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1. Introduction  
N-Puzzle is the general name of category sof puzzle games with √N+ 1 by √% + 1 
frames and N sliding tiles inside the frame. For instance, an 8-Puzzle is played with a 
3×3 frame and 8 tiles, numbered 1 through 8, placed inside the frame, leaving one 
empty slot unoccupied. The player is then able to slide adjacent tiles into the 
unoccupied slot until the goal state is reached (e.g., the board is solved). The goal of 
this game is to turn the scrambled start state into the goal state in as few moves as 
possible. The illustration below shows one solvable combination of the start state and 
the goal state of an 8-Puzzle game. 

  

2. Solving N-Puzzle  
Finding the optimal solutions for N-Puzzles is an NP-Hard search problem. For any 
generic BFS algorithm, the number of states in its queue quadruples after each 
iteration, giving it an exponential run time complexity as it searches through (N + 1)! 
different possible states of the frame. According to [1], an optimal 15-Puzzle solver 
using BFS can reach upwards to a depth of 80 with billions of intermediate frame 
states. For this reason, our implementable of the N-Puzzle Solver seeks a solution that 
is fast to compute as opposed to one that has the fewest moves.  
 

3. Implementation  
3.1  Algorithm  
Our “best first search” N-Puzzle solver uses A* search in combination with 
Manhattan Distance to conduct informed searches within all possible moves.  
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Our A* search takes both the state of a next frame and the state of the search space 
into consideration. In our case, the resulting frame of any valid move is given a score 
of g(x) + h(x). g(x) is the cost, measured using Manhattan Distance, from the start 

state to the potential next state, while h(x) is the cost, also in Manhattan Distance, 
from the next state to the goal state. We then add each next state along with its cost to 
a min-priority queue where A* search chooses the state with the lowest cost from.  

 

3.2  Data Structures and Representations 
We are using a 2d-arrary of Int to represent the frame (referred to as grid in the code) 

type Grid = [[Int]] 

 
We are using a min priority queue for (cost, candidate). Each candidate is an array of 
Grids from the start to the next state of the grid.  

import qualified Data.PQueue.Prio.Min as PQ 

PQ.MinPQueue Int [Grid] 

 
We are using a set of grids to mark the states we’ve already visited to avoid loops.  

import qualified Data.HashSet as S 

S.Set Grid 

 

    

 
3.3   Sequential Implementation 
min-pq<- [(start_state, 0)] 
while (min-pq is not empty): 
    cur_state <- min-heap.pop() 
    if (cur_state.state != goal_state): 
        for new_state in getNeighbors(cur_state): 

if new_state not in visited: 
             min-pq.push( (new_state, getCost(new_state)) ) 
    else: 
        return path_to(cur_state) 
raise exception  
 
Some simplifications are made here. In particular, any state mentioned are in fact 
[Grid] where the first element in [Grid] is the next state we are going to visit, and the 
last element in [Grid] is the start state.  
 
 
3.4   Parallel Implementation Attempt #1 

getNextNodes goal d st l xss = PQ.fromList $ zip costs neighbors where 
costs = parMap rseq (getCost st d l goal) neighbors 
neighbors = parMap rpar (:xss) (getNeighbors $ head xss) 
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For our initial attempt, we decided to spark the evaluation of the neighbors and costs 
in parallel using rpar and rseq. In addition, we also planned to start evaluation of all 
neighbors instead of adding them to a priority queue.  
 
3.5   Parallel Implementation Attempt #2 
For our second attempt, we decided to solve multiple N-Puzzles in parallel using 
different evaluation strategies including static partitioning and dynamic partitioning. 
To get a better evaluation on the performance parallel computation, we eliminated 
unnecessary sequential computation of our program. Only N-puzzle solutions’ time 
complexities are printed at the end. 
  
We started attempt #2 by changing main.hs file to make the solver solve multiple N-
puzzles at the same time. 
 

main :: IO () 

main = do 

args <- checkArgs =<< getArgs 

     content <- readFile $ args !! 0 

     let  input_list = splitOn "#" content 

          grids = map inputToGrid input_list 

         solution = map solveNPuzzle grids 

      print (length solution) >> mapM_ print solution 

 
For the sequential evaluation approach, we simply called map solveNPuzzle on grids. 

Then, we implemented two parallel evaluation approaches. The first approach is static  
partitioning. We split grids to two lists as’ and bs’ and used rpar and force to solve N-
puzzles. 
 
solution = runEval $ do 

                 as' <- rpar (force (map solveNPuzzle as)) 

                 bs' <- rpar (force (map solveNPuzzle bs)) 

                 rseq as' 

                 rseq bs' 

                 return (as'++ bs') 

 

When using static partitioning, we parallelly solve two lists of N-puzzles. We can 
only take advantage of two cores of CPU. To further evaluate parallel solving N-
puzzles with more cores, we also implemented dynamic partitioning with parList. 
 
parMap :: (a -> b) -> [a] -> Eval [b] 

parMap _ [] = return [] 

parMap f (a:as) = do b <- rpar (f a) 

                  bs <- parMap f as 
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                return (b:bs) 

solution = runEval (parMap solveNPuzzle grids) 

 
We used two set of N-puzzles to evaluate the two parallel approaches. The first set of 
N-puzzles is 1000 8-puzzles, and the second set is 40 15-puzzles. 8-puzzles are easy 
to solve, with most of the solutions’ time complexities are within 1000. 15-puzzles are 
much harder, with some of the 15-puzzles’ solutions exceeding 200000. We would 
like to find if the complexity of each puzzle can affect the program. 
 

4. Performance Testing & Results 
4.1  Results from Attempt #1 
The initial attempt to construct next state and their cost in parallel only produced 
negative performance improvement across our tests. We believe that our strategy did 
not work out due to the limitation of setup of N-Puzzle. Since each puzzle only has a 
maximum of 4 next states, constructing them in parallel adds too much overhead in 
comparison to the computation done. Additionally, getCost uses Manhattan Distance 
which requires very little calculation. We suspect if the cost function is more 
complicated, we might start seeing performance gains by evaluating them in parallel.  
 

 
Without parallelization, done in 3.23s. 

 

 
With parallelization and -N4, done in 3.77s. 
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Performance degradation as more threads are used 

 
Our attempt to evaluate every next states as soon as they are defined also failed. Due 
to the nature of the search algorithm, we needed to maintain a global state of visited 
states visible to all parallel evaluations so they don’t repeat the same work. Because 
there is no easy way to accomplish that in Haskell, we decided to proceed without it. 
In practice, we found this modification brings no improvement over sequential 
evaluation for easy puzzles, again due to the overhead. We also found that this 
modification breaks the program when it is running on slightly more difficult puzzles, 
due to the amount of repeated work in parallel stalling the system.  
 
4.2 Results from Attempt #2 
The evaluation results of solving 1000 8-puzzles with different parallel approaches 
are as following. 
 
Approach Time Speedup 
sequential 6.438s 1x 
static partitioning -N2 3.419s 1.88x 

dynamic partitioning -N2 4.429s 1.45x 
dynamic partitioning -N4 3.044s 2.11x 
dynamic partitioning -N8 2.399s 2.68x 

 
We could see the static partitioning approach has a pretty good performance with 2 
cores. The speedup is 1.88x which is close to 2. By contrast, the dynamic partitioning 
approach with 2 cores doesn’t perform comparably good. Its speedup is only 1.45x. 
When 4 cores and 8 cores are used, the speedup increase to 2.11x and 2.68x. It seems 
that if we want the best performance of solving multiple N-puzzles, we can just use 
more cores with dynamic partitioning. However, when evaluating the three 
approaches on solving 15-puzzles, we found it is not the case. 
 
The evaluation results of solving 40 15-puzzles with different parallel approaches are 
as following. 
 
Approach Time Speedup 
sequential 177.366s 1x 
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dynamic partitioning -N2 117.050s 1.52x 
dynamic partitioning -N4 77.374s 2.92x 
dynamic partitioning -N8 92.10s 1.93x 

 
From the results, we could intuitively see that 15-puzzle is much harder to solve. The 
average time to solve one 15-puzzle is around 700x of the time to solve. When N-
puzzles are much harder to solve, dynamic partitioning still can help accelerate the 
solver program. With 2 cores and 4 cores, the speedups are better than the speedups 
on solving 8-puzzles. However, when 8 cores are used, the performance declines a lot. 
It takes extra 15 seconds to finish solving 15-puzzles when using extra 4 cores. Thus, 
we took a look at the eventlog on threadscope. 
 

 
eventlog when using 8 cores 

 
On the eventlog, we could see the unusual patterns of several time intervals where the 
activity becomes zero and CPU cores are busy to deal with garbage collection. And 
along the program running, each time the pattern appears, the time interval become 
larger. At around 65 seconds, several cores start idling. Several intervals of garbage 
collection and several CPU cores idling after 65 seconds cause the program which 
utilize 8 cores runs slower than the program which utilize 4 cores. 
 

   
heap sizes when using 2, 4, and 8 cores 

 
We inspected some other metrics on eventlog and found when using 8 cores to 
solving 40 15-puzzles, the maximum heap size increases to 5.9 GiB which is 3 times 
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of the maximum heap size when using 4 cores. Large heap probably causes the 
slowdown.  
 
The unusual slowdown of using 8 cores to solve 15-puzzles suggests us that to solve 
computation heavy problems, it is not always true that utilizing more resources can 
lead to a better result. We need to know that some unexpected things can emerge and 
can become counterproductive. 
 
Code： 
module Main where 

import GHC.Conc(par) 

import Control.Parallel.Strategies hiding(parMap) 

import Control.DeepSeq 

import Data.List.Split 

import System.Environment (getArgs) 

import System.Exit (exitSuccess) 

import Grid (getSolvedGrid, Grid) 

import Solver (solve, solve') 

import Logger 

import Parser 

 

checkArgs :: [String] -> IO [String] 

checkArgs xs = if null xs then displayHelp >> exitSuccess else pure xs 

 

inputToGrid :: String -> [[Int]] 

inputToGrid input = transformToGrid (words <$> (drop 1 . clearInput . lines 

$ input)) 

 

solveNPuzzle :: Grid -> Int 

solveNPuzzle grid = solve' (getSolvedGrid $ length grid) grid (Nothing, Nothing) 

 

parMap :: (a -> b) -> [a] -> Eval [b] 

parMap _ [] = return [] 

parMap f (a:as) = do b <- rpar (f a) 

                     bs <- parMap f as 

                     return (b:bs) 

 

main :: IO () 

main = do 

    args <- checkArgs =<< getArgs 

    content <- readFile $ args !! 0 

    let input_list = splitOn "#" content 

        grids = map inputToGrid input_list 

 {- map solveNPuzzle grids -} 
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      {- runEval (parMap solveNPuzzle grids) -} 

        (as, bs) = splitAt (length grids `div` 2) grids 

        solution = runEval $ do 

                    as' <- rpar (force (map solveNPuzzle as)) 

                    bs' <- rpar (force (map solveNPuzzle bs)) 

                    rseq as' 

                    rseq bs' 

                    return (as'++ bs') 

print (length solution) >> mapM_ print solution 

 
module Solver (SearchType(..), readSearchType, solve') where 

    import qualified Data.PQueue.Prio.Min as PQ 

    import qualified Data.HashSet as S 

    import Logger 

    import Grid 

    import Distance 

 

    data SearchType = Astar | Uniform | Greedy deriving Eq 

    type NextNodesFunc = Int -> [Grid] -> PQ.MinPQueue Int [Grid] 

 

    instance Show SearchType where 

        show Astar      = "A*" 

        show Uniform    = "Uniform cost" 

        show Greedy     = "Greedy" 

 

    readSearchType :: String -> Maybe SearchType 

    readSearchType s = case s of 

        "astar"     -> Just Astar 

        "uniform"   -> Just Uniform 

        "greedy"    -> Just Greedy 

        _           -> Nothing 

 

    -- Returns the cost of a node according to the SearchType currently used 

    getCost :: SearchType -> Distance -> Int -> Grid -> Grid -> Int 

    getCost st d l grid goal = let dist = calcDistance d grid goal in case st of 

        Astar     -> dist + l  -- A* : h cost + g cost 

        Uniform   -> l         -- Uniform : g cost only 

        Greedy    -> dist      -- Greedy : h cost only 

 

    -- Returns a PQueue containing the next nodes (value + cost) 

    getNextNodes :: Grid -> Distance -> SearchType -> Int -> [Grid] -> PQ.MinPQueue 

Int [Grid] 

    getNextNodes goal d st l xss = PQ.fromList $ zip costs neighbors where 

        costs       = (getCost st d l goal) <$> head <$> neighbors 
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        neighbors   = map (:xss) $ getNeighbors $ head xss 

 

-- goal : stage to reach ; xss : path from begining to current node ; os : open 

set ; cs : close set ; nn : nextNodes function ; n : time complexity ; m : space 

complexity ; l : xss length 

    runSearch' :: Grid -> [Grid] -> PQ.MinPQueue Int [Grid] -> S.Set Grid -> 

NextNodesFunc -> Int -> Int -> Int -> Int 

    runSearch' goal xss os cs nn n m l 

        | head xss == goal                          = n 

        | suc /= PQ.empty                           = runSearch'  goal  ((minim 

suc):xss)  (PQ.union os $ PQ.deleteMin suc)  cs'  nn  (n+1)  size (l+1) 

        | suc == PQ.empty && os /= PQ.empty         = runSearch'  goal  (tail xss)         

os                                cs'  nn  (n+1)  size (l-1) 

        | otherwise = 0 where 

            suc     = PQ.filter (\x -> S.notMember (head x) cs) $ nn l xss 

            cs'     = S.insert (head xss) cs 

            minim x = head . snd $ PQ.findMin x 

            size    = if PQ.size os > m then PQ.size os else m 

 

solve' :: Grid -> Grid -> (Maybe SearchType, Maybe Distance) -> Int 

    solve' goal xs (Nothing, Nothing) = runSearch' goal [xs]  PQ.empty  S.empty  

( getNextNodes goal defaultHeuristic defaultSearch )  0 0 1 

    solve' goal xs (Just st, Nothing) = runSearch' goal [xs]  PQ.empty  S.empty  

( getNextNodes goal defaultHeuristic st            )  0 0 1 

    solve' goal xs (Nothing, Just d)  = runSearch' goal [xs]  PQ.empty  S.empty  

( getNextNodes goal d                defaultSearch )  0 0 1 

solve' goal xs (Just st, Just d)  = runSearch' goal [xs]  PQ.empty  S.empty  

( getNextNodes goal d                st            )  0 0 1 

 

 

import Distance 

    import Solver 

 

    maxPuzzle :: Int 

    maxPuzzle = 999 

 

    -- Strips comments and empty lines 

    clearInput :: [String] -> [String] 

    clearInput xs = filter (/="") $ map (head . splitOn "#") xs 

 

    -- Checking size of the puzzle 

    isValidSize :: [[Int]] -> Bool 

    isValidSize xss = let ys = map (^2) [3..maxPuzzle] in (length . concat) xss 

`elem` ys 
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    -- Sorts input and compare it to an enum list of the same size 

    hasValidContent :: [[Int]] -> Bool 

    hasValidContent xss = let n = length xs - 1; xs = concat xss; ys = [0..n] 

in sort xs == ys 

 

    -- Returns the input as [[Int]] if it is valid, otherwise returns Nothing 

    transformInput :: [[String]] -> Maybe [[Int]] 

    transformInput xss 

        | all isDigit (concat $ concat xss) == False = Nothing 

        | otherwise = let xss' = (map read) <$> xss in if isValidSize xss' && 

hasValidContent xss' then Just xss' else Nothing 

 

    transformToGrid :: [[String]] -> [[Int]] 

    transformToGrid xss = 

        let xss' = (map read) <$> xss in xss' 

 

    -- Check programs args, and returns associated flags 

    parseArgs :: [String] -> (Maybe SearchType, Maybe Distance) 

    parseArgs xs = case length xs of 

        1   -> (Nothing, Nothing) 

        2   -> (readSearchType (xs !! 1), Nothing) 

        _   -> (readSearchType (xs !! 1), readDistance (xs !! 2)) 

 

 

 
 
 
 
 
 


