comparable to a C-kernel professional benchmark NetworkX [6]. However, we
also notice that the memory size and utilization becomes the bottleneck against the
performance, which would be further investigated in our future work.

9

7 Appendix

Listing 1: Main.hs
module Main where

import System . Exit (d i e)
import System . Environment (getArgs , getProgName)
import quali f ied Data .Map. S t r i c t as Map

import BCsequentia l
import BCpara l l e l

main : : IO ()
main = do args <− getArgs

case args of
[ve r s ion , f i l ename] −> do

contents <− readFile f i l ename
l et inputMap = Map. f romList rawList

rawList = map t rans f romSing l eL ine rawLines
rawLines = l ines contents −− [S t r ing] −> [(int , [i n t])

]
case ve r s i on of

" s e qu en t i a l " −> do print ve r s i on
print $ length $ bcSo lver

inputMap
" p a r a l l e l " −> do print ve r s i on

print $ length $ bcSolverPar
inputMap

_ −> die $ "Usage : ␣Choose␣ c o r r e c t ␣ ve r s i on ␣ (
s e qu en t i a l ␣/␣ p a r a l l e l) "

_ −> do pn <− getProgName
d i e $ "Usage : ␣"++pn++"<vers ion>␣<f i l ename>"

trans f romSing l eL ine : : String −> (Int , [Int])
t rans f romSing l eL ine s t r = (read node , map read ne ighbors)

where
(node : ne ighbors) = words s t r

Listing 2: BasicType.hs
module BasicType where

import quali f ied Data .Map. S t r i c t as Map
{−
Sample graph presen ted by adjacency l i s t

10

{
1 : 2
2 : 1 ,3
3 : 2 ,4
4 : 3
}
−}

type Graph = Map.Map Int [Int]

sampleG : : Graph
sampleG = Map. f romList [(1 , [2]) , (2 , [1 , 3]) , (3 , [2 , 4]) , (4 , [3])]

Listing 3: BCsequential.hs
module BCsequentia l where

import BasicType
import quali f ied Data .Map. S t r i c t as Map
import quali f ied Data . Set as Set

sg : : Graph
sg = sampleG

shortestPathMap : : Map.Map Int [Int] −> Map.Map (Int , Int) Int
shortestPathMap g = Map. f romList [((s , e) , shor te s tPath g s e) | s <− Map.

keys g , e <− Map. keys g , (/=) s e]

shor te s tPath : : Graph −> Int −> Int −> Int
shorte s tPath g s e = b f s e g (Set . f romList [s]) [] 0

bigG : : Graph
bigG = sampleG

b f s : : Int −> Graph −> Set . Set Int −> [Int] −> Int −> Int
b f s t a r g e t g f r o n t i e r exp lored depth

| Set .member t a r g e t f r o n t i e r = depth
| otherwise = bf s t a r g e t g newFrontier newExplored (depth+1)

where
newFrontier = Set . f romList (concatMap f i n d c h i l d (Set . t oL i s t

f r o n t i e r))
newExplored = explored ++ Set . t oL i s t f r o n t i e r
f i n d c h i l d : : Int −> [Int]
f i n d c h i l d i

11

| Map. lookup i g == Nothing = error " i n v a l i d ␣key␣ f o r ␣ lookup"
| otherwise = f i l t e r (\ neighbor−> notElem neighbor exp lored)

ad jL i s t
where (Just ad jL i s t) = Map. lookup i g

calculateSigmaAndSoOn : : Graph −> Set . Set Int −> [Int] −> Set . Set Int
−> Map.Map Int [Int] −> Map.Map Int Int −> (Map.Map Int [Int] , Map.
Map Int Int , [Int])

calculateSigmaAndSoOn g f r o n t i e r s exp lored prede sigma
| Set . null f r o n t i e r = (prede , sigma , s)
| otherwise = calculateSigmaAndSoOn g newFrontier newS newExplored

newPred newSigma
where

newFrontier = Set . f romList (concatMap f i n d c h i l d (Set . t oL i s t
f r o n t i e r))

newS = s ++ Set . t oL i s t f r o n t i e r
newExplored = Set . union exp lored f r o n t i e r
(newPred , newSigma) = updatePredSigma prede sigma (Set . t oL i s t

f r o n t i e r)
f i n d c h i l d : : Int −> [Int]
f i n d c h i l d i

| Map. lookup i g == Nothing = error " i n v a l i d ␣key␣ f o r ␣ lookup"
| otherwise = f i l t e r (\ neighbor−> Set . notMember neighbor

newExplored) ad jL i s t
where (Just ad jL i s t) = Map. lookup i g

updatePredSigma : : Map.Map Int [Int] −> Map.Map Int Int −> [Int
] −>(Map.Map Int [Int] , Map.Map Int Int)

updatePredSigma p1 s1 [] = (p1 , s1)
updatePredSigma p1 s1 (v : vs) = updatePredSigma p1New s1New vs

where
(p1New , s1New) = updateForSingleParent (f i n d c h i l d v) p1

s1
updateForSingleParent : : [Int] −> Map.Map Int [Int] −>

Map.Map Int Int −> (Map.Map Int [Int] , Map.Map Int Int
)

updateForSingleParent [] p2 s2 = (p2 , s2)
updateForSingleParent (w: ws) p2 s2 =

updateForSingleParent ws p2New s2New
where

p2New = Map. insertWith (++) w [v] p2
s2New = Map. insertWith (+) w s i g s2

where (Just s i g) = Map. lookup v s2

12

accumulateCB : : Map.Map Int Double −> Int −> Map.Map Int Double −> Map.
Map Int [Int] −> Map.Map Int Int −> [Int] −> Map.Map Int Double

accumulateCB cb _ _ _ _ [] = cb
accumulateCB cb s t a r t d e l t a prede sigma (w: ws) = accumulateCB cbNew

s t a r t deltaNew prede sigma ws
where

(Just deltaW) = Map. lookup w de l t a
cbNew = i f (/=) w s t a r t then Map. insertWith (+) w deltaW cb else

cb
deltaNew = updateDelta predL i s t d e l t a

where
(Just predL i s t) = Map. lookup w prede
updateDelta : : [Int] −> Map.Map Int Double −> Map.Map Int

Double
updateDelta [] d = d
updateDelta (v : vs) d = updateDelta vs dNew

where
dNew = Map. insertWith (+) v dValue d
dValue : : Double
dValue = (fromIntegral sigmaV) / (fromIntegral sigmaW) ∗

(1 . 0 + deltaW) : :Double
(Just sigmaV) = Map. lookup v sigma
(Just sigmaW) = Map. lookup w sigma

calcu latePerNode : : Graph −> [(Int , [Int])] −> [(Int , Int)] −> [(Int ,
Double)] −> Int −>Map.Map Int Double

ca lcu latePerNode g i n iL i s tP r ed in iL i s tS i gma in iL i s t I n tDoub l e node = Map
.map (/ 2 . 0) resultMap
where

resultMap = accumulateCB (Map. f romList i n iL i s t I n tDoub l e) node (
Map. f romList i n iL i s t I n tDoub l e) prede sigma (reverse s)

(prede , sigma , s) = calculateSigmaAndSoOn g (Set . f romList [node])
[] Set . empty (Map. f romList i n iL i s tP r ed) (Map. insert node 1 (
Map. f romList in iL i s tS i gma))

bcSo lver : : Graph −> Map.Map Int Double
bcSo lver g = fo ld l (Map. unionWith (+)) Map. empty bcMapList

where
bcMapList : : [Map.Map Int Double]
bcMapList = map (ca lcu latePerNode g i n iL i s tP r ed in iL i s tS i gma

in iL i s t I n tDoub l e) n od e l i s t
n o d e l i s t : : [Int]
n o d e l i s t = Map. keys g

13

i n iL i s tP r ed : : [(Int , [Int])]
i n iL i s tP r ed = map (\x −> (x , [])) n o d e l i s t
i n iL i s tS i gma : : [(Int , Int)]
i n iL i s tS i gma = map (\x −> (x , 0)) n od e l i s t
i n iL i s t I n tDoub l e : : [(Int , Double)]
i n iL i s t I n tDoub l e = map (\x −> (x , 0 . 0)) n od e l i s t

Listing 4: BCparallel.hs
module BCpara l l e l where

import BCsequentia l
import BasicType

import quali f ied Data .Map. S t r i c t as Map
import Control . P a r a l l e l . S t r a t e g i e s

myparMap : : (a −> b) −> [a] −> Eval [b]
myparMap _ [] = return []
myparMap f (a : as) = do b <− rpar (f a)

bs <− myparMap f as
return (b : bs)

bcSolverPar : : Graph −> Map.Map Int Double
bcSolverPar g = fo ld l (Map. unionWith (+)) Map. empty bcMapList

where
bcMapList = parMap rpar s i n g l e S o l v e r n od e l i s t
−−bcMapList = runEval $ myparMap s i n g l e S o l v e r n o d e l i s t
s i n g l e S o l v e r : : Int −> Map.Map Int Double −−s o l v e Bc from one

node
s i n g l e S o l v e r = calcu latePerNode g i n iL i s tP r ed in iL i s tS i gma

in iL i s t I n tDoub l e
n od e l i s t : : [Int]
n o d e l i s t = Map. keys g
i n iL i s tP r ed : : [(Int , [Int])]
i n iL i s tP r ed = map (\x −> (x , [])) n o d e l i s t
i n iL i s tS i gma : : [(Int , Int)]
i n iL i s tS i gma = map (\x −> (x , 0)) n od e l i s t
i n iL i s t I n tDoub l e : : [(Int , Double)]
i n iL i s t I n tDoub l e = map (\x −> (x , 0 . 0)) n od e l i s t

Listing 5: random graph generation
import networkx as nx
from c o l l e c t i o n s import d e f a u l t d i c t

g = nx . gene ra to r s . random_graphs . powerlaw_cluster_graph (2000 , 10 , 0 . 2 ,
seed = 0)

14

c=0
es = d e f a u l t d i c t (l i s t)
for e in g . edges :

s = e [0]
t = e [1]
i f s == t :

continue
es [s] . append (str (t))
es [t] . append (str (s))
c+=1

for e in es . keys () :
print (str (e) + "␣"+ "␣" . j o i n (set (es [e])))

print (c)

15

References

[1] L. C. Freeman, “A set of measures of centrality based on betweenness,” Sociometry, pp. 35–41,
1977.

[2] R. W. Floyd, “Algorithm 97: shortest path,” Communications of the ACM, vol. 5, no. 6, p. 345,
1962.

[3] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of mathematical sociology,
vol. 25, no. 2, pp. 163–177, 2001.

[4] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network dataset collection,” http:
//snap.stanford.edu/data, Jun. 2014.

[5] B. Rozemberczki, C. Allen, and R. Sarkar, “Multi-scale attributed node embedding,” 2019.

[6] A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure, dynamics, and function
using networkx,” Los Alamos National Lab.(LANL), Los Alamos, NM (United States), Tech.
Rep., 2008.

[7] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson,
K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat,
Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen,
E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt,
and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python,” Nature Methods, vol. 17, pp. 261–272, 2020.

[8] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau,
E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van
Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array
programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020. [Online].
Available: https://doi.org/10.1038/s41586-020-2649-2

16

http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://doi.org/10.1038/s41586-020-2649-2

	Introduction
	Problem Definition
	Implementation and Algorithm Design
	Notation
	Graph Presentation
	Algorithm Design
	Brandes' Algorithm

	Sequential Solution
	Algorithm Adjustment and Parallel Solution

	Evaluation
	Setting
	Benchmark
	Test Result
	Performance Analysis

	Future work
	Conclusion
	Appendix

