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Introduction 

Inspired by the game of Chess, N-Queens is a classic 

problem in computer science. Given a natural number N, the 

problem is to find the number of ways N queens can be 

arranged on an NxN chessboard such that no queen threatens 

another. In other words, there must be one and only one 

queen in every row, column and diagonal of a square chess 

board of a given size. 

For values of N greater than 10, both the amount of 

calculation and the number of solutions grows at an 

exponential rate, making this a very good problem that can be 

parallelized. 

Example of a solution for N = 4 



Approach 

A naive approach of checking every possible configuration 

of N queens on an NxN board would be a colossal task. 

Consider N = 8. Checking every possible configuration would 

mean checking 178,462,987,637,760 configurations. 

So, we can use some heuristics and intuitive rules of 

thumb to cut down on the total amount of work needed to be 

done. If we start with all the queens arranged on a major 

diagonal of the board, we have already ensured that there is 

only a single queen per row and column. Now we can 

generate permutations of the rows to generate all such 

configurations. For N = 8, this cuts down the total number of 

permutations to consider to just 8!, or 40,320. And all that 

needs be done is to check for diagonal conflicts in the 

generated permutations. 



Data Modeling 

The most naive approach would be to use a list of lists of 

ints and directly map each block on a chess board to an Int in 

a two-dimensional data structure. 

However, given the large number of permutations 

involved, using the least amount of RAM possible becomes 

important. So a much better approach is to encode the 

configuration of each row as a number and use a list of 

integers instead. 

In my solution, I used a Word32 to encode the 

configuration of each row. This Word32 is comprised 

exclusively of 0-bits, except the specific bit that represents 

where the queen is present. For example, if the queen is in the 

last column, the value  0000…0001 is used to represent it. If 

the queen is in the second-to-last column, the value 000…

0010 is used to represent it and so on. 



As a result, a board configuration is represented as 

[Word32]. An Array instead of a list would likely save me some 

additional RAM usage, but the laziness of Haskell lists, helps 

keeps the total working memory in check. 

An alternate approach would be to use the integer value of the column that the 

queen is in. Doing this would also change the operations required to check for 

diagonals, which we will talk about later. 

Preparation 

Before the actual computation can begin, I generate a list 

of all possible configurations that need to checked for 

diagonal conflicts. This part was very simple by using the 

standard library function permutations. 

diagonalOfQueens :: Int -> [Word32] 
diagonalOfQueens n = [shiftL 1 i | i <- [0 .. (n -1)]] 

-- generating all board configurations 
diagonal = diagonalOfQueens n 
boards = permutations diagonal



Checking For Diagonals 

To check if there is a diagonal conflict, I take the first row 

of the board and shift all the bits left by one and compare it 

against the next row. A simple bitwise-And is enough to 

ensure that no two queens are in the same diagonal. This 

process is repeated for the rest of the rows, by shifting the 

bits for every step down the board. The same process is also 

repeated for the rest of the rows of the board. Finally the 

whole process is also repeated while shifting the rows to the 

right. 

hasConflictWithFirstRow :: ShiftFn -> Word32 -> [Word32] -> Int -> Bool 
hasConflictWithFirstRow _ _ [] _ = False 
hasConflictWithFirstRow shiftFn queen (x : xs) offset = 
  ((queen `shiftFn` offset) .&. x) /= 0 || hasConflictWithFirstRow shiftFn 
queen xs (offset + 1) 

hasAnyDiagonalConflict :: [Word32] -> Bool 
hasAnyDiagonalConflict board = 
  isDiagonalConflict shiftL board || isDiagonalConflict shiftR board 
  where 
    isDiagonalConflict _ [] = False 
    isDiagonalConflict dir (x : xs) = 
      hasConflictWithFirstRow dir x xs 1 || isDiagonalConflict dir xs 



This whole process is computationally efficient as it relies 

on fast bit shifting and bitwise AND operations. 

If we had used the column index as the number instead, we would need to add or 

subtract 1 as we went down the rows, and check for integer equality instead. While 

the difference between the two approaches is minimal, the bitwise operators were 

marginally faster in my testing. 

Parallelization 
Naive Initial Approach 

Checking a long list of board configurations is an 

inherently parallelizable task. The first approach was to map 

over the entire list in parallel. This approach worked for 

smaller values of N, but quickly broke down due to a large 

number of spark overflowing. There was far too much GC 

pressure too and the cost of creating Sparks was as bad or 

worse than the computational speedup. 

Better Approach 

Next, I tried to control the number of sparks being created 

by generating the the list of permutations and chunking it up 

into 10 roughly equal lists of permutations. From there, I was 



able to run the 10 chunks in parallel which was able to utilize 

the 10 cores available on my CPU. 

This approach was quite effective, and was able to get a 

speedup of around 2.5x. However, the memory usage was still 

quite high, and after further testing, I realized that it wasn’t 

even able to calculate the solutions for N = 12 or greater as it 

would use up too much memory and get killed by the OS. 

Other Exploration 

I looked into reducing the memory usage by not 

generating the permutations up-front. I was able to generate a 

permutation by index. This meant that I would be able to 

simply generate a list of N! elements, and the parallel tasks 

would be able to generate the relevant permutations in 

parallel. 

nthPermutation :: [Word32] -> Int -> [Word32] 
nthPermutation [] _ = [] 
nthPermutation diagonal n = 
  let 
    len = length diagonal 
    (position, subN) = n `divMod` factorial (len - 1) 
    first = diagonal !! position 
    rest = diagonal \\ [first] 
  in 
    (diagonal !! position) : nthPermutation rest subN



When testing this approach, I saw a very minimal decrease 

in GC-time, but at a significant cost to MUT time. So, after a 

few tests, I abandoned this approach. 

Final Solution 

After iterating on the previous approaches, I landed on a 

good balance between the previous two approaches. 

In the final solution, instead of generating a set number of 

sparks, I’m generating N sparks. To start, I just create a list 

from 0 to n. This list is then computed in parallel. Each 

computation involves taking this Int as the index of the first 

row of all permutations within. The permutations for the rest 

of the rows are generated within each spark. 

As a result, the work that needs to be sequentially is 

reduced to generating a list N elements long, and then adding 

N Ints towards to end to count the total number of solutions 

for a given N. Meanwhile, each spark generates and checks 

(N-1)! permutations. Overall, this is also means that other than 

the sparks themselves, this approach has no other memory 

overhead. 



Results 

While testing different values of N, I was able to see a 6X 

improvement in elapsed time comfortably, while often getting 

close to a 7X speedup. The GC performance is also quite 

reasonable. I’m seeing productivity rates of around 70%. 

Linear Scale 

N Single Threaded Multi-Threaded Time Delta

8 0.099s 0.023s 31.5%

9 0.598s 0.111s 18.5%

10 6.276s 1.002s 16%

11 100.235s 18.118s 18%

12 4400.081s 169.454s 3.8%
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Logarithmic Scale 

Threadscope 

I’m seeing extremely good usage across threads. The 

productivity rate is close to the single threaded version. 
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Conclusion 

As described, it is easy to see the significant speedups 

available by using parallel computing to calculate the number 

of solutions for N-queens. 

The final solution I landed on works extremely well and is 

able to get much faster results with little overhead. I’m testing 

on an M1 Max ARM processor which has 8 performance cores 

and 2 efficiency cores. However, clock speeds are somewhat 

slower for parallel tasks. As such, it is fair to assume that a 

6.5x speed up is close to ideal, and this implementation has 

little to no overhead. 
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