
Blocked Floyd-Warshall Algorithm
Pelin Cetin (pc2807)

I. INTRODUCTION

In a directed weighted graph with positive or negative edge weights, the Floyd–Warshall
method is used to identify the shortest pathways, or rather summed weights, between all pairs of
vertices in a single iteration of the algorithm.

With a runtime of V3 where V is a vertex, the normal Floyd–Warshall algorithm examines
all potential pathways across the graph between each pair of vertices. Every edge combination is
put to the test. It accomplishes its goal of finding the shortest path for all pairs by gradually
refining a prediction of the shortest path between two vertices until the prediction is ideal.

The blocked Floyd-Warshall algorithm has been created as an alternative to the normal
Floyd-Warshall algorithm. This version is meant to be run in parallel and hence reduce the
runtime. The algorithm splits the adjacency matrix into blocks and processes them in three
different phases: dependent, partially dependent, and independent.

II. BLOCKED FLOYD WARSHALL ALGORITHM

The Floyd-Warshall algorithm is a dynamic programming algorithm, which means that
the problem is broken down into smaller problems and is solved in a recursive manner. The
blocked version of the algorithm is also dynamic.

The blocked Floyd-Warshall algorithm splits the adjacency matrix that is given to the
program as input into blocks and processes them in three different phases: dependent, partially
dependent, and independent.

First, in the dependent phase, the kth diagonal block is processed. This means that when
k=0, the block on the top left corner is processed. When k=1, the block that is on the first row and
first column is processed. The program keeps processing the kth block until all blocks on the
diagonal of the block adjacency matrix are processed. The dependent phase cannot be
parallelized, as the other phases depend on it. However, before we increment k, we go into the
partially dependent phase. In this phase, we process the kth row and the kth column of blocks.
This means that when k=0, this phase processes the zeroth column and zeroth row. Lastly, in the
independent phase, the remaining blocks are processed.

[1] https://moorejs.github.io/APSP-in-parallel/

The term processed means that the floyd_warshall_in_place algorithm is called, which
takes three matrices of size bxb, where b refers to the block size. This function ultimately does the
comparison of [i][k] + [k][j] with [i][j] that is fundamental to the Floyd-Warshall algorithm.

III. IMPLEMENTATION
A. Adjacency Matrix Representation

The graph is represented as a list of data constructor Weight, which has been defined as
either having an Integer value associated with it or having the value None. The value None refers
to the state of one vertex not having a direct connection to another. Additionally, a diagonal line
of Weight 0s runs throughout the input and output adjacency matrices since for example, the
shortest path from vertex A to vertex A should be 0.

B. Random Adjacency Matrix Generation

The adjacency matrix, as explained above, should have a diagonal line of Weight 0s run
throughout it. The remaining places should either have a weighted edge or be None. To come up
with a random adjacency matrix, I have used the function randomIO from the module
System.Random to generate a boolean and if it is false, I prepend None to the matrix. If it is true,
I need to append a Weight that has a random integer associated with it. To make it random, I use
another function from the System.Random module: randomRIO. I gave it a range of -10 to 200
and it will pick a random number. I then convert this Monad to an Int and create a Weight data
type and prepend that to the matrix.

C. Sequential Implementation with the C Matrix

The reference material uses three matrices of bxb size for the floyd_warshall_in_place, as
explained above. In this sequential version of the program, I essentially converted the C++ code
into Haskell. However, it is important to note that this could not be parallelized in Haskell. The
C++ code essentially accessed the memory places of various indexes of the adjacency matrix and
updated them. This is tricky to do in Haskell due to the fact that objects are immutable and
indexing does not exist. I had to create a function where if the list and the index is given, it
returns the element. Moreover, the C++ implementation saved the new [i][j] values in the C
matrix given as a parameter to the floyd_warshall_in_place function. In my implementation, I
returned the C matrix and appended that to the first half of the input variable to create the output.
Since all threads would return a C matrix and then it would be difficult to stitch them back
together, I had to change the implementation. However, I still kept this file as a nod to the
reference material.

D. Sequential Implementation without the C Matrix

Instead of returning the C matrix in floyd_warshall_in_place, I return the indexes where a
more ideal path has been found as well as the new weight that should be there. I essentially do

this by returning a list of tuples with the index and the new weight. After the functions have
returned, I loop over this list and update the adjacency matrix.

E. Parallel Implementation

In order to make my program work in parallel, I called the partially dependent and inner
independent phases with differing values of the for loop. I achieved this by first creating a list
with the possible i values of the for loop. I then mapped different elements of this list as an
argument to the phase functions and called spawnP on them. For example, if i starts from 0 and
partially_dependent phase function takes i as an argument, I map 0 as an argument to the function
and call it with spawnP. I also had to tweak the phase functions so that they would not be
recursive themselves. Additionally, spawnP requires a pure expression. The partially_dependent
and inner_independent phase functions return a list of Weights. Therefore, in order for my
program to compile, I had to tweak the data constructor Weight to derive normal-form data as
well. In order for Weight to work both as a normal-form data and not, I also had to derive
Generics, a GHC function that essentially allows the developer to use the same code with
differing data types.

IV. RESULTS

I am on a Macbook 2016, 3.1 GHz Dual-Core Intel Core i5. I ran Sequential_fw_block.hs
and Parallel_fw_block.hs to get the results.

Sequential Parallel

64 vertices, block size = 8 316.21 secs 314.62 secs

70 vertices, block size = 7 462.78 secs 457.64 secs

80 vertices, block size = 8 958.63 secs 904.47 secs

V. REFERENCE
https://moorejs.github.io/APSP-in-parallel/

VI. SOURCE CODE

Graph.hs

{-# LANGUAGE DeriveAnyClass, DeriveGeneric #-}

module Graph where

import Control.Parallel

https://moorejs.github.io/APSP-in-parallel/

import Control.Parallel.Strategies

import GHC.Generics (Generic)

data Weight = Weight Int | None deriving (Eq, Ord, Show, Generic, NFData)

addWeights :: Weight -> Weight -> Weight

addWeights (Weight x) (Weight y) = Weight (x + y)

addWeights _ _ = None

dataAt :: Int -> [Weight] -> Weight

dataAt _ [] = error "Empty List!"

dataAt y (x:xs) | y <= 0 = x

| otherwise = dataAt (y-1) xs

removeItem :: Int -> [Int] -> [Int]

removeItem _ [] = []

removeItem x (y:ys) | x == y = removeItem x ys

| otherwise = y : removeItem x ys

replace_nth :: [Weight] -> (Int, Weight) -> [Weight]

replace_nth [] _ = []

replace_nth (_:xs) (0,a) = a:xs

replace_nth (x:xs) (n,a) = if n < 0 then (x:xs) else x: replace_nth xs (n-1,a)

replace_n_list :: [(Int, Weight)] -> [Weight] -> [Weight]

replace_n_list _ [] = []

replace_n_list [] input = input

replace_n_list (x:xs) input = replace_n_list xs (replace_nth input x)

Sequential_fw_block_with_C.hs

{-

Sequential Floyd-Warshall algorithm with 2-D block mapping in Haskell

with the C matrix in floyd_warshall_in_place

-}

module Sequential_fw_block_with_C where

import Data.List

--import Debug.Trace

data Weight = Weight Int | None deriving (Eq, Ord, Show)

addWeights :: Weight -> Weight -> Weight

addWeights (Weight x) (Weight y) = Weight (x + y)

addWeights _ _ = None

dataAt :: Int -> [Weight] -> Weight

dataAt _ [] = error "Empty List!"

dataAt y (x:xs) | y <= 0 = x

| otherwise = dataAt (y-1) xs

replace_nth :: [Weight] -> (Int, Weight) -> [Weight]

replace_nth [] _ = []

replace_nth (_:xs) (0,a) = a:xs

replace_nth (x:xs) (n,a) = if n < 0 then (x:xs) else x: replace_nth xs (n-1,a)

loops :: Int -> Int -> Int -> Int -> Int -> Int -> [Weight] -> [Weight] -> [Weight] ->

[Weight]

loops k n kth i j b l_a l_b l_c =

if i == b then l_c

else

if j == b then loops k n kth (i + 1) 0 b l_a l_b l_c

else

if element > sum1 then loops k n kth i (j+1) b l_a l_b new_C

else

--trace (show element)

--trace (show sum1)

--trace (show l_c)

loops k n kth i (j+1) b l_a l_b l_c

where element = dataAt (i*n + j) l_c

sum1 = addWeights (dataAt (i*n + k) l_a) (dataAt (kth + j)

l_b)

new_C = replace_nth l_c ((i*n + j), sum1)

floyd_warshall_in_place :: [Weight] -> [Weight] -> [Weight] -> Int -> Int -> Int ->

[Weight]

floyd_warshall_in_place l_a l_b l_c b n k =

if k == b then l_c

else

floyd_warshall_in_place l_a l_b (loops k n kth 0 0 b l_a l_b l_c) b n (k+1)

where kth = k*n

inner_independent_phase :: Int -> Int -> Int -> Int -> Int -> [Weight] -> [Weight]

inner_independent_phase i j k b n input =

if j == (n `div` b) then input

else

if j == k then inner_independent_phase i (j+1) k b n input

else

inner_independent_phase i (j+1) k b n res

where

l_a = drop (i*b*n + k*b) input

l_b = drop (k*b*n + j*b) input

(first_half, l_c) = splitAt (i*b*n + j*b) input

res = first_half++(floyd_warshall_in_place l_a l_b l_c b n 0)

independent_phase :: Int -> Int -> Int -> Int -> [Weight] -> [Weight]

independent_phase i k b n input =

if i == (n `div` b) then input

else

if i == k then independent_phase (i+1) k b n input

else

--trace (show input)

independent_phase (i+1) k b n output

where

l_a = drop (i*b*n + k*b) input

l_b = drop (k*b*n + k*b) input

(first_half, l_c) = splitAt (i*b*n + k*b) input

input_for_inner = first_half++(floyd_warshall_in_place l_a l_b l_c

b n 0)

output = inner_independent_phase i 0 k b n input_for_inner

partially_dependent_phase :: [Weight] -> Int -> Int -> Int -> Int -> [Weight]

partially_dependent_phase input j k n b =

if j == (n `div` b) then input

else

if j == k then partially_dependent_phase input (j+1) k n b

else

--trace (show j)

partially_dependent_phase (first_half++res) (j+1) k n b

where

l_a = drop (k*b*n + k*b) input

l_b = drop (k*b*n + j*b) input

(first_half, l_c) = splitAt (k*b*n + j*b) input

res = floyd_warshall_in_place l_a l_b l_c b n 0

dependent_phase :: Int -> Int -> Int -> [Weight] -> [Weight]

dependent_phase k b n input =

if k == (n `div` b) then input

else

dependent_phase (k + 1) b n new_in_output

where

l_a = drop (k*b*n + k*b) input

l_b = drop (k*b*n + k*b) input

(first_half, l_c) = splitAt (k*b*n + k*b) input

new_dep_output = floyd_warshall_in_place l_a l_b l_c b n 0

new_part_output = partially_dependent_phase

(first_half++new_dep_output) 0 k n b

new_in_output = independent_phase 0 k b n new_part_output

floyd_warshall_blocked :: [Weight] -> Int -> Int -> [Weight]

floyd_warshall_blocked input n b =

dependent_phase 0 b n input

Sequential_fw_block.hs

{- Sequential Floyd-Warshall algorithm with 2-D block mapping in Haskell -}

module Sequential_fw_block (

floyd_warshall_blocked

) where

import Control.Monad

import Data.List

import Graph

import System.Random(randomIO, randomRIO)

loops :: Int -> Int -> Int -> Int -> Int -> Int -> [Weight] -> [Weight] -> [Weight] ->

[(Int, Weight)] -> Int -> [(Int, Weight)]

loops k n kth i j b l_a l_b input replaced c_index =

if i == b then replaced

else

if j == b then loops k n kth (i + 1) 0 b l_a l_b input replaced c_index

else

if element > sum1 then loops k n kth i (j+1) b l_a l_b input new_replaced

c_index

else

loops k n kth i (j+1) b l_a l_b input replaced c_index

where element = dataAt (c_index + (i*n + j)) input

sum1 = addWeights (dataAt (i*n + k) l_a) (dataAt (kth + j)

l_b)

new_replaced = ((c_index + (i*n + j)), sum1):replaced

floyd_warshall_in_place :: [Weight] -> [Weight] -> [Weight] -> Int -> Int -> Int ->

Int -> [(Int, Weight)] -> [(Int, Weight)]

floyd_warshall_in_place l_a l_b input b n k c_index big_replaced =

if k == b then big_replaced

else

floyd_warshall_in_place l_a l_b input b n (k+1) c_index new_big_replaced

where

kth = k*n

new_big_replaced = (loops k n kth 0 0 b l_a l_b input []

c_index)++big_replaced

inner_independent_phase :: Int -> Int -> Int -> Int -> Int -> [Weight] -> [(Int,

Weight)] -> [(Int, Weight)]

inner_independent_phase i j k b n input replaced =

if j == (n `div` b) then replaced

else

if j == k then inner_independent_phase i (j+1) k b n input replaced

else

inner_independent_phase i (j+1) k b n input new_replaced

where

l_a = drop (i*b*n + k*b) input

l_b = drop (k*b*n + j*b) input

new_replaced = (floyd_warshall_in_place l_a l_b input b n 0 (i*b*n +

j*b) [])++replaced

independent_phase :: Int -> Int -> Int -> Int -> [Weight] -> [(Int, Weight)] ->

[Weight]

independent_phase i k b n input replaced =

if i == (n `div` b) then res

else

if i == k then independent_phase (i+1) k b n input replaced

else

independent_phase (i+1) k b n new_input new_replaced2

where

l_a = drop (i*b*n + k*b) input

l_b = drop (k*b*n + k*b) input

new_replaced = floyd_warshall_in_place l_a l_b input b n 0 (i*b*n +

k*b) []

new_input = replace_n_list new_replaced input

new_replaced2 = (inner_independent_phase i 0 k b n new_input

[])++replaced

res = replace_n_list replaced input

partially_dependent_phase :: Int -> [Weight] -> Int -> Int -> Int -> [(Int, Weight)]

partially_dependent_phase j input k n b =

new_replaced

where

l_a = drop (k*b*n + k*b) input

l_b = drop (k*b*n + j*b) input

new_replaced = floyd_warshall_in_place l_a l_b input b n 0 (k*b*n + j*b) []

dependent_phase :: Int -> Int -> Int -> [Weight] -> [Weight]

dependent_phase k b n input =

if k == (n `div` b) then input

else

dependent_phase (k + 1) b n new_in_output

where

l_a = drop (k*b*n + k*b) input

l_b = drop (k*b*n + k*b) input

big_replaced = floyd_warshall_in_place l_a l_b input b n 0 (k*b*n +

k*b) []

new_dep_output = replace_n_list big_replaced input

j_values = removeItem k [0..((n `div` b)-1)]

big_replaced2 = concat (map (\j -> partially_dependent_phase j

new_dep_output k n b) j_values)

new_part_output = replace_n_list big_replaced2 new_dep_output

new_in_output = independent_phase 0 k b n new_part_output []

floyd_warshall_blocked :: [Weight] -> Int -> Int -> [Weight]

floyd_warshall_blocked input n b =

dependent_phase 0 b n input

Parallel_fw_block.hs

{-# LANGUAGE DeriveAnyClass, DeriveGeneric #-}

{- Parallel Floyd-Warshall algorithm with 2-D block mapping in Haskell -}

module Parallel_fw_block (

floyd_warshall_blocked

) where

import Graph

import Control.Parallel

import Control.Parallel.Strategies

import Control.Monad.Par(runPar, get, spawnP)

import Data.List

import Debug.Trace

import GHC.Generics (Generic)

loops :: Int -> Int -> Int -> Int -> Int -> Int -> [Weight] -> [Weight] -> [Weight] ->

[(Int, Weight)] -> Int -> [(Int, Weight)]

loops k n kth i j b l_a l_b input replaced c_index =

if i == b then replaced

else

if j == b then loops k n kth (i + 1) 0 b l_a l_b input replaced c_index

else

if element > sum1 then loops k n kth i (j+1) b l_a l_b input new_replaced

c_index

else

loops k n kth i (j+1) b l_a l_b input replaced c_index

where element = dataAt (c_index + (i*n + j)) input

sum1 = addWeights (dataAt (i*n + k) l_a) (dataAt (kth + j)

l_b)

new_replaced = ((c_index + (i*n + j)), sum1):replaced

floyd_warshall_in_place :: [Weight] -> [Weight] -> [Weight] -> Int -> Int -> Int ->

Int -> [(Int, Weight)] -> [(Int, Weight)]

floyd_warshall_in_place l_a l_b input b n k c_index big_replaced =

if k == b then big_replaced

else

floyd_warshall_in_place l_a l_b input b n (k+1) c_index new_big_replaced

where

kth = k*n

new_big_replaced = (loops k n kth 0 0 b l_a l_b input []

c_index)++big_replaced

inner_independent_phase :: Int -> Int -> Int -> Int -> Int -> [Weight] -> [(Int,

Weight)]

inner_independent_phase j i k b n input =

new_replaced

where

l_a = drop (i*b*n + k*b) input

l_b = drop (k*b*n + j*b) input

new_replaced = (floyd_warshall_in_place l_a l_b input b n 0 (i*b*n + j*b)

[])

independent_phase :: Int -> Int -> Int -> Int -> [Weight] -> [(Int, Weight)] ->

[Weight]

independent_phase i k b n input replaced =

if i == (n `div` b) then res

else

if i == k then independent_phase (i+1) k b n input replaced

else

independent_phase (i+1) k b n new_input (new_replaced2++replaced)

where

l_a = drop (i*b*n + k*b) input

l_b = drop (k*b*n + k*b) input

new_replaced = floyd_warshall_in_place l_a l_b input b n 0 (i*b*n +

k*b) []

new_input = replace_n_list new_replaced input

j_values = removeItem k [0..((n `div` b)-1)]

res = replace_n_list replaced input

new_replaced2 = runPar $ do

m <- mapM (\j -> spawnP (inner_independent_phase j i k b n

new_input)) j_values

x <- mapM get m

return (concat x)

partially_dependent_phase :: Int -> [Weight] -> Int -> Int -> Int -> [(Int, Weight)]

partially_dependent_phase j input k n b =

new_replaced

where

l_a = drop (k*b*n + k*b) input

l_b = drop (k*b*n + j*b) input

new_replaced = floyd_warshall_in_place l_a l_b input b n 0 (k*b*n + j*b) []

dependent_phase :: Int -> Int -> Int -> [Weight] -> [Weight]

dependent_phase k b n input =

if k == (n `div` b) then input

else

dependent_phase (k + 1) b n new_in_output

where

l_a = drop (k*b*n + k*b) input

l_b = drop (k*b*n + k*b) input

big_replaced = floyd_warshall_in_place l_a l_b input b n 0 (k*b*n +

k*b) []

new_dep_output = replace_n_list big_replaced input

j_values = removeItem k [0..((n `div` b)-1)]

new_part_output = replace_n_list big_replaced2 new_dep_output

new_in_output = independent_phase 0 k b n new_part_output []

big_replaced2 = runPar $ do

-- map (\j ...) :: [Par (IVar [(,)])]

-- sequence (map ...) :: Par [IVar [(,)]]

m <- mapM (\j -> spawnP (partially_dependent_phase j

new_dep_output k n b)) j_values

-- m :: [IVar [(,)]]

x <- mapM get m -- : [[(,)]] -- mapM :: (a -> m b) -> [a] -> m

[b]

return (concat x)

floyd_warshall_blocked :: [Weight] -> Int -> Int -> [Weight]

floyd_warshall_blocked input n b =

dependent_phase 0 b n input

Main.hs

{-# LANGUAGE DeriveAnyClass, DeriveGeneric #-}

import Graph

import Parallel_fw_block

import Sequential_fw_block

import Control.Monad

import System.Random(randomIO, randomRIO)

import GHC.Generics (Generic)

import Control.Parallel

import Control.Parallel.Strategies

randomGraphGenerator :: Int -> Int -> Int -> [Weight] -> IO [Weight]

randomGraphGenerator num_of_vertices k i graph = do

-- Every num_of_vertices * k + k is Weight 0

-- otherwise assign a random weight or None

-- when num_of_vertices == k - 1, return graph

bool <- randomIO

if i == (num_of_vertices*num_of_vertices) then do return (reverse graph)

else do

if ((num_of_vertices * k) + k) == i then do randomGraphGenerator

num_of_vertices (k+1) (i+1) (Weight 0:graph)

else do

if bool == False then do randomGraphGenerator num_of_vertices k (i+1)

(None:graph)

else do

let random_weight = randomRIO (-10, 200)

w <- random_weight

let new_weight = Weight w

randomGraphGenerator num_of_vertices k (i+1) (new_weight:graph)

main :: IO ()

main = do

g <- randomGraphGenerator 49 0 0 [] -- ::[Weight]

--print g

writeFile "file.txt" (show g)

--print (Parallel_fw_block.floyd_warshall_blocked g 40 10)

--print (Sequential_fw_block.floyd_warshall_blocked g 40 10)

