
COMS4995 PFP Final Project
Hsuan-Ru Yang (hy2713)

Introduction
In this project I will seek to implement a parallel version of Kruskal’s Algorithm, targeted to solve the

''Minimum Spanning Tree'' problem. I will focus on a specific variant of the algorithm, namely the

filterKruskal algorithm, which is better suited for parallelism.

Background

Minimum Spanning Tree

A minimum spanning tree in a connected graph is a subset of the edges of the graph that connects all

vertices in the graph, forms no cycle, and has the smallest total edge weight.

For example in the following graph (https://en.wikipedia.org/wiki/Minimum_spanning_tree):

A minimum spanning tree would be:

1

Kruskal’s Algorithm

One of the algorithms for finding the minimum spanning tree is Kruskal’s algorithm. The basic idea of the

algorithm is to greedly add the edge with the smallest weight that connects two vertices from different trees,

where each node in the graph is initialized as a tree of itself. The algorithm makes use of the union-find

data structure, and can be outlined as:

Filter-Kruskal

The filter-Kruskal algorithm is a variant of the original Kruskal’s algorithm that was designed to suit

parallelism. The basic idea is to partition the edges and filter out edges that connect vertices in the same

tree. The algorithm can be outlined as follows:

2

The algorithm is easier to parallelize since sorting, filtering, and partitioning can be implemented in a

parallel manner by distributing the edges among the processors.

Implementation

Union-Find

A union-find data structure should support two main operations: the find-root operation that finds the

representation of a given node, and a merge operation that merges two sets. Here we use the

implementation from https://github.com/jgrant27/jngmisc/blob/master/haskell/quick_union.hs

import Data.Sequence as Seq

data DisjointSet = DisjointSet

{ count :: Int, ids :: (Seq Int), sizes :: (Seq Int) }

deriving (Read, Show)

-- Return id of root object

findRoot :: DisjointSet -> Int -> Int

3

https://github.com/jgrant27/jngmisc/blob/master/haskell/quick_union.hs

findRoot set p | p == parent = p

| otherwise = findRoot set parent

where

parent = index (ids set) (p - 1)

-- Are objects P and Q connected ?

connected :: DisjointSet -> Int -> Int -> Bool

connected set p q = findRoot set q `par` (findRoot set p) == (findRoot set q)

-- Replace sets containing P and Q with their union

quickUnion :: DisjointSet -> Int -> Int -> DisjointSet

quickUnion set p q | i == j = set

| otherwise = DisjointSet cnt rids rsizes

where

(i, j) = findRoot set q `par` (findRoot set p, findRoot set q)

(i1, j1) = (index (sizes set) (i - 1), index (sizes set) (j - 1))

(cnt, psmaller, size) = (count set - 1, i1 < j1, i1 + j1)

-- Always make smaller root point to the larger one

(rids, rsizes) = if psmaller

then (update (i - 1) j (ids set), update (j - 1)

size (sizes set))

else (update (j - 1) i (ids set), update (i - 1)

size (sizes set))

Kruskal’s Algorithm

Here we provide the implementation of the original Kruskal’s algorithm:

kruskal :: [(Int, Int, Int)] -> [(Int, Int, Int)] -> DisjointSet -> ([(Int, Int, Int)],

DisjointSet)

kruskal [] t m = (t, m)

kruskal e t m

| diff_edge m (u, v, w) = kruskal (tail e) ((u,v,w):t) (quickUnion m (u+1) (v+1))

| otherwise = kruskal (tail e) t m

where

(u, v, w) = head e

4

Filter-Kruskal

The following is my implementation of the filter-Kruskal’s algorithm, which includes the key components

filter and partition.

filter' :: [(Int, Int, Int)] -> DisjointSet -> [(Int, Int, Int)]

filter' e m = List.filter (diff_edge m) e

partitionEdges :: [(Int, Int, Int)] -> Int -> ([(Int, Int, Int)], [(Int, Int, Int)])

partitionEdges e pivot = List.partition (compare_pivot pivot) e

filterKruskal :: [(Int, Int, Int)] -> DisjointSet -> Int -> Int -> Int -> Int -> ([(Int, Int,

Int)], DisjointSet)

filterKruskal e m depth maxDepth threshold sortDepth

| (depth > maxDepth) || (List.length e < threshold) = kruskal (sortEdges sortDepth e) [] m

| otherwise = (res_l ++ res_r, new_m_r)

where

(_, _, pivot) = head e

(e_l, e_r) = partitionEdges e pivot

(res_l, new_m_l) = filterKruskal e_l m (depth+1) maxDepth threshold sortDepth

e_r' = filter' e_r new_m_l

(res_r, new_m_r) = filterKruskal e_r' new_m_l (depth+1) maxDepth threshold sortDepth

A sample output of the program would be:

Parallelization
This project focuses on parallelizing three parts of the algorithm: 1. The sorting part for the base case

original Kruskal’s algorithm, which requires the input edges to be in ascending order. 2. The filtering step

and 3. The partition step in the filter-Kruskal’s algorithm. In the following section I will discuss the

parallelized implementation of these three components. All experiments in this section were run on a graph

with 3000 nodes and 100000 edges, and the reported numbers are the average of 4 runs of each program.

5

Sorting

The parallelized version of sorting is implemented as the following:

sortEdges :: Int -> [(Int, Int, Int)] -> [(Int, Int, Int)]

sortEdges n (x:xs)

| n > 0 = b `par` a ++ x:b

| otherwise = a ++ x:b

where

a = sortEdges (n-1) $ parFilter (\h -> compareEdges h x /= GT) xs

b = sortEdges (n-1) $ parFilter (\h -> compareEdges h x == GT) xs

sortEdges _ [] = []

This is a modified version of the quicksort algorithm, where the first element of the list is chosen as the pivot

instead of a random one. The parallel part here is to evaluate the partitioned sub-lists, either greater or less

than the pivot, in parallel before it reaches a certain recursion depth. By replacing the sorting function in the

original program with this parallelized sorting function, we can get the following figure:

As shown in the figure, the parallelized version of the sorting function indeed provides some speedup when

the program is executed on multiple cores.

Filter

For the filtering component in the algorithm, the parallelized version is implemented as the following:

parFilter :: (a -> Bool) -> [a] -> [a]

6

parFilter p = withStrategy (parList rseq) . List.filter p

filter' :: [(Int, Int, Int)] -> DisjointSet -> [(Int, Int, Int)]

filter' e m = parFilter (diff_edge m) e

Where the filtering function is applied with the parList strategy to each element of the list to be filtered.

Replacing the original filtering function with this, we can get speedup results shown below:

As shown in the figure above, the program was able to gain some speedup with more cores. However, the

speedup is not very significant, probably because filtering is not a very computationally extensive task in the

first place, so the benefits of parallelizing it are not obvious.

Partition

The parallelized version of partitioning is implemented as below:

partitionEdges :: [(Int, Int, Int)] -> Int -> ([(Int, Int, Int)], [(Int, Int, Int)])

partitionEdges [] _ = ([], [])

partitionEdges e pivot = r `par` (l, r)

where

l = parFilter (compare_pivot pivot) e

r = parFilter (not . (compare_pivot pivot)) e

There are two things I did for parallelization here:

7

1. Since the goal of the function is to produce two sublists of the input list, with one containing all elements

that satisfies a predicament and the other one that contains all elements that doesn’t, the filtering of the two

sublists are run in parallel with r `par` (l, r)

2. I also leveraged the parFilter function from the previous section to further improve parallelism.

After incorporating these changes, the speedup of the program is shown below:

As shown in the figure, the program is having pretty nice speedup gains in the beginning. However, as the

number of cores increases, the speedup ratio starts to decline. This might be due to the fact that

partitioning or filtering does not require a lot of computation in the first place, causing the benefits of

parallelism being overshadowed by the parallel overheads.

Putting it Together

By putting all three parallelized components together in the original program, we can get the following

figure:

8

We can see in the figure that the speedup gains with 2 or 3 cores is somewhat decent (1.8x speedup with 3

cores). However, speedup decreases when the number of cores keeps increasing. We can also take a look

at the number of sparks created:

As shown in the tables, the total number of sparks created are quite consistent regardless of the number of

cores used, while the number of converted ones increases with more cores. This does not align with the

pattern with the speedup chart, however. Here we also present the threadscope graphs for further analysis:

9

We can see that all the cores are actually pretty busy even with 6 or 8 cores running. Nonetheless, the

program still takes longer to execute, compared to 3 or 4 cores. This suggests that the parallel overhead in

the program has greatly dominated over the benefits of running the program parallelly. Another possible

reason that the speedup ratio is far lower than the theoretical ratio (N times speedup with N cores) is that

the whole algorithm depends on a shared union-find data structure. This means that in many steps of the

algorithm, the step has to wait until the union-find data structure is finished updating by the previous step in

order to proceed. This inevitably leads to a huge part of the program being executed sequentially and not

possible to parallelize, which further limits the potential speedup gain of the program, according to Amdalh’s

Law.

Conclusion
In this project I implemented a parallel version of the filter-Kruskal’s algorithm, and demonstrated speedup

on the performance of the program compared to the sequential version. However, some key characteristics

of the algorithm, including filtering and partition being not very heavy computational tasks and forced

sequential execution due to the dependence of a single shared data-structure, has caused the program to

underperform compared to the theoretical maximum speedup.

10

Code Listing

--

-

import Data.List as List

import System.IO

import Control.Parallel(par)

import Control.Parallel.Strategies(withStrategy, parList, rseq)

import System.Environment

--

-

-- Union Find Implementation

-- https://github.com/jgrant27/jngmisc/blob/master/haskell/quick_union.hs

import Data.Sequence as Seq

data DisjointSet = DisjointSet

{ count :: Int, ids :: (Seq Int), sizes :: (Seq Int) }

deriving (Read, Show)

-- Return id of root object

findRoot :: DisjointSet -> Int -> Int

findRoot set p | p == parent = p

| otherwise = findRoot set parent

where

parent = index (ids set) (p - 1)

-- Are objects P and Q connected ?

connected :: DisjointSet -> Int -> Int -> Bool

connected set p q = findRoot set q `par` (findRoot set p) == (findRoot set q)

-- Replace sets containing P and Q with their union

quickUnion :: DisjointSet -> Int -> Int -> DisjointSet

quickUnion set p q | i == j = set

| otherwise = DisjointSet cnt rids rsizes

where

(i, j) = findRoot set q `par` (findRoot set p, findRoot set q)

(i1, j1) = (index (sizes set) (i - 1), index (sizes set) (j - 1))

(cnt, psmaller, size) = (count set - 1, i1 < j1, i1 + j1)

-- Always make smaller root point to the larger one

(rids, rsizes) = if psmaller

then (update (i - 1) j (ids set), update (j - 1)

size (sizes set))

else (update (j - 1) i (ids set), update (i - 1)

size (sizes set))

--

-

11

--

-

getEdge :: Handle -> IO (Int, Int, Int)

getEdge fileHandle =

do

line <- hGetLine fileHandle

let [u, v, w] = words line

return ((read u :: Int), (read v :: Int), (read w :: Int))

readGraphFile :: String -> (Handle -> IO a) -> IO [a]

readGraphFile fileName handleFunction = do

fileHandle <- openFile fileName ReadMode

res <- readLine fileHandle handleFunction []

return res

readLine :: Handle -> (Handle -> IO a) -> [a] -> IO [a]

readLine fileHandle handleFunction cur = do

end <- hIsEOF fileHandle

if end

then return cur

else do

p <- handleFunction fileHandle

let cur' = p:cur

readLine fileHandle handleFunction cur'

readGraph :: IO [(Int, Int, Int)]

readGraph = readGraphFile "large_graph.txt" getEdge

--

-

diff_edge :: DisjointSet -> (Int, Int, Int) -> Bool

diff_edge m (u, v, _) = not $ connected m (u+1) (v+1)

compareEdges :: (Int, Int, Int) -> (Int, Int, Int) -> Ordering

compareEdges (u1, v1, w1) (u2, v2, w2) = compare (w1, u1, v1) (w2, u2, v2)

compare_pivot :: Int -> (Int, Int, Int) -> Bool

compare_pivot p (_, _, w) = (w <= p)

--

-- Parallel Stuff

12

--

sortEdges :: Int -> [(Int, Int, Int)] -> [(Int, Int, Int)]

sortEdges n (x:xs)

| n > 0 = b `par` a ++ x:b

| otherwise = a ++ x:b

where

a = sortEdges (n-1) $ parFilter (\h -> compareEdges h x /= GT) xs

b = sortEdges (n-1) $ parFilter (\h -> compareEdges h x == GT) xs

sortEdges _ [] = []

parFilter :: (a -> Bool) -> [a] -> [a]

parFilter p = withStrategy (parList rseq) . List.filter p

filter' :: [(Int, Int, Int)] -> DisjointSet -> [(Int, Int, Int)]

filter' e m = parFilter (diff_edge m) e

partitionEdges :: [(Int, Int, Int)] -> Int -> ([(Int, Int, Int)], [(Int, Int, Int)])

partitionEdges e pivot = r `par` (l, r)

where

l = parFilter (compare_pivot pivot) e

r = parFilter (not . (compare_pivot pivot)) e

--

-- Core Algorithm

--

kruskal :: [(Int, Int, Int)] -> [(Int, Int, Int)] -> DisjointSet -> ([(Int, Int, Int)],

DisjointSet)

kruskal [] t m = (t, m)

kruskal e t m

| diff_edge m (u, v, w) = kruskal (tail e) ((u,v,w):t) (quickUnion m (u+1) (v+1))

| otherwise = kruskal (tail e) t m

where

(u, v, w) = head e

filterKruskal :: [(Int, Int, Int)] -> DisjointSet -> Int -> Int -> Int -> Int -> ([(Int, Int,

Int)], DisjointSet)

filterKruskal e m depth maxDepth threshold sortDepth

13

| (depth > maxDepth) || (List.length e < threshold) = kruskal (sortEdges sortDepth e) [] m

| otherwise = (res_l ++ res_r, new_m_r) -- `S.using` (S.parTuple2 S.rseq S.rseq)

where

(_, _, pivot) = head e

(e_l, e_r) = partitionEdges e pivot

(res_l, new_m_l) = filterKruskal e_l m (depth+1) maxDepth threshold sortDepth

e_r' = filter' e_r new_m_l

(res_r, new_m_r) = filterKruskal e_r' new_m_l (depth+1) maxDepth threshold sortDepth

main :: IO()

main = do

-- let edges = [(0, 1, 10), (0, 2, 6),(0, 3, 5),(1, 3, 15), (2, 3, 4)]

-- let edges =

[(0,1,7),(1,2,8),(0,3,5),(1,3,9),(1,4,7),(2,4,5),(3,4,15),(3,5,6),(4,5,8),(4,6,9),(5,6,11)]

edges <- readGraph

args <- getArgs

let [sortDepth] = (map (\x -> read x:: Int) args)

let maxDepth = 100

let threshold = 1000

let n = maximum [b+1 | (_,b,_) <- edges]

let uf = DisjointSet n (Seq.fromList [1..n]) (Seq.replicate n 1)

let (res, _) = filterKruskal edges uf 0 maxDepth threshold sortDepth

print ("Minimum Weight: " ++ (show (sum [c | (_,_,c) <- res])))

14

