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Introduction

This project examines a Haskell parallel implementation of minimax algorithm in the game
called 2048. The game 2048 is selected for the project because it is deterministic in a fully
observable environment, and the minimax algorithm is complete and its running time can be
adjusted with a max depth of the algorithm depending on the need of examination.

For the two-player turn-based game, the minimax algorithm is utilized to find an optimal choice
for both agents. Particularly, the recurring process of minimax algorithm is dealt with parallel
execution to speed up the running time of algorithm. For further improvement of algorithm, an
iterative deepening search is used and also processed in a parallel programming. Although
sophisticated heuristics methods might be a better way of improving the overall performance in
this problem, I uses some naive heuristic methods that improve the program just as much as I can
test the parallel implementation, in consideration of the purpose and the scope of the project.

Background

The game 2048 is a sliding tile puzzle game which was initially written in Javascript and CSS by
Gabriele Circulli, who is an Italian web developer.! In a 4x4 grid, the game starts with two tiles
with a value—which is either 2 or 4. Each player chooses a direction—up, down, left, and
right—and then numbered tiles slide until they reach to another numbered tile or the edge of the
grid. The two tiles are merged into one tile with a combined value when the two same numbered
tiles are alongside in the direction of sliding. If three tiles of the same value are consecutive, then
only the farthest two tiles along the sliding direction will be combined. If four tiles of the same
value are consecutive, then the first two and the last two will be combined respectively. In each
turn, a new value—either 2 (90%) or 4 (10%)—will be randomly set in a tile with O value. The
goal of the game is to create a tile with a value of 2048. The total score, which starts from 0 and
will be increased by a combined value when two tiles are merged, is kept track.

1 https://github.com/gabrielecirulli/2048




Methodology

In this project, the program is designed to decide move direction on behalf of two players in each
turn, and minimax algorithm is used for decisions. Minimax algorithm is a recursive or
backtracking algorithm, based on an adversarial search, and mostly used in decision-making and
game theory. The algorithm provides an optimal option for a player with an assumption that the
opponent also chooses an optimal one in each state. Since the goal of each player is maximizing
their own utility to win, both maximizer and minimizer functions are recursively used to find a
decision in a state. The maximizer tries to get the highest value possible, while the minimizer
tries to get the lowest score possible.

(terminal values)

Figure 1 : a search tree
A search trees represents minimax algorithm that proceeds from the top node of the tree to the
terminal node and backtracks the tree. Each node is an option containing a value that represents a
utility, and a decision is made based on a comparison of two values in node pair. Terminal values



are in nodes of the last level, the so-called leaf nodes. It is assumed that there are two players,
MAX and MIN. In Figure 1, the MAX player chooses terminal values from leaf nodes to
maximize the value to win the game. S0, 9,7, 9, 5 are selected. Then, the MIN player chooses
those values to minimize the MAX’s value to win, and 7, 5 are selected. In the same way, the
MAX player chooses a bigger value to maximize. Finally, 7 is selected.

The value is the utility when the state is the leaf node. If the state is the MAX, the value is
highest value of all successor node values, while the value is lowest value of all successor node
values in the MIN.

The minimax algorithm can be represented in a pseudo-code as below:
Function minimax(node, isMaximizing):

if depth == 0 or node is a terminal node then
return the value of this node
if isMaximizing
for each child of node
childValue = minimax(child, FALSE)
value = max(value, childValue)
return value
else
for each child of node
childValue = minimax(child, TRUE)
value = min(value, childValue)
return value

Since the minimax algorithm loops through every node of the tree, it can be slow and inefficient
depending on the depth. To improve the algorithm, we can use Alpha-beta pruning which
decreases the number of nodes that minimax algorithm evaluates. Alpha is the largest value for
MAX across evaluated nodes and beta is the lowest value for MIN. The initial alpha value is
usually set as a negative infinity and the initial beta is set as a positive infinity, but in this project
“minBound :: Int” and “maxBound :: Int” are respectively used because a possible value is
bounded. As the algorithm goes over nodes, the values of alpha and beta are updated. And, when
the alpha value is greater than the beta value, the remaining branches are pruned.

As noted above, some heuristic methods are used to increase the winning chance, which helps
the analysis of parallel implementation. A couple of naive methods, which increase instantly the
performance, are good enough for the scope of the project. A weight function is constructed with
those methods; the goal value of 2048 has a large value of integer, a closer position to the top left
corner gets a higher weight, tiles with a value of 0 have a weight, and neighboring tiles with
similar values get higher weights.

Heuristic Methods
1) getSpotZero :: Grid -> Integer
getSpotZero grid = tolnteger $ sum $ map checkZeroSpot grid



where checkZeroSpot grid = length $ filter isZero grid
where isZero x = X ==

2) applyPositionWeights : new values of grid in cosideration of position heuristically
applyPositionWeights :: Grid -> Integer
applyPositionWeights grid = tolnteger $ sum (map sum (zipWith (zipWith (*)) weights grid))
where weights = [[10,8,6,4],[8,8,6,2],[6,6,4,1],[4,2,1,1]]

3) applySimilarityWeights :: Grid -> Integer
applySimilarityWeights [] =0
applySimilarityWeights (x:xs) = smc x + applySimilarityWeights xs
where smc (a:b:c:d:_) = fromIntegral $ 10*(abs (a - b) + abs (b - ¢) + abs (c - d))
where smc [] =0

In addition, different depths are applied to test the performance of the parallel execution. Since
the time complexity of minimax is O(b?) and the minimax algorithm goes all the way down to
the leaf node of the tree, which is not convenient for the purpose of examination, depths below 7
are tested given the running time constraints.

Parallelism

Parallelism

For a parallel execution of the algorithms in Haskell, Control.Parallel.Strategies is imported, and
a few strategies in it are used. “rpar” is mainly used to spark the arguments, and “parList”
evaluates the list of values, which is the derived utility. “runEval” is used to wrap out the result.
“rseq” and “rdeepseq” are also tested respectively to examine performance difference. When the
strategy is implemented, the program performs multiple executions for recursive search in
parallel after being sparked and combines the results as a wrapped form.



The Strategies method is a deterministic parallel programming, and this project focuses only the
method, but non-deterministic parallelism might be examined in future work. Haskell also
provides a library called "Control.Concurrent" for that.

Result and Anlaysis

Since the minimax algorithm is involved in proceeding all the child nodes of each branch—by a
depth, if any —in each move, it is understandable that the parallel programming reduces the total
running time of the game. However, when Alpha-beta pruning is applied, I found that parallel
implementation took longer than single-core sequential implementation.

Different depths are used for test, and the result of the parallel execution with the depth of 6 are
displayed below.

You win
981
93,653,548,352 bytes allocated in the heap
280,563,920 bytes copied during GC
263,256 bytes maximum residency (148 sample(s))
71,904 bytes maximum slop
6 MiB total memory in use (@ MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen 0 34906 colls, 34906 par 7.625s 2.363s 0.0001s 0.0210s
Gen 1 148 colls, 147 par 0.119s 0.032s 0.0002s 0.0003s

Parallel GC work balance: 53.74% (serial 0%, perfect 100%)
TASKS: 10 (1 bound, 9 peak workers (9 total), using -N4)
SPARKS: 6984 (5028 converted, @ overflowed, @ dud, 964 GC'd, 992 fizzled)
INIT time 0.001s ( 0.018s elapsed)
time 58.159s ( 22.214s elapsed)
time 7.744s ( 2.395s elapsed)
(
(

time 0.001s 0.012s elapsed)
time 65.905s

24.638s elapsed)

Alloc rate 1,610,300,711 bytes per MUT second
Productivity 88.2% of total user, 90.2% of total elapsed

./2048 +RTS -N4 -1s -s 65.91s user 3.61s system 278% cpu 24.953 total
(base) song $ 6 w/of]
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In the 4-core processing, the total time is 65.905s, MUT time is 58.159s, and GC time is 7.744s.
On the other hand, a reduced running time is observed in a single-core processing; the total time
18 45.301s, MUT time is 43.644s, and GC time is 1.656s. Both MUT time and GC time are
decreased. There is also a difference between 88.2% and 96.3% in Productivity. In the
ThreadScope result, it looks like the 4 cores were all run regularly, but on a closer look (via
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is not as follows:
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You win
1074
117,630,024,728 bytes allocated in the heap
325,630,360 bytes copied during GC
106,360 bytes maximum residency (51 sample(s))
30,120 bytes maximum slop
3 MiB total memory in use (@ MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen 0 113002 colls, 0 par 1.644s  2.080s 0.0000s 0.0055s
Gen 1 51 colls, 0 par 0.012s 0.013s 0.0003s 0.0004s

TASKS: 4 (1 bound, 3 peak workers (3 total), using —N1)

SPARKS: 7810 (@ converted, @ overflowed, @ dud, 1076 GC'd, 6734 fizzled)

INIT time 0.001s ( 0.013s elapsed)
time 43.644s ( 44.546s elapsed)
time 1.656s ( 2.093s elapsed)
time 0.000s ( 0.012s elapsed)
time 45.301s ( 46.664s elapsed)

Alloc rate 2,695,217,453 bytes per MUT second
Productivity 96.3% of total user, 95.5% of total elapsed

./2048 +RTS -N1 -1s -s 45.30s user 1.12s system 99% cpu 46.682 total
(base) song: $ 6 w/o
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Much more regular and active processing is monitored in a single-core processing.

For further examination, “rseq” is added, and the result is as follows:



You win
956
87,123,630,432 bytes allocated in the heap
309,936,128 bytes copied during GC
140,792 bytes maximum residency (40 sample(s))
60,936 bytes maximum slop
6 MiB total memory in use (@ MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen 0 83698 colls, 83698 par 15.012s 2.927s 0.0000s 0.0220s
Gen 1 40 colls, 39 par 0.029s 0.008s 0.0002s 0.0004s

Parallel GC work balance: 0.68% (serial 0%, perfect 100%)
TASKS: 10 (1 bound, 9 peak workers (9 total), using -N4)
SPARKS: 956 (@ converted, @ overflowed, @ dud, 951 GC'd, 5 fizzled)
INIT time 0.001s ( 0.011s elapsed)
MUT time 37.350s ( 37.879s elapsed)
GC time 15.040s ( 2.935s elapsed)
(
(

EXIT time 0.000s 0.007s elapsed)
Total time 52.392s

40.831s elapsed)

Alloc rate 2,332,600,153 bytes per MUT second
Productivity 71.3% of total user, 92.8% of total elapsed

./2048 +RTS -N4 -1s -s 52.39s user 8.11s system 147% cpu 41.109 total
(base) song: $ 6
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The number of sparks is significantly reduced in this rseq application. In a 4-core processing,

there is no converted spark, and the three cores did not work properly.
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On the other hand, a single-core processing worked well without interruption.



It is much clear in using rdeepseq to evaluate the argument. “rdeepseq” is slower, but it increases
considerably the chance of winning.

You win
988
91,511,771,648 bytes allocated in the heap
322,133,720 bytes copied during GC
141,672 bytes maximum residency (39 sample(s))
61,472 bytes maximum slop
6 MiB total memory in use (@ MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause

Gen 0 87913 colls, 87913 par 18.623s 4.089s 0.0000s 0.0224s
Gen 1 39 colls, 38 par 0.033s 0.009s 0.0002s 0.0004s
Parallel GC work balance: 0.63% (serial 0%, perfect 100%)
TASKS: 10 (1 bound, 9 peak workers (9 total), using -N4)
SPARKS: 988 (@ converted, @ overflowed, @ dud, 970 GC'd, 18 fizzled)
INIT time 0.001s ( 0.012s elapsed)

time 47.846s ( 48.885s elapsed)

time 18.656s ( 4.098s elapsed)

time 0.001s ( 0.004s elapsed)

time 66.503s ( 52.999s elapsed)

Alloc rate 1,912,643,195 bytes per MUT second

Productivity 71.9% of total user, 92.2% of total elapsed

./2048 +RTS -N4 -1s -s 66.51s user 10.25s system 144% cpu 53.024 total
(base) song: JMrdeepseq
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Conclusion

The parallel programming is indeed impactful for the performance of the program. If it is
properly used in a certain algorithm, it can increase the speed of run-time and thus efficiency.
However, an actual parallel execution under the hood is abstract. As examined above, the
parallel implementation increased the performance of the game by reducing the running time, but
it did not work as expected when the alpha-beta pruning method is applied. In addition,
“rdeepseq” is slower, but it seems to increase the accuracy of minimax.

Reference

In consideration of the scope of the project, an existing code? of the game 2048 in GitHub is
partly used.

https://github.com/gregorulm/h2048/blob/master/h2048.hs

https://hackage.haskell.org (refer. for haskell)
https://wiki.haskell.org (refer. for haskell)

Code

2 https://github.com/gregorulm/h2048
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Prelude

Data.List

Data.Maybe

System. IO

System.Random

Text.Printf
Control.Parallel.Strategies
InteractiveEval ( (val))

Up | Down | Left | Right

[[ 11
maxVal = toInteger (maxBound :: )
minVal = toInteger (minBound :: )
direction = [Left, Right, Up, Down]
start_score = 0




start = do grid' <- addRandomTile $ replicate 4 [0, 0, 0, 0]
addRandomTile grid'

addRandomTile :: ==
addRandomTile grid = do
val <- pickRandomEmptySpot [2,2,2,2,2,2,2,2,2,4]
randomSpot = getCoordinateOfZero grid
selected_random_spot <- pickRandomEmptySpot randomSpot
new_grid = setNewGrid grid selected_random_spot val
return new_grid

getCoordinateOfZero :: - [(Int, )1

getCoordinateOfZero grid = filter (\(row, col) —> (grid!!row)!!col == 0) coordinates
singleRow n = zip (replicate 4 n) [0..3]
coordinates = concatMap singleRow [0..3]

pickRandomEmptySpot :: [a] —>
pickRandomEmptySpot xs = do
i <- randomRIO (@, length xs-1)
return (xs !! i)

setNewGrid :: - (Int, ) —=> —>

setNewGrid grid (row, col) val = pre ++ [mid] ++ post
pre = take row grid
mid take col (grid!!row) ++ [val]l ++ drop (col + 1) (grid!!row)
post = drop (row + 1) grid

merge :: [Int] — [Int]
merge xs = merged ++ padding
padding replicate (length xs - length merged) 0
merged = combine $ filter (/= 0) xs
combine (x:y:ys) | x ==y = X x 2 : combine ys
| otherwise = x : combine (y:ys)

combine

> -
map merge
map (reverse . merge . reverse)

= transpose . move Left . transpose
transpose . move Right . transpose




isMovelLeft :: —>

isMovelLeft grid = sum allChoices > 0
allChoices = map (length . getCoordinateOfZero . flip move grid) directions
directions = [Left, Right, Up, Down]

printGrid :: —>
printGrid grid = do
putStr "\n"
mapM_ (putStrLn . concatMap (printf "%5d")) grid

checkGoalSate :: —>
checkGoalSate grid /= filter (== 2048) (concat grid)

getChildNodes :: - [ ]
getChildNodes grid = filter isNotGrid [move direction grid | direction <- direction ]
isNotGrid values = values /= grid

getWeightedValue :: -

getWeightedValue grid = maximum [if x == 2048 then 1000 else @ | x <— map maximum
grid] + applyPositionWeights grid - applySimilarityWeights grid + (100xgetSpotZero
grid)

getSpotZero :: —>
getSpotZero grid = toInteger $ sum $ map checkZeroSpot grid
checkZeroSpot grid length $ filter isZero grid
isZero x = x == 0

applyPositionWeights :: —>
applyPositionWeights grid = toInteger $ sum (map sum (zipWith (zipWith (%)) weights
grid))

weights = [[10,8,6,4],[8,8,6,2]1,16,6,4,11,[4,2,1,1]]

applySimilarityWeights ::
applySimilarityWeights =0
applySimilarityWeights (x:xs) = smc x + applySimilarityWeights xs
smc (a:b:c:d:_) = fromIntegral $ 10x(abs(a-b) + abs(b-c) + abs(c—-d))
=0




getMaximumGrid :: - -
getMaximumGrid grid max_depth = new_grid !! fromJust (elemIndex (maximum values)
values)
new_grid = getChildNodes grid
values = runEval $ {
; result <- rpar [getDepthValue grid (max_depth-1) | grid <- new_grid]
; rseq result

; return result

getDepthValue :: —> -
getDepthValue grid @ = getWeightedValue grid
getDepthValue grid depth = toInteger twoVal + toInteger fourVal

twoVal = round(realToFrac(minimizeVal grid (getCoordinateOfZero grid) 2
minVal maxVal maxVal (depth-1))%@.9)

fourVal = round(realToFrac(minimizeVal grid (getCoordinateOfZero grid) 4
minVal maxVal maxVal (depth-1))%@.9)

minimizeVal :: - [( )] —

minimizeVal grid value alpha beta min depth = min
minimizeVal grid (x:xs) value alpha beta min depth
depth == 0 = getWeightedValue grid
val < min = minimizeVal grid (x:xs) value alpha beta val depth
beta > min = minimizeVal grid (x:xs) value alpha min min depth
alpha >= min = minimizeVal grid xs value alpha beta min depth
otherwise = minimizeVal grid xs value alpha beta min depth
(netSet, val) = maximizeVal (getChildNodes (setNewGrid grid x value)) grid
alpha beta minVal (depth-1)

maximizeVal :: ] — -
)

maximizeVal grid alpha beta max max_depth = (grid, max)




maximizeVal (x:xs) grid alpha beta max max_depth
max_depth == 0 = (grid, getWeightedValue grid)
val > max = maximizeVal (x:xs) x alpha beta val max_depth
max >= beta = maximizeVal xs grid alpha beta max max_depth
max > alpha = maximizeVal (x:xs) grid max beta max max_depth
otherwise = maximizeVal xs grid alpha beta max max_depth
val = getDepthValue x (max_depth-1)

gamelLoop :: —> —> ()
gameLoop grid num_of_move
| isMovelLeft grid = do
printGrid grid
if checkGoalSate grid
then do putStrLn "You win"
print num_of_move
else do new_grid = getMaximumGrid grid 6
if grid /= new_grid
then do new <- addRandomTile new_grid
gameLoop new (num_of_move+1)
else gameLoop grid (num_of_move+1)
| otherwise = do
printGrid grid
putStrLn "You lose"
print num_of_move

main :: ()

main = do
hSetBuffering stdin NoBuffering
grid <- start
gameLoop grid start_score

16



