
COMS 4995W Parallel Function Programming 1

Parallel N-Puzzle Solver in Haskell

Zhonglin Yang (zy2496), Yuxuan Luo(yl4524)
2021/12/22

1. Introduction
N-Puzzle is the general name of category sof puzzle games with √N+ 1 by √% + 1
frames and N sliding tiles inside the frame. For instance, an 8-Puzzle is played with a
3×3 frame and 8 tiles, numbered 1 through 8, placed inside the frame, leaving one
empty slot unoccupied. The player is then able to slide adjacent tiles into the
unoccupied slot until the goal state is reached (e.g., the board is solved). The goal of
this game is to turn the scrambled start state into the goal state in as few moves as
possible. The illustration below shows one solvable combination of the start state and
the goal state of an 8-Puzzle game.

2. Solving N-Puzzle
Finding the optimal solutions for N-Puzzles is an NP-Hard search problem. For any
generic BFS algorithm, the number of states in its queue quadruples after each
iteration, giving it an exponential run time complexity as it searches through (N + 1)!
different possible states of the frame. According to [1], an optimal 15-Puzzle solver
using BFS can reach upwards to a depth of 80 with billions of intermediate frame
states. For this reason, our implementable of the N-Puzzle Solver seeks a solution that
is fast to compute as opposed to one that has the fewest moves.

3. Implementation
3.1 Algorithm
Our “best first search” N-Puzzle solver uses A* search in combination with
Manhattan Distance to conduct informed searches within all possible moves.

COMS 4995W Parallel Function Programming 2

Our A* search takes both the state of a next frame and the state of the search space
into consideration. In our case, the resulting frame of any valid move is given a score
of g(x) + h(x). g(x) is the cost, measured using Manhattan Distance, from the start

state to the potential next state, while h(x) is the cost, also in Manhattan Distance,
from the next state to the goal state. We then add each next state along with its cost to
a min-priority queue where A* search chooses the state with the lowest cost from.

3.2 Data Structures and Representations
We are using a 2d-arrary of Int to represent the frame (referred to as grid in the code)

type Grid = [[Int]]

We are using a min priority queue for (cost, candidate). Each candidate is an array of
Grids from the start to the next state of the grid.

import qualified Data.PQueue.Prio.Min as PQ

PQ.MinPQueue Int [Grid]

We are using a set of grids to mark the states we’ve already visited to avoid loops.

import qualified Data.HashSet as S

S.Set Grid

3.3 Sequential Implementation
min-pq<- [(start_state, 0)]
while (min-pq is not empty):
 cur_state <- min-heap.pop()
 if (cur_state.state != goal_state):
 for new_state in getNeighbors(cur_state):

if new_state not in visited:
 min-pq.push((new_state, getCost(new_state)))
 else:
 return path_to(cur_state)
raise exception

Some simplifications are made here. In particular, any state mentioned are in fact
[Grid] where the first element in [Grid] is the next state we are going to visit, and the
last element in [Grid] is the start state.

3.4 Parallel Implementation Attempt #1

getNextNodes goal d st l xss = PQ.fromList $ zip costs neighbors where
costs = parMap rseq (getCost st d l goal) neighbors
neighbors = parMap rpar (:xss) (getNeighbors $ head xss)

COMS 4995W Parallel Function Programming 3

For our initial attempt, we decided to spark the evaluation of the neighbors and costs
in parallel using rpar and rseq. In addition, we also planned to start evaluation of all
neighbors instead of adding them to a priority queue.

3.5 Parallel Implementation Attempt #2
For our second attempt, we decided to solve multiple N-Puzzles in parallel using
different evaluation strategies including static partitioning and dynamic partitioning.
To get a better evaluation on the performance parallel computation, we eliminated
unnecessary sequential computation of our program. Only N-puzzle solutions’ time
complexities are printed at the end.

We started attempt #2 by changing main.hs file to make the solver solve multiple N-
puzzles at the same time.

main :: IO ()

main = do

args <- checkArgs =<< getArgs

 content <- readFile $ args !! 0

 let input_list = splitOn "#" content

 grids = map inputToGrid input_list

 solution = map solveNPuzzle grids

 print (length solution) >> mapM_ print solution

For the sequential evaluation approach, we simply called map solveNPuzzle on grids.

Then, we implemented two parallel evaluation approaches. The first approach is static
partitioning. We split grids to two lists as’ and bs’ and used rpar and force to solve N-
puzzles.

solution = runEval $ do

 as' <- rpar (force (map solveNPuzzle as))

 bs' <- rpar (force (map solveNPuzzle bs))

 rseq as'

 rseq bs'

 return (as'++ bs')

When using static partitioning, we parallelly solve two lists of N-puzzles. We can
only take advantage of two cores of CPU. To further evaluate parallel solving N-
puzzles with more cores, we also implemented dynamic partitioning with parList.

parMap :: (a -> b) -> [a] -> Eval [b]

parMap _ [] = return []

parMap f (a:as) = do b <- rpar (f a)

 bs <- parMap f as

COMS 4995W Parallel Function Programming 4

 return (b:bs)

solution = runEval (parMap solveNPuzzle grids)

We used two set of N-puzzles to evaluate the two parallel approaches. The first set of
N-puzzles is 1000 8-puzzles, and the second set is 40 15-puzzles. 8-puzzles are easy
to solve, with most of the solutions’ time complexities are within 1000. 15-puzzles are
much harder, with some of the 15-puzzles’ solutions exceeding 200000. We would
like to find if the complexity of each puzzle can affect the program.

4. Performance Testing & Results
4.1 Results from Attempt #1
The initial attempt to construct next state and their cost in parallel only produced
negative performance improvement across our tests. We believe that our strategy did
not work out due to the limitation of setup of N-Puzzle. Since each puzzle only has a
maximum of 4 next states, constructing them in parallel adds too much overhead in
comparison to the computation done. Additionally, getCost uses Manhattan Distance
which requires very little calculation. We suspect if the cost function is more
complicated, we might start seeing performance gains by evaluating them in parallel.

Without parallelization, done in 3.23s.

With parallelization and -N4, done in 3.77s.

COMS 4995W Parallel Function Programming 5

Performance degradation as more threads are used

Our attempt to evaluate every next states as soon as they are defined also failed. Due
to the nature of the search algorithm, we needed to maintain a global state of visited
states visible to all parallel evaluations so they don’t repeat the same work. Because
there is no easy way to accomplish that in Haskell, we decided to proceed without it.
In practice, we found this modification brings no improvement over sequential
evaluation for easy puzzles, again due to the overhead. We also found that this
modification breaks the program when it is running on slightly more difficult puzzles,
due to the amount of repeated work in parallel stalling the system.

4.2 Results from Attempt #2
The evaluation results of solving 1000 8-puzzles with different parallel approaches
are as following.

Approach Time Speedup
sequential 6.438s 1x
static partitioning -N2 3.419s 1.88x

dynamic partitioning -N2 4.429s 1.45x
dynamic partitioning -N4 3.044s 2.11x
dynamic partitioning -N8 2.399s 2.68x

We could see the static partitioning approach has a pretty good performance with 2
cores. The speedup is 1.88x which is close to 2. By contrast, the dynamic partitioning
approach with 2 cores doesn’t perform comparably good. Its speedup is only 1.45x.
When 4 cores and 8 cores are used, the speedup increase to 2.11x and 2.68x. It seems
that if we want the best performance of solving multiple N-puzzles, we can just use
more cores with dynamic partitioning. However, when evaluating the three
approaches on solving 15-puzzles, we found it is not the case.

The evaluation results of solving 40 15-puzzles with different parallel approaches are
as following.

Approach Time Speedup
sequential 177.366s 1x

COMS 4995W Parallel Function Programming 6

dynamic partitioning -N2 117.050s 1.52x
dynamic partitioning -N4 77.374s 2.92x
dynamic partitioning -N8 92.10s 1.93x

From the results, we could intuitively see that 15-puzzle is much harder to solve. The
average time to solve one 15-puzzle is around 700x of the time to solve. When N-
puzzles are much harder to solve, dynamic partitioning still can help accelerate the
solver program. With 2 cores and 4 cores, the speedups are better than the speedups
on solving 8-puzzles. However, when 8 cores are used, the performance declines a lot.
It takes extra 15 seconds to finish solving 15-puzzles when using extra 4 cores. Thus,
we took a look at the eventlog on threadscope.

eventlog when using 8 cores

On the eventlog, we could see the unusual patterns of several time intervals where the
activity becomes zero and CPU cores are busy to deal with garbage collection. And
along the program running, each time the pattern appears, the time interval become
larger. At around 65 seconds, several cores start idling. Several intervals of garbage
collection and several CPU cores idling after 65 seconds cause the program which
utilize 8 cores runs slower than the program which utilize 4 cores.

heap sizes when using 2, 4, and 8 cores

We inspected some other metrics on eventlog and found when using 8 cores to
solving 40 15-puzzles, the maximum heap size increases to 5.9 GiB which is 3 times

COMS 4995W Parallel Function Programming 7

of the maximum heap size when using 4 cores. Large heap probably causes the
slowdown.

The unusual slowdown of using 8 cores to solve 15-puzzles suggests us that to solve
computation heavy problems, it is not always true that utilizing more resources can
lead to a better result. We need to know that some unexpected things can emerge and
can become counterproductive.

Code：
module Main where

import GHC.Conc(par)

import Control.Parallel.Strategies hiding(parMap)

import Control.DeepSeq

import Data.List.Split

import System.Environment (getArgs)

import System.Exit (exitSuccess)

import Grid (getSolvedGrid, Grid)

import Solver (solve, solve')

import Logger

import Parser

checkArgs :: [String] -> IO [String]

checkArgs xs = if null xs then displayHelp >> exitSuccess else pure xs

inputToGrid :: String -> [[Int]]

inputToGrid input = transformToGrid (words <$> (drop 1 . clearInput . lines

$ input))

solveNPuzzle :: Grid -> Int

solveNPuzzle grid = solve' (getSolvedGrid $ length grid) grid (Nothing, Nothing)

parMap :: (a -> b) -> [a] -> Eval [b]

parMap _ [] = return []

parMap f (a:as) = do b <- rpar (f a)

 bs <- parMap f as

 return (b:bs)

main :: IO ()

main = do

 args <- checkArgs =<< getArgs

 content <- readFile $ args !! 0

 let input_list = splitOn "#" content

 grids = map inputToGrid input_list

 {- map solveNPuzzle grids -}

COMS 4995W Parallel Function Programming 8

 {- runEval (parMap solveNPuzzle grids) -}

 (as, bs) = splitAt (length grids `div` 2) grids

 solution = runEval $ do

 as' <- rpar (force (map solveNPuzzle as))

 bs' <- rpar (force (map solveNPuzzle bs))

 rseq as'

 rseq bs'

 return (as'++ bs')

print (length solution) >> mapM_ print solution

module Solver (SearchType(..), readSearchType, solve') where

 import qualified Data.PQueue.Prio.Min as PQ

 import qualified Data.HashSet as S

 import Logger

 import Grid

 import Distance

 data SearchType = Astar | Uniform | Greedy deriving Eq

 type NextNodesFunc = Int -> [Grid] -> PQ.MinPQueue Int [Grid]

 instance Show SearchType where

 show Astar = "A*"

 show Uniform = "Uniform cost"

 show Greedy = "Greedy"

 readSearchType :: String -> Maybe SearchType

 readSearchType s = case s of

 "astar" -> Just Astar

 "uniform" -> Just Uniform

 "greedy" -> Just Greedy

 _ -> Nothing

 -- Returns the cost of a node according to the SearchType currently used

 getCost :: SearchType -> Distance -> Int -> Grid -> Grid -> Int

 getCost st d l grid goal = let dist = calcDistance d grid goal in case st of

 Astar -> dist + l -- A* : h cost + g cost

 Uniform -> l -- Uniform : g cost only

 Greedy -> dist -- Greedy : h cost only

 -- Returns a PQueue containing the next nodes (value + cost)

 getNextNodes :: Grid -> Distance -> SearchType -> Int -> [Grid] -> PQ.MinPQueue

Int [Grid]

 getNextNodes goal d st l xss = PQ.fromList $ zip costs neighbors where

 costs = (getCost st d l goal) <$> head <$> neighbors

COMS 4995W Parallel Function Programming 9

 neighbors = map (:xss) $ getNeighbors $ head xss

-- goal : stage to reach ; xss : path from begining to current node ; os : open

set ; cs : close set ; nn : nextNodes function ; n : time complexity ; m : space

complexity ; l : xss length

 runSearch' :: Grid -> [Grid] -> PQ.MinPQueue Int [Grid] -> S.Set Grid ->

NextNodesFunc -> Int -> Int -> Int -> Int

 runSearch' goal xss os cs nn n m l

 | head xss == goal = n

 | suc /= PQ.empty = runSearch' goal ((minim

suc):xss) (PQ.union os $ PQ.deleteMin suc) cs' nn (n+1) size (l+1)

 | suc == PQ.empty && os /= PQ.empty = runSearch' goal (tail xss)

os cs' nn (n+1) size (l-1)

 | otherwise = 0 where

 suc = PQ.filter (\x -> S.notMember (head x) cs) $ nn l xss

 cs' = S.insert (head xss) cs

 minim x = head . snd $ PQ.findMin x

 size = if PQ.size os > m then PQ.size os else m

solve' :: Grid -> Grid -> (Maybe SearchType, Maybe Distance) -> Int

 solve' goal xs (Nothing, Nothing) = runSearch' goal [xs] PQ.empty S.empty

(getNextNodes goal defaultHeuristic defaultSearch) 0 0 1

 solve' goal xs (Just st, Nothing) = runSearch' goal [xs] PQ.empty S.empty

(getNextNodes goal defaultHeuristic st) 0 0 1

 solve' goal xs (Nothing, Just d) = runSearch' goal [xs] PQ.empty S.empty

(getNextNodes goal d defaultSearch) 0 0 1

solve' goal xs (Just st, Just d) = runSearch' goal [xs] PQ.empty S.empty

(getNextNodes goal d st) 0 0 1

import Distance

 import Solver

 maxPuzzle :: Int

 maxPuzzle = 999

 -- Strips comments and empty lines

 clearInput :: [String] -> [String]

 clearInput xs = filter (/="") $ map (head . splitOn "#") xs

 -- Checking size of the puzzle

 isValidSize :: [[Int]] -> Bool

 isValidSize xss = let ys = map (^2) [3..maxPuzzle] in (length . concat) xss

`elem` ys

COMS 4995W Parallel Function Programming 10

 -- Sorts input and compare it to an enum list of the same size

 hasValidContent :: [[Int]] -> Bool

 hasValidContent xss = let n = length xs - 1; xs = concat xss; ys = [0..n]

in sort xs == ys

 -- Returns the input as [[Int]] if it is valid, otherwise returns Nothing

 transformInput :: [[String]] -> Maybe [[Int]]

 transformInput xss

 | all isDigit (concat $ concat xss) == False = Nothing

 | otherwise = let xss' = (map read) <$> xss in if isValidSize xss' &&

hasValidContent xss' then Just xss' else Nothing

 transformToGrid :: [[String]] -> [[Int]]

 transformToGrid xss =

 let xss' = (map read) <$> xss in xss'

 -- Check programs args, and returns associated flags

 parseArgs :: [String] -> (Maybe SearchType, Maybe Distance)

 parseArgs xs = case length xs of

 1 -> (Nothing, Nothing)

 2 -> (readSearchType (xs !! 1), Nothing)

 _ -> (readSearchType (xs !! 1), readDistance (xs !! 2))

