COMS W4995 Parallel Functional Programming
Parallel Genetic Algorithm for Graph Coloring

Milen Ferev

December 2021

Graph Coloring

The Graph Coloring Problem is an NP-Complete problem which requires the
vertices of a graph to be colored such that no two adjacent vertices have the
same color. More formally, given a graph G = {V, E} and a function ¢ : V — C
that maps nodes to a set of colors C, it is required that |C| is minimal and that

V(u,v) € E: 6(u) # 6(v)

The chromatic number x(G) of a graph G is defined as the minimum number
of colors required to correctly color the graph. Due to the complexity of the
problem, common approaches in literature focus on estimating bounds for x(G),
or searching over a set of values, trying to minimize an estimate (x(G)). Tech-
niques used in literature include Ant Colony Algorithms, Simulated Annealing,
Genetic Algorithms, Backtrack Search, and others.

The Graph Coloring problem has many applications revolving around re-
source/task scheduling. To do this, every task is represented as a vertex and if
two tasks cannot be executed at the same time an edge is drawn between them.
After computing the coloring, all the tasks of the same color are non-conflicting
and can be executed together.

Genetic Algorithms

A Genetic Algorithm is an iterative search technique inspired by evolution.
Over its runtime, an algorithm maintains a population of individuals, where
each individual is a candidate solution. At each iteration a new population is
generated using the current one. The individuals are altered via three operators:
mutation, crossover, and selection. The mutation operator causes a random
mutation in an individual. The crossover operator uses individuals from the
current population to create a new individual. The selection operator is used to
select individuals for crossover operator to be used. The quality of each solution
is measured by a fitness function. The implementation details of each of the
operators and the fitness function are specific to the problem. For this project,
implementation details are outlined in Implementation Details.

Problem Formulation

For this particular implementation, the Genetic Algorithm (GA) is used as a
search over possible values of x(G). The approach consists of fixing the number
of colors k£ and running the search algorithm in order to find a valid coloring.
The bound considered is 1 < x(G) < |V]. A linear search is performed over this
range.

At every iteration a selection operation is applied to select the fittest individuals.
Then from this set of individuals a new population is created via the mutation
and crossover operations. The search over a particular value of k is terminated
if a solution is found, or if the maximum number of iterations has been reached.

Implementation Details

Data Representation

e Graph
The graph is represented using the Data.IntMap module. The module
is an equivalent to a hashmap where the keys are integers. Each vertex
of the graph is indexed by an integer, with enumeration starting from 0.
Each key in the IntMap refers to a particular vertex and maps to a list of
integers, which are the neighbors of the vertex.

e Individual and Population

An individual is given by an IntMap where each key is a particular vertex.
The keys map to integers, where the integer represents the color of that
vertex. For a search over k colors, the colors are ennumerated by integers
in the range [0, k). The implementation uses IntMap instead of a list for
this purpose, since when parallelizing the fitness function (see below), the
colors of arbitrary vertices need to be obtained and an implementation
using list would have a slower overall runtime. In the implementation, the
populations are represented by a list of individuals.

Operators and Fitness

e Fitness
The fitness function maps an individual to an integer. In the implemen-
tation, the fitness of an individual is defined as the number of vertices
for which there is a neighbor with the same color. In the algorithm, the
fitness is minimized. A fitness of value 0 implies that the given individual
is a solution.

e Mutation
The mutation operator takes in an individual and creates a new one. The
mutation is done by finding the first vertex in the individual with a neigh-
bor of the same color and changing that individual’s color to a random
one.

e Crossover
The crossover operator takes two individuals (parents) and returns a new
one. The new individual is created by selecting a random vertex k. Then
the vertices up to k have the colors found in the first parent and after k
have the colors found in the second parent.

e Selection
The selection function takes in a population and returns a new (smaller)
population. The input population is broken into chunks. Then for each
chunk the individuals are sorted by fitness and the top individuals in each
chunk are selected. Then the chunks are merged together where they are
sorted by fitness.

Parallelism

Since the data is represented using IntMap and List, and on each iteration a
new population is generated, the algorithm is very susceptible to parallelization.
In this implementation I have parallelzied some of the operators, and the others
are applied in parallel over the population/individual. For implementing paral-
lelism, the implementation uses the Eval monad. Since most of the operations
that can be parallelized are of the same complexity for each vertex/individual,
no additional load balancing is added. Most of the parallelism is applied using a
parMap type of strategy, as the structures the algorithm uses are of a sequential
nature.

e Fitness
The fitness function has a subroutine which takes in a vertex, looks up
the neighbors and then checks if any of the neighbors have the same color.
Since each of the vertices in an individual can be processed independently
of each other, the subroutine is applied in parallalel for all the vertices on
the individual.

e Mutation
The mutation operation itself is not parallelized, as it needs to create a
new individual. However, when mutating a population, the operator is
applied in parallel to the individuals in the population.

e Crossover
Similar to the Mutation operator, the crossover operator produces a new
individual and itself cannot be parallelized. However, it is also being
applied in parallel over pairs of individuals in the population.

e Selection
The selection operator uses parallelism to process each chunk. Initially
the population is broken into chunks. Then for each chunk, in parallel,
the individuals are sorted by fitness and the top few are chosen. Then the
chunks are merged and sorted (this is not done in parallel).

Algorithm Outline

The algorithm starts the search from the number of vertices. The execution is
done by the searchRoutine function. For each of the iterations, a subset of the
population is chosen by the selection operator. Then some portion of it is mu-
tated by applying the mutation operator in parallel, and some portion is crossed
over. In particular, the crossover is done between adjacent individuals (i.e in-
dices i, i+1). Then the mutated and crossedover individuals are concatenated
into a new population. The search ends once a solution has been found or the
number of iterartions exhausted. If a search is not successfully, the algorithm
returns the last value that has been successful.

Randomness

Since the algorithm relies on randomness, in the current implementation this is
done with the mkStdGen with seed that is changed for every k (in particular,
the number of colors k is used as a seed). When a new search over some k is
started, a population of random individuals is generated using the value of k as
a seed. The value is also used for picking the crossover index in the crossover
operation (i.e for each k the value is fixed due to the properties of the language,
however it changes from iteration to iteration). For the mutation operation, the
current conflicting color plus the current value of k is used as a seed for the new
color

Results

The algorithm was tested on standard Graph coloring tests provided by DI-
MACS. A link to all tests can be found in the README. The tests were done
using the files myciel6.col and dsjc250.5.col. The algorithm was executed on
a machine with Intel Core i7-5600U CPU, on Ubuntu 20.04.3 LTS. The graph
dsjc250.5.col has 250 vertices and 31336 edges (and is one of the harder tests in
DIMACS) and the graph myciel6.col has 95 vertices and 755 edges.

e myciel6.col with -N2

Total time: 2.585
Mutator time: 2.41s

GC time: 0.17s
Productivity: 93.3% of mutator vs total

e myciel6.col with -N4

T 0000 A 0 O 00000 0 A

O 00 0 AR A U
O 00 0 0 000 0 0 AR

N0 0 0 A R 0 0 AR

Total time:
Mutator time:

5
0,

2
2.2
GC time: 0.2
Producktivity: 91.

1.8% of mutator vs total

e dsjc250.5.col with -N2

Total time: 38.07s

Mutator time: 36.89s

GC time: 1.19s

Productivity: 96.9% of mutator vs total

e dsjc250.5.col with -N2

Total time: 29.84s5

Mutator time: 28.34s
GC time: 1.50s
Productivity: 95.0% of mutator vs total

From the results it can be seen that adding more threads speeds up the result.
For the smaller graph this is not as significant. For the larger graph the speedup
is much more significant.

Future Improvements

e Search Strategy

Theoretically the current search strategy works, since given an optimal col-
oring of k colors, a coloring of k+1 colors can be generated by coloring a
vertex with that color. However, in this case this is is not optimal because
the algorithm does not always find a solution. Thus due to the current
search strategy, it tends to severely overestimate the value by stopping at
the first value of k for which it did not find a solution. Alternative strate-
gies were also considered. For example one of the candidate strategies in
consideration was to spawn a search for every k in the range. However
this was not practical due to two the need for an adequate load balancing,
since the complexity/duration of each search could increase with changes
in the value of k, and because this caused too many sparks to get gener-
ated and the process to get killed (even for populations of sizes less than
1000).

e Random Number Generation
The random number generation can be improved. To do this, the stdGen
in the System.Random module can be used. However due to the properties
of the language this would require the entirety of the code to be wrapped
within a monad.

e Hyperparameters
The hyperparameters (i.e population size, sizes of mutation and crossover,
etc.) can be further optimized. In the current implementation a popu-
lation size of 1000 is used. However population sizes up to 8000 were
used. The value 1000 was chosen since this scales better for large graphs,
whereas higher values cause the process to get killed.

Sources

e The algorithm was loosely based on
Abbasian, Reza, and Malek Mouhoub. ”An efficient hierarchical parallel
genetic algorithm for graph coloring problem.” Proceedings of the 13th
annual conference on Genetic and evolutionary computation. ACM, 2011.

e Lecture Notes, Video Lectures
e Hackage for Data.IntMap, Data.List, System.Random

e VS Code syntax suggestions

Code Listing

e Graphs (some lines broken for visibility)

module Graphs where

import qualified Data.IntMap.Strict as IntMap

import Control.Parallel.Strategies (runEval, rpar, Eval)
import Control.Monad (foldM)

import Data.Maybe (isJust)

import System.Random (randomRs, mkStdGen)

import System.IO(openFile, hGetContents, IOMode(ReadMode))
import Data.List (sortBy)

type Vertex = Int
type Color = Int
type Graph = IntMap.IntMap [Vertex]

type Individual IntMap.IntMap Color
type Population = [Individuall

seed :: Int
seed = 1337
populationSize :: Int

populationSize = 1000

iterations :: Int
iterations = 10

num0fChunks :: Int
num0fChunks = 5

numToSelect :: Int
numToSelect = 100

numToMutate :: Int
numToMutate = 200

numToCrossover :: Int
numToCrossover = 800

succl :: Int -> Color -> Color
succl = getRandomColor

getRandomColor :: Int -> Int -> Int
getRandomColor k col = head $ take 1 $ randomRs (0, k-1) (mkStdGen (k+col))

-- map a function over a list with Eval
mapParMap :: (a -> b) -> [a] -> Eval [b]
mapParMap _ [] = return []
mapParMap f (a:as) = do

b <- rpar (f a)

bs <- mapParMap f as

return (b:bs)

-- Fitness function
fitness :: Graph -> Individual -> Maybe Int
fitness graph individual = do
let counts = runEval (mapParMap (checkVertex graph individual)
(IntMap.toList individual))
foldM (fmap . (+)) O counts

-- checks if vertex has neighbors of same color
checkVertex :: Graph -> Individual -> (Vertex, Color) -> Maybe Int
checkVertex graph individual (vertex, color) = do

neighbors <- IntMap.lookup vertex graph

colors <- mapM (" IntMap.lookup™ individual) neighbors

if color "notElem” colors then return O else return 1

-- mutation operator

mutate :: Graph -> Int -> Individual -> Individual
mutate graph colors individual = IntMap.fromList(f (IntMap.toList individual))
where
f :: [(Int, Color)] -> [(Int, Color)]
£ 0 =1

f ((k,v):xs) = if checkVertex graph individual (k,v) == Just O
then (k,v) : f xs
else (k, succl colors v) : f xs

—=— crossover operat or

crossover :: Int -> Individual -> Individual -> Individual
crossover col indl ind2 = IntMap.fromList (f 11 12 k)
where

11 = IntMap.toList indl
12 = IntMap.tolist ind2

k = getRandomCrossover col (length 11)

f :: [(Int, Color)] -> [(Int, Color)] -> Int -> [(Int, Color)]
£t 00_=10

£ [1 1st2 _ = 1st2

f 1st1l [] = 1stl

f (x:xs) (_:ys) depth = if depth /= O then x :

-— split population to chunks
splitToChunks :: Int -> [a] -> [[a]]
splitToChunks n 1 = £ n 1 where
(k,_) = quotRem (length 1) n
f :: Int > [a] -> [[al]
t_0=10

f nch 1lst = if nch == 0 then [1lst] else chunk :

where

(chunk, tl) = splitAt k lst

—-- sort a chunk

sortChunk :: Graph -> [Individual] -> [Individuall]
sortChunk graph = sortBy (\x y -> compare (fitness graph x) (fitness graph y))

-- select K from population

f xs ys (depth-1) else ys

f (nch-1) tl1

selectK :: Graph -> Int -> Int -> Population -> Population

selectK graph nchunks k population =
chunksSorted where

chunks = splitToChunks nchunks population

sortChunk graph $ concatMap (take k)

chunksSorted = runEval $ mapParMap (sortChunk graph) chunks

-- used to read row for dimacs
readRow :: String -> [(Int, [Int])]
readRow input = case head row of
['e'] => [(a,[b]), (b,[al)]
- >0
where
row = words input

:: Int

a' = read ((head . tail . tail) row)
b' = read((head . tail) row)

—-- since vertices are 1-indexed
a=a'-1

b=">b'-1

readGraphDIMACS :: String -> IO Graph

readGraphDIMACS filename = do
h <- openFile filename ReadMode
contents <- hGetContents h

Int

let edgelist = concatMap readRow (lines contents)
let graph = IntMap.fromListWith (++) edgelist

return graph

10

getRandomNums :: Int -> Int -> [Int]
getRandomNums k size = take size §$ randomRs (0, k) (mkStdGen k)

getRandomCrossover :: Int -> Int -> Int
getRandomCrossover k individualSize = head $ take 1 $

randomRs (0, individualSize-1) (mkStdGen k)

—-— creates population

initializePopulation :: Int -> Int -> Population
initializePopulation individualSize colors = population
where

numbers = getRandomNums colors (individualSizex*populationSize)

individualChunks = splitToChunks populationSize numbers

population = map (IntMap.fromList . zip [0..(individualSize-1)])
individualChunks

-- overall search
searchK :: Int -> Graph -> Maybe Int
searchK k graph = do
let individualSize = IntMap.size graph
if k == 0 then
return individualSize
else do

let population = initializePopulation individualSize k
res <- searchRoutine graph population k iterations

if res then do searchK (k-1) graph

else return k

-- search for particular k

searchRoutine :: Graph -> Population -> Int -> Int -> Maybe Bool
searchRoutine graph population k iter = do
if iter == 0 then return False else do

let newPopulation = selectK graph numOfChunks numToSelect population
let fits = filter isJust (map (fitness graph) newPopulation)
let solution = Just O “elem” fits
if solution then return True
else do
let mutated = runEval $ mapParMap (mutate graph k)
(take numToMutate newPopulation)
let crossedover = runEval $ mapParMap (uncurry (crossover k))
(take numToCrossover [(x,y) | x <- cycle newPopulation,
y <- tail (cycle newPopulation)])
let nextPopulation = crossedover ++ mutated
searchRoutine graph nextPopulation k (iter-1)

11

e Main

module Main where

import Graphs

import System.Environment (getArgs)

import qualified Data.IntMap.Strict as IntMap
import Control.DeepSeq (force)

main :: I0Q)
main = do
args <- getArgs
case args of
[filename] -> do
graph <- force readGraphDIMACS filename
let initialK = IntMap.size graph
print (searchK initialK graph)
-> error "Bad Input"

12

