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Introduction  
 
This project examines a Haskell parallel implementation of minimax algorithm in the game 
called 2048. The game 2048 is selected for the project because it is deterministic in a fully 
observable environment, and the minimax algorithm is complete and its running time can be 
adjusted with a max depth of the algorithm depending on the need of examination.  
 
For the two-player turn-based game, the minimax algorithm is utilized to find an optimal choice 
for both agents. Particularly, the recurring process of minimax algorithm is dealt with parallel 
execution to speed up the running time of algorithm. For further improvement of algorithm, an 
iterative deepening search is used and also processed in a parallel programming. Although 
sophisticated heuristics methods might be a better way of improving the overall performance in 
this problem, I uses some naive heuristic methods that improve the program just as much as I can 
test the parallel implementation, in consideration of the purpose and the scope of the project.  
 
 
Background  
 
The game 2048 is a sliding tile puzzle game which was initially written in Javascript and CSS by 
Gabriele Circulli, who is an Italian web developer. 1 In a 4x4 grid, the game starts with two tiles 
with a value—which is either 2 or 4. Each player chooses a direction—up, down, left, and 
right—and then numbered tiles slide until they reach to another numbered tile or the edge of the 
grid. The two tiles are merged into one tile with a combined value when the two same numbered 
tiles are alongside in the direction of sliding. If three tiles of the same value are consecutive, then 
only the farthest two tiles along the sliding direction will be combined. If four tiles of the same 
value are consecutive, then the first two and the last two will be combined respectively. In each 
turn, a new value—either 2 (90%) or 4 (10%)—will be randomly set in a tile with 0 value. The 
goal of the game is to create a tile with a value of 2048. The total score, which starts from 0 and 
will be increased by a combined value when two tiles are merged, is kept track.  
 

 
1 https://github.com/gabrielecirulli/2048 
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Methodology  
 
In this project, the program is designed to decide move direction on behalf of two players in each 
turn, and minimax algorithm is used for decisions. Minimax algorithm is a recursive or 
backtracking algorithm, based on an adversarial search, and mostly used in decision-making and 
game theory. The algorithm provides an optimal option for a player with an assumption that the 
opponent also chooses an optimal one in each state. Since the goal of each player is maximizing 
their own utility to win, both maximizer and minimizer functions are recursively used to find a 
decision in a state. The maximizer tries to get the highest value possible, while the minimizer 
tries to get the lowest score possible. 

 
Figure 1 : a search tree 

A search trees represents minimax algorithm that proceeds from the top node of the tree to the 
terminal node and backtracks the tree. Each node is an option containing a value that represents a 
utility, and a decision is made based on a comparison of two values in node pair. Terminal values 
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are in nodes of the last level, the so-called leaf nodes. It is assumed that there are two players, 
MAX and MIN. In Figure 1, the MAX player chooses terminal values from leaf nodes to 
maximize the value to win the game. So, 9, 7, 9, 5 are selected. Then, the MIN player chooses 
those values to minimize the MAX’s value to win, and 7, 5 are selected. In the same way, the 
MAX player chooses a bigger value to maximize. Finally, 7 is selected.  
 
The value is the utility when the state is the leaf node. If the state is the MAX, the value is 
highest value of all successor node values, while the value is lowest value of all successor node 
values in the MIN. 
 
The minimax algorithm can be represented in a pseudo-code as below:  
 
Function minimax(node, isMaximizing): 
 

if depth == 0  or node is a terminal node then  
return the value of this node  

if isMaximizing 
for each child of node 

childValue = minimax(child, FALSE) 
value = max(value, childValue) 

return value   
else  

for each child of node 
childValue = minimax(child, TRUE) 
value = min(value, childValue) 

return value 
 
Since the minimax algorithm loops through every node of the tree, it can be slow and inefficient 
depending on the depth. To improve the algorithm, we can use Alpha-beta pruning which 
decreases the number of nodes that minimax algorithm evaluates. Alpha is the largest value for 
MAX across evaluated nodes and beta is the lowest value for MIN. The initial alpha value is 
usually set as a negative infinity and the initial beta is set as a positive infinity, but in this project 
“minBound :: Int” and “maxBound :: Int” are respectively used because a possible value is 
bounded. As the algorithm goes over nodes, the values of alpha and beta are updated. And, when 
the alpha value is greater than the beta value, the remaining branches are pruned.  
 
As noted above, some heuristic methods are used to increase the winning chance, which helps 
the analysis of parallel implementation. A couple of naive methods, which increase instantly the 
performance, are good enough for the scope of the project. A weight function is constructed with 
those methods; the goal value of 2048 has a large value of integer, a closer position to the top left 
corner gets a higher weight, tiles with a value of 0 have a weight, and neighboring tiles with 
similar values get higher weights.  
 
Heuristic Methods  
1) getSpotZero :: Grid -> Integer 
    getSpotZero grid = toInteger $ sum $ map checkZeroSpot grid 
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     where checkZeroSpot grid = length $ filter isZero grid 
             where isZero x = x == 0 
 
2) applyPositionWeights : new values of grid in cosideration of position heuristically   
    applyPositionWeights :: Grid -> Integer 
    applyPositionWeights grid = toInteger $ sum (map sum (zipWith (zipWith (*)) weights grid)) 
     where weights = [[10,8,6,4],[8,8,6,2],[6,6,4,1],[4,2,1,1]] 
 
3) applySimilarityWeights :: Grid -> Integer 
    applySimilarityWeights [] = 0 
    applySimilarityWeights (x:xs) = smc x + applySimilarityWeights xs 
     where smc (a:b:c:d:_) = fromIntegral $ 10*(abs (a - b) + abs (b - c) + abs (c - d)) 
             where smc [] = 0 
 
In addition, different depths are applied to test the performance of the parallel execution. Since 
the time complexity of minimax is O(bd) and the minimax algorithm goes all the way down to 
the leaf node of the tree, which is not convenient for the purpose of examination, depths below 7 
are tested given the running time constraints.   
 
 

 
 
 
Parallelism  
 
For a parallel execution of the algorithms in Haskell, Control.Parallel.Strategies is imported, and 
a few strategies in it are used. “rpar” is mainly used to spark the arguments, and “parList” 
evaluates the list of values, which is the derived utility. “runEval” is used to wrap out the result. 
“rseq” and “rdeepseq” are also tested respectively to examine performance difference. When the 
strategy is implemented, the program performs multiple executions for recursive search in 
parallel after being sparked and combines the results as a wrapped form.    
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The Strategies method is a deterministic parallel programming, and this project focuses only the 
method, but non-deterministic parallelism might be examined in future work. Haskell also 
provides a library called "Control.Concurrent" for that.  
 
 
Result and Anlaysis  
 
Since the minimax algorithm is involved in proceeding all the child nodes of each branch—by a 
depth, if any—in each move, it is understandable that the parallel programming reduces the total 
running time of the game. However, when Alpha-beta pruning is applied, I found that parallel 
implementation took longer than single-core sequential implementation.  
 
Different depths are used for test, and the result of the parallel execution with the depth of 6 are 
displayed below.    
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In the 4-core processing, the total time is 65.905s, MUT time is 58.159s, and GC time is 7.744s. 
On the other hand, a reduced running time is observed in a single-core processing; the total time 
is 45.301s, MUT time is 43.644s, and GC time is 1.656s. Both MUT time and GC time are 
decreased. There is also a difference between 88.2% and 96.3% in Productivity. In the 
ThreadScope result, it looks like the 4 cores were all run regularly, but on a closer look (via 
zoom-in), it is not as follows:  
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Much more regular and active processing is monitored in a single-core processing.  
 
For further examination, “rseq” is added, and the result is as follows: 
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The number of sparks is significantly reduced in this rseq application. In a 4-core processing, 
there is no converted spark, and the three cores did not work properly.  
 

 
 
On the other hand, a single-core processing worked well without interruption.  
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It is much clear in using rdeepseq to evaluate the argument. “rdeepseq” is slower, but it increases 
considerably the chance of winning.  
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Conclusion  
 
The parallel programming is indeed impactful for the performance of the program. If it is 
properly used in a certain algorithm, it can increase the speed of run-time and thus efficiency. 
However, an actual parallel execution under the hood is abstract. As examined above, the 
parallel implementation increased the performance of the game by reducing the running time, but 
it did not work as expected when the alpha-beta pruning method is applied. In addition, 
“rdeepseq” is slower, but it seems to increase the accuracy of minimax.  
 
 
Reference  
 
In consideration of the scope of the project, an existing code2 of the game 2048 in GitHub is 
partly used.    
 
https://github.com/gregorulm/h2048/blob/master/h2048.hs  
https://hackage.haskell.org (refer. for haskell) 
https://wiki.haskell.org (refer. for haskell) 
 
 
Code  
 
{- 

 
2 https://github.com/gregorulm/h2048 
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Final Project Code  
 
Reference:  
https://hackage.haskell.org (refer. for haskell) 
https://wiki.haskell.org (refer. for haskell) 
https://github.com/gregorulm/h2048/blob/master/h2048.hs (refer. for 2048 Game base 
code) 
 
compile and execute :  
$ ghc -threaded -rtsopts -eventlog --make 2048.hs  
$ time ./2048 +RTS -ls -s 
$ time ./2048 +RTS -N2 -ls -s 
$ time ./2048 +RTS -N4 -ls -s 
-} 
import Prelude hiding (Left, Right) 
import Data.List 
import Data.Maybe 
import System.IO 
import System.Random -- cabal install --lib random (to install random) 
import Text.Printf 
import Control.Parallel.Strategies 
import InteractiveEval (Term(val)) 
 
{- 
Parallel Implementation with using Strategies  
"Strategies" provide methods for parallel implementation.  
to install import Strategies :  
$ cabal install --lib parallel  
import Control.Parallel.Strategies 
-} 
 
-- type for 4 options that players can take in each turn  
data Move = Up | Down | Left | Right 
-- type grid as list of list of int  
type Grid = [[Int]] 
maxVal = toInteger (maxBound :: Int) 
minVal = toInteger (minBound :: Int) 
direction = [Left, Right, Up, Down] 
start_score = 0  
 
-- <defining functions> 
-- start : initialize a 4x4 grid with 0 value 
start :: IO Grid 
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start = do grid' <- addRandomTile $ replicate 4 [0, 0, 0, 0] 
           addRandomTile grid' 
 
-- addRandomTile : add a value of 2 (90%) or 4(10%) in a tile with 0 value  
addRandomTile :: Grid -> IO Grid 
addRandomTile grid = do 
    val <- pickRandomEmptySpot [2,2,2,2,2,2,2,2,2,4] 
    let randomSpot = getCoordinateOfZero grid 
    selected_random_spot <- pickRandomEmptySpot randomSpot 
    let new_grid = setNewGrid grid selected_random_spot val 
    return new_grid 
 
-- getCoordinateOfZero : get coordinates of tiles with 0 value  
getCoordinateOfZero :: Grid -> [(Int, Int)] 
getCoordinateOfZero grid = filter (\(row, col) -> (grid!!row)!!col == 0) coordinates 
    where singleRow n = zip (replicate 4 n) [0..3] 
          coordinates = concatMap singleRow [0..3] 
 
-- pickRandomEmptySpot : choose randomly where a new tile with 2 or 4 is set among an 
empty tile 
pickRandomEmptySpot :: [a] -> IO a 
pickRandomEmptySpot xs = do 
    i <- randomRIO (0, length xs-1) 
    return (xs !! i) 
 
-- setNewGrid : set a new grid configuration  
setNewGrid :: Grid -> (Int, Int) -> Int -> Grid 
setNewGrid grid (row, col) val = pre ++ [mid] ++ post 
    where pre  = take row grid 
          mid  = take col (grid!!row) ++ [val] ++ drop (col + 1) (grid!!row) 
          post = drop (row + 1) grid 
 
-- merge : combine two same numbered tiles  
merge :: [Int] -> [Int] 
merge xs = merged ++ padding 
    where padding = replicate (length xs - length merged) 0 
          merged  = combine $ filter (/= 0) xs 
          combine (x:y:ys) | x == y = x * 2 : combine ys 
                           | otherwise = x  : combine (y:ys) 
          combine x = x 
 
-- move : get a new grid after move with direction (up, down, left, right) 
move :: Move -> Grid -> Grid 
move Left  = map merge 
move Right = map (reverse . merge . reverse) 
move Up    = transpose . move Left  . transpose 
move Down  = transpose . move Right . transpose 
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-- isMoveLeft : check if it is applied in "LEFT" 
isMoveLeft :: Grid -> Bool 
isMoveLeft grid = sum allChoices > 0 
    where allChoices = map (length . getCoordinateOfZero . flip move grid) directions 
          directions = [Left, Right, Up, Down] 
 
-- printGrid : display the current grid  
printGrid :: Grid -> IO () 
printGrid grid = do 
    putStr "\n" 
    mapM_ (putStrLn . concatMap (printf "%5d")) grid 
 
-- checkGoalSate : check if it is a goal state (a tile with the value of 2048) 
checkGoalSate :: Grid -> Bool 
checkGoalSate grid = [] /= filter (== 2048) (concat grid) 
 
-- get child nodes grid array  
getChildNodes :: Grid -> [Grid] 
getChildNodes grid = filter isNotGrid [move direction grid | direction <- direction ] 
    where isNotGrid values = values /= grid 
 
-- goal state incentive + 3 hueristic methods  
-- getWeightedValue : get weighted value (after applying heuristic methods) 
getWeightedValue :: Grid -> Integer 
getWeightedValue grid = maximum [if x == 2048 then 1000 else 0 | x <- map maximum 
grid] + applyPositionWeights grid - applySimilarityWeights grid + (100*getSpotZero 
grid) 
 
-- 3 Heuristic Methods  
getSpotZero :: Grid -> Integer 
getSpotZero grid = toInteger $ sum $ map checkZeroSpot grid 
    where checkZeroSpot grid = length $ filter isZero grid 
            where isZero x = x == 0 
 
-- applyPositionWeights : new values of grid in cosideration of position heuristically   
applyPositionWeights :: Grid -> Integer 
applyPositionWeights grid = toInteger $ sum (map sum (zipWith (zipWith (*)) weights 
grid)) 
    where weights = [[10,8,6,4],[8,8,6,2],[6,6,4,1],[4,2,1,1]] 
 
-- applySimilarityWeights : get tiles with similar values closer  
applySimilarityWeights :: Grid -> Integer 
applySimilarityWeights [] = 0 
applySimilarityWeights (x:xs) = smc x + applySimilarityWeights xs 
    where smc (a:b:c:d:_) = fromIntegral $ 10*(abs(a-b) + abs(b-c) + abs(c-d)) 
            where smc [] = 0 
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-- parallel implementation for minimax (using Strategies) 
-- getMaximumGrid : find a next grid that maximizes the winning chance in paralell 
implementation  
getMaximumGrid :: Grid -> Int -> Grid 
getMaximumGrid grid max_depth = new_grid !! fromJust (elemIndex (maximum values) 
values) 
    where new_grid = getChildNodes grid           
          values = runEval $ do { 
              ; result <- rpar [getDepthValue grid (max_depth-1) | grid <- new_grid]               
              ; rseq result 
            --   ; rdeepseq result 
              ; return result 
          } 
    -- runEval :: Eval a -> a (to pull the result out of the monad) 
    -- parList :: Strategy a -> Strategy [a] (to evaluate each element of a list in 
parallel according to given strategy) 
    -- rpar :: Strategy a (to spark its argument (for evaluation in parallel)) 
    -- rseq :: Strategy a (to evaluates its argument to weak head normal form) 
    -- rdeepseq :: NFData a => Strategy a (to fully evaluates its argument) 
 
-- getDepthValue : get values of nodes in the depth   
getDepthValue :: Grid -> Int -> Integer 
getDepthValue grid 0 = getWeightedValue grid 
getDepthValue grid depth = toInteger twoVal + toInteger fourVal 
    where twoVal = round(realToFrac(minimizeVal grid (getCoordinateOfZero grid) 2 
minVal maxVal maxVal (depth-1))*0.9) 
          fourVal = round(realToFrac(minimizeVal grid (getCoordinateOfZero grid) 4 
minVal maxVal maxVal (depth-1))*0.9) 
 
-- minimax algorithm : minimizeVal & maxmizeVal  
minimizeVal :: Grid -> [(Int, Int)] -> Int -> Integer -> Integer -> Integer -> Int -> 
Integer 
minimizeVal grid [] value alpha beta min depth = min 
minimizeVal grid (x:xs) value alpha beta min depth 
  | depth == 0 = getWeightedValue grid 
  | val < min = minimizeVal grid (x:xs) value alpha beta val depth 
  | beta > min = minimizeVal grid (x:xs) value alpha min min depth 
  | alpha >= min = minimizeVal grid xs value alpha beta min depth 
  | otherwise = minimizeVal grid xs value alpha beta min depth 
    where (netSet, val) = maximizeVal (getChildNodes (setNewGrid grid x value)) grid 
alpha beta minVal (depth-1) 
 
maximizeVal :: [Grid] -> Grid -> Integer -> Integer -> Integer -> Int -> (Grid, 
Integer) 
maximizeVal [] grid alpha beta max max_depth = (grid, max) 
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maximizeVal (x:xs) grid alpha beta max max_depth 
  | max_depth == 0 = (grid, getWeightedValue grid) 
  | val > max = maximizeVal (x:xs) x alpha beta val max_depth 
  | max >= beta = maximizeVal xs grid alpha beta max max_depth 
  | max > alpha = maximizeVal (x:xs) grid max beta max max_depth 
  | otherwise = maximizeVal xs grid alpha beta max max_depth 
    where val = getDepthValue x (max_depth-1) 
 
-- gameLoop : implement loop of game  
gameLoop :: Grid -> Int -> IO () 
gameLoop grid num_of_move 
    | isMoveLeft grid = do 
        printGrid grid 
        if checkGoalSate grid 
        then do putStrLn "You win" 
                print num_of_move 
        else do let new_grid = getMaximumGrid grid 6 
                if grid /= new_grid 
                then do new <- addRandomTile new_grid 
                        gameLoop new (num_of_move+1) 
                else gameLoop grid (num_of_move+1) 
    | otherwise = do 
        printGrid grid 
        putStrLn "You lose" 
        print num_of_move  
 
main :: IO () 
main = do 
    hSetBuffering stdin NoBuffering 
    grid <- start 
    gameLoop grid start_score 
 
 


